1
|
Mohapatra D, Pattanayak PD, Chatterjee S, Kaminsky W, Sasamori T, Nakamura T, Dinda R. Unsymmetrical salen-based oxido V IV: Synthesis, characterization, biomolecular interactions, and anticancer activity. J Inorg Biochem 2025; 264:112818. [PMID: 39733738 DOI: 10.1016/j.jinorgbio.2024.112818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Three stable oxidovanadium(IV) [VIVOL1-3] complexes (1-3) were synthesized through the incorporation of unsymmetrical salen ligands (H2L1-3). All the ligands are synthesized, and their vanadium compounds were thoroughly characterized by CHNS analysis, various spectroscopy methods (IR, UV-Vis, NMR spectroscopy), and HR-ESI-MS. The structures of 1-3 were validated through the single-crystal X-ray analysis. UV-Vis and HR-ESI-MS were used to determine the solution stability of the complexes in the aqueous phase, revealing their stability in aqueous/biological medium. Various spectroscopy techniques were used to study the DNA/BSA binding abilities, and the results indicate that 1-3 shows effective biomolecular interactions. The partition coefficient result indicates that 1-3 are highly hydrophobic and may easily permeate the cells. Finally, the in vitro anticancer properties of 1-3 were determined with two cancerous (HT-29 and A549), and the NIH-3T3 normal cell lines. Among the series, 3 is the most cytotoxic, with IC50 values of 6.2 ± 0.2 and 5.3 ± 0.4 μM against HT-29 and A549 cell lines respectively. Moreover, the apoptotic cell death mechanism of 1-3 was assessed through DAPI, AO/EB, and double staining apoptosis experiments.
Collapse
Affiliation(s)
- Deepika Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | | | - Souvik Chatterjee
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Salt Lake, Kolkata 700106, India
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Takahiro Sasamori
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takashi Nakamura
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
2
|
Dasmahapatra U, Maiti B, Alam MM, Chanda K. Anti-cancer property and DNA binding interaction of first row transition metal complexes: A decade update. Eur J Med Chem 2024; 275:116603. [PMID: 38936150 DOI: 10.1016/j.ejmech.2024.116603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
Metal ions carry out a wide variety of functions, including acid-base/redox catalysis, structural functions, signaling, and electron transport. Understanding the interactions of transition metal complexes with biomacromolecules is essential for biology, medicinal chemistry, and the production of synthetic metalloenzymes. After the coincidental discovery of cisplatin, importance of the metal complexes in biochemistry became a top priority for inquiry. In this review, a decade update on various synthetic strategies to first row transition metal complex and their interaction with DNA through non-covalent binding are explored. Moreover, this effort provides an excellent analysis on the efficacy of theoretical and practical approaches to the systematic generation of new non-platinum based metallodrugs for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Upala Dasmahapatra
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Barnali Maiti
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| | - Mohammed Mujahid Alam
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Kaushik Chanda
- Department of Chemistry, Rabindranath Tagore University, Hojai, Assam, 782435, India.
| |
Collapse
|
3
|
Bashir M, Dar AA, Yousuf I. Syntheses, Structural Characterization, and Cytotoxicity Assessment of Novel Mn(II) and Zn(II) Complexes of Aroyl-Hydrazone Schiff Base Ligand. ACS OMEGA 2023; 8:3026-3042. [PMID: 36713712 PMCID: PMC9878661 DOI: 10.1021/acsomega.2c05927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/30/2022] [Indexed: 06/15/2023]
Abstract
This work describes the syntheses, structural characterization, and biological profile of Mn(II)- and Zn(II)-based complexes 1 and 2 derived from the aroyl-hydrazone Schiff base ligand (L1). The synthesized compounds were thoroughly characterized by elemental analysis, Fourier transform infrared spectroscopy (FTIR), UV-vis, electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and single-crystal X-ray diffraction (s-XRD). Density functional theory (DFT) studies of complexes 1 and 2 were performed to ascertain the structural and electronic properties. Hirshfeld surface analysis was used to investigate different intermolecular interactions that define the stability of crystal lattice structures. To ascertain the therapeutic potential of complexes 1 and 2, in vitro interaction studies were carried out with ct-DNA and bovine serum albumin (BSA) using analytical and multispectroscopic techniques, and the results showed more avid binding of complex 2 than complex 1 and L1. The antioxidant potential of complexes 1 and 2 was examined against the 2,2-diphenyl picrylhydrazyl (DPPH) free radical, which revealed better antioxidant ability of the Mn(II) complex. Moreover, the antibacterial activity of synthesized complexes 1 and 2 was tested against Gram-positive and Gram-negative bacteria in which complex 2 demonstrated more effective bactericidal activity than L1 and complex 1 toward Gram-positive bacteria. Furthermore, the in vitro cytotoxicity assessment of L1 and complexes 1 and 2 was carried out against MDA-MB-231 (triple negative breast cancer) and A549 (lung) cancer cell lines. The cytotoxic results revealed that the polymeric Zn(II) complex exhibited better and selective cytotoxicity against the A549 cancer cell line as was evidenced by its low IC50 value.
Collapse
Affiliation(s)
- Masrat Bashir
- Department
of Chemistry, Aligarh Muslim University, Aligarh202002, Uttar Pradesh, India
| | - Aijaz A. Dar
- Department
of Chemistry, University of Kashmir, Hazratbal, Srinagar190006, Jammu & Kashmir, India
| | - Imtiyaz Yousuf
- Department
of Chemistry, Aligarh Muslim University, Aligarh202002, Uttar Pradesh, India
| |
Collapse
|
4
|
Interaction with bioligands and in vitro cytotoxicity of a new dinuclear dioxido vanadium(V) complex. J Inorg Biochem 2022; 237:111980. [PMID: 36109193 DOI: 10.1016/j.jinorgbio.2022.111980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
One centrosymmetric bis(μ-oxido)-bridged vanadium(V) dimer with molecular formula [(VVO2)2(pedf)2] (1) has been synthesized from the reaction of VOSO4·5H2O with a Schiff base ligand (abbreviated with pedf-) obtained from 2-acetylpyridine and 2-furoic hydrazide in methanol. Complex 1 was characterized by elemental analysis, UV-visible (UV-Vis), Fourier-transform infrared spectra (FT-IR), cyclic voltammetry (CV), electron paramagnetic resonance spectroscopy (EPR) and electrospray ionization-mass spectrometry (ESI-MS) techniques along with single crystal X-ray diffraction (SCXRD). The FT-IR spectral data of 1 indicated the involvement of oxygen and azomethine nitrogen in coordination to the central metal ion. The crystallographic studies revealed a dinuclear oxovanadium(V) complex with the Schiff base coordinated via the ONN donor set with formation of two five-membered chelate rings resulting in a distorted octahedral geometry. The interaction of 1 with calf thymus DNA (CT-DNA) was investigated by spectroscopic measurements and results suggested that the complex binds to CT-DNA via moderate intercalative mode with a binding constant (Kb) around 103 M-1. In addition, the in vitro protein binding behavior was studied by fluorescence spectrophotometric method using both bovine serum albumin (BSA) and human serum albumin (HSA) and a static quenching mechanism was observed for the interaction of the complex with both albumins that occurs with a Kb in the range (5-6) × 103 M-1. In vitro cytotoxicity of complex 1 on lung cancer cells (A549) and human skin carcinoma cell line (A431) demonstrated that the complex had a broad-spectrum of anti-proliferative activity with IC50 value of 64.2 μM and 56.2 μM.
Collapse
|
5
|
Biswas N, Saha S, Biswas BK, Chowdhury M, Rahaman A, Mandal DP, Bhattacharjee S, Zangrando E, Roy Choudhury R, Roy Choudhury C. Cytotoxic profile study, DNA and protein binding activity of a new dinuclear nickel(II) thiocyanato complex. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2140408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Niladri Biswas
- Department of Biotechnology, Institute of Genetic Engineering, Kolkata, West Bengal, India
- Department of Chemistry, West Bengal State University, Barasat, Kolkata, India
| | - Sandeepta Saha
- Department of Chemistry, West Bengal State University, Barasat, Kolkata, India
- Sripur High School, Madhyamgram Bazar, Kolkata, India
| | - Barun Kumar Biswas
- Department of Chemistry, West Bengal State University, Barasat, Kolkata, India
| | - Manas Chowdhury
- Department of Chemistry, West Bengal State University, Barasat, Kolkata, India
| | - Ashikur Rahaman
- Department of Zoology, West Bengal State University, Barasat, Kolkata, India
| | - Deba Prasad Mandal
- Department of Zoology, West Bengal State University, Barasat, Kolkata, India
| | | | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ruma Roy Choudhury
- Department of Chemistry and Environment, Heritage Institute of Technology, Anandapur, Kolkata, India
| | | |
Collapse
|
6
|
Antibacterial Fresh-Keeping Films Assembled by Synergistic Interplay Between Casein and Shellac. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09698-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Pellei M, Del Bello F, Porchia M, Santini C. Zinc coordination complexes as anticancer agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214088] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Dong J, Gao L, Zhang B, Xu T, Wang L, Kong J, Li L. Synthesis, crystal structure, Hirshfeld surface analysis, DNA binding, DNA cleavage activity and molecular docking of a new Schiff base nickel(II) complex. J Biomol Struct Dyn 2020; 39:5224-5234. [PMID: 32597363 DOI: 10.1080/07391102.2020.1784789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A mononuclear nickel(II) complex, [Ni(o-van-tris)2]·2H2O (o-van-tris = Schiff base derived from o-vanillin and tris(hydroxymethyl)aminomethane), has been synthesized and structurally characterized. The single crystal structure shows a distorted octahedron geometry coordinated with Ni(II) atom, and 2 D plane structure has formed by O-H···O hydrogen bond interactions. An analysis to ascertain intermolecular interactions of the complex was performed based on the Hirshfeld surfaces and their associated two-dimensional fingerprint plots. The binding properties of the nickel(II) complex with CT-DNA have been investigated by spectroscopic methods and molecular docking. Absorption and fluorescence spectral studies reveal that the complex interacts with DNA through hydrogen bond and hydrophobic interactions with the DNA base pairs. Molecular docking studies show that the complex effectively docks in the major groove of DNA. The DNA cleavage experiment was performed by gel electrophoretic assay, indicating that DNA cleavage activity of the complex is concentration dependent and much sensitive to ionic strength. The efficient cleavage mediated via hydrolytically cleaving pathway.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jianfang Dong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, P. R. China.,Department of Material Science, Shandong Polytechnic Technician College, Liaocheng, Shandong, China
| | - Lei Gao
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital Affiliated to Shandong University, Liaocheng, China
| | - Bo Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, P. R. China
| | - Tao Xu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, P. R. China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, P. R. China
| |
Collapse
|
9
|
A chiral binuclear nickel(II) complex with Schiff base ligand: synthesis, crystal structure, DNA/BSA binding interactions and SOD activity. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00390-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Structural interplay and macroscopic aggregation of rice albumins after binding with heavy metal ions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Li Z, Yan H, Liu K, Huang X, Niu M. Syntheses, structures, DNA/BSA binding and cytotoxic activity studies of chiral alcohol-amine Schiff base manganese (II/III) complexes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Chang GL, Li Z, Niu MJ, Wang SN. Studies on the manganese and copper complexes derived from chiral Schiff base: synthesis, structure, cytotoxicity and DNA/BSA interaction. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1652275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Guo-Liang Chang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, People’s Republic of China
| | - Zhen Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, People’s Republic of China
| | - Mei-Ju Niu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, People’s Republic of China
| | - Su-Na Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, People’s Republic of China
| |
Collapse
|
13
|
Biswas N, Khanra S, Sarkar A, Bhattacharjee S, Prasad Mandal D, Chaudhuri A, Chakraborty S, Roy Choudhury C. Cytotoxicity activity, in silico molecular docking, protein- and DNA-binding study of a new Ni(II) Schiff base complex. J COORD CHEM 2019. [DOI: 10.1080/00958972.2018.1492118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Niladri Biswas
- Department of Chemistry, West Bengal State University, Kolkata, India
| | - Sumit Khanra
- Department of Chemistry, Indian Institute of Science Education and Research, Mohanpur, Kolkata, West Bengal, India
| | - Arnab Sarkar
- Department of Zoology, West Bengal State University, Kolkata, India
| | | | | | - Ankur Chaudhuri
- Department of Microbiology, West Bengal State University, Kolkata, India
| | - Sibani Chakraborty
- Department of Microbiology, West Bengal State University, Kolkata, India
| | | |
Collapse
|
14
|
Asadi Z, Mandegani Z, Asadi M, Pakiari AH, Salarhaji M, Manassir M, Karbalaei-Heidari HR, Rastegari B, Sedaghat M. Substituted effect on some water-soluble Mn(II) salen complexes: DNA binding, cytotoxicity, molecular docking, DFT studies and theoretical IR & UV studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:278-294. [PMID: 30121473 DOI: 10.1016/j.saa.2018.08.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/05/2018] [Accepted: 08/11/2018] [Indexed: 06/08/2023]
Abstract
Based on the importance of central metal complexes to interact with DNA, in this research focused on synthesis of some new water soluble Mn(II) complexes 1-4 which modified substituted in ligand at the same position with N, Me, H, and Cl. These complexes were isolated and characterized by elemental analyses, FT-IR, electrospray ionization mass spectrometry (ESI-MS) and UV-vis spectroscopy. DNA binding studies had been studied by using circular dichroism (CD) spectroscopy, UV-vis absorption spectroscopy, cyclic voltammetry (CV), viscosity measurements, emission spectroscopy and gel electrophoresis which proposed the metal buildings go about as effective DNA binders were studied in the presence of Fish-DNA (FS-DNA) which showed the highest binding affinity to DNA with hydrophobic and electron donating substituent. Cell toxicity assays against two human leukemia (Jurkat) and breast cancer (MCF-7) cell lines showed that the complex 3 exhibited a remarkable effects equal to a famous anticancer drug, cisplatin that high cytotoxic activity strongly depend on the hydrophobic substituted ligand. In the theoretical part, density functional theory (DFT) was performed to optimize the geometry of complexes through IR and UV spectra of the complexes that ligand substitution did not affect the geometry and theoretical IR and UV spectra showed good resemblance to the experimental data. The docking studies calculated the lowest-energy between complexes and DNA with the minor grooves mode.
Collapse
Affiliation(s)
- Zahra Asadi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran.
| | - Zeinab Mandegani
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Mozaffar Asadi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Ali Heidar Pakiari
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Maryam Salarhaji
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Mohamad Manassir
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Hamid Reza Karbalaei-Heidari
- Molecular Biotechnology Laboratory, Department of Biology, Faculty of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Banafsheh Rastegari
- Molecular Biotechnology Laboratory, Department of Biology, Faculty of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Moslem Sedaghat
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| |
Collapse
|
15
|
Synthesis, Structure, DNA Interaction, and SOD Activity of Three Nickel(II) Complexes Containing L-Phenylalanine Schiff Base and 1,10-Phenanthroline. Bioinorg Chem Appl 2018; 2018:8478152. [PMID: 30073020 PMCID: PMC6057355 DOI: 10.1155/2018/8478152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/01/2018] [Accepted: 05/28/2018] [Indexed: 01/03/2023] Open
Abstract
Three hexacoordinated octahedral nickel(II) complexes, [Ni(sal-L-phe)(phen)(CH3OH)]·CH3OH (1), [Ni(naph-L-phe)(phen)(CH3OH)] (2), and [Ni(o-van-L-phe)(phen)(CH3OH)]·5CH3OH (3) (sal-L-phe = a Schiff base derived from salicylaldehyde and L-phenylalanine, naph-L-phe = a Schiff base derived from 2-hydroxy-1-naphthaldehyde and L-phenylalanine, o-van-L-phe = a Schiff base derived from o-vanillin and L-phenylalanine, and phen = 1,10-phenanthroline), have been synthesized and characterized by elemental analysis, IR spectra, and single-crystal X-ray diffraction. The interactions of these complexes with CT-DNA were studied by UV-Vis absorption spectroscopy, fluorescence spectroscopy, circular dichroism spectroscopy, and viscosity measurements. The binding constant (Kb) values of 1.82 × 104 M−1 for 1, 1.96 × 104 M−1 for 2, and 2.02 × 104 M−1 for 3 suggest that each of these complexes could bind with DNA in a moderate intercalative mode. Complex 3 exhibited a stronger interaction with CT-DNA than complexes 1 and 2. In addition, the superoxide scavenging activity of these complexes was investigated by the nitrotetrazolium blue chloride (NBT) light reduction method, and the results showed that they exhibited a significant superoxide scavenging activity with the IC50 values of 4.4 × 10−5 M for complex 1, 5.6 × 10−5 M for complex 2, and 3.1 × 10−5 M for complex 3, respectively.
Collapse
|
16
|
Sedighipoor M, Kianfar AH, Kamil Mahmood WA, Azarian MH. Synthesis and electronic structure of novel Schiff bases Ni/Cu (II) complexes: Evaluation of DNA/serum protein binding by spectroscopic studies. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.03.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Wang Y, Zhu M, Liu F, Wu X, Pan D, Liu J, Fan S, Wang Z, Tang J, Na R, Li QX, Hua R, Liu S. Comparative Studies of Interactions between Fluorodihydroquinazolin Derivatives and Human Serum Albumin with Fluorescence Spectroscopy. Molecules 2016; 21:molecules21101373. [PMID: 27754443 PMCID: PMC6273767 DOI: 10.3390/molecules21101373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 12/15/2022] Open
Abstract
In the present study, 3-(fluorobenzylideneamino)-6-chloro-1-(3,3-dimethylbutanoyl)-phenyl-2,3-dihydroquinazolin-4(1H)-one (FDQL) derivatives have been designed and synthesized to study the interaction between fluorine substituted dihydroquinazoline derivatives with human serum albumin (HSA) using fluorescence, circular dichroism and Fourier transform infrared spectroscopy. The results indicated that the FDQL could bind to HSA, induce conformation and the secondary structure changes of HSA, and quench the intrinsic fluorescence of HSA through a static quenching mechanism. The thermodynamic parameters, ΔH, ΔS, and ΔG, calculated at different temperatures, revealed that the binding was through spontaneous and hydrophobic forces and thus played major roles in the association. Based on the number of binding sites, it was considered that one molecule of FDQL could bind to a single site of HSA. Site marker competition experiments indicated that the reactive site of HSA to FDQL mainly located in site II (subdomain IIIA). The substitution by fluorine in the benzene ring could increase the interactions between FDQL and HSA to some extent in the proper temperature range through hydrophobic effect, and the substitution at meta-position enhanced the affinity greater than that at para- and ortho-positions.
Collapse
Affiliation(s)
- Yi Wang
- Department of Science of Pesticides, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
- Department of Applied Chemistry, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Meiqing Zhu
- Department of Science of Pesticides, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| | - Feng Liu
- Department of Applied Chemistry, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Xiangwei Wu
- Department of Science of Pesticides, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| | - Dandan Pan
- Department of Science of Pesticides, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| | - Jia Liu
- Department of Science of Pesticides, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
- Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Wenhua Road No. 95, Zhengzhou 450002, China.
| | - Shisuo Fan
- Department of Science of Pesticides, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| | - Zhen Wang
- Department of Science of Pesticides, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| | - Jun Tang
- Department of Science of Pesticides, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| | - Risong Na
- Department of Science of Pesticides, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
- Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Wenhua Road No. 95, Zhengzhou 450002, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI 96822, USA.
| | - Rimao Hua
- Department of Science of Pesticides, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| | - Shangzhong Liu
- Department of Applied Chemistry, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
18
|
Rudra S, Dasmandal S, Patra C, Kundu A, Mahapatra A. Binding affinities of Schiff base Fe(II) complex with BSA and calf-thymus DNA: Spectroscopic investigations and molecular docking analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 166:84-94. [PMID: 27214273 DOI: 10.1016/j.saa.2016.04.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/26/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
The binding interaction of a synthesized Schiff base Fe(II) complex with biological macromolecules viz., bovine serum albumin (BSA) and calf thymus(ct)-DNA have been investigated using different spectroscopic techniques coupled with viscosity measurements at physiological pH and 298K. Regular amendments in emission intensities of BSA upon the action of the complex indicate significant interaction between them, and the binding interaction have been characterized by Stern Volmer plots and thermodynamic binding parameters. On the basis of this quenching technique one binding site with binding constant (Kb=(7.6±0.21)×10(5)) between complex and protein have been obtained at 298K. Time-resolved fluorescence studies have also been encountered to understand the mechanism of quenching induced by the complex. Binding affinities of the complex to the fluorophores of BSA namely tryptophan (Trp) and tyrosine (Tyr) have been judged by synchronous fluorescence studies. Secondary structural changes of BSA rooted by the complex has been revealed by CD spectra. On the other hand, hypochromicity of absorption spectra of the complex with the addition of ct-DNA and the gradual reduction in emission intensities of ethidium bromide bound ct-DNA in presence of the complex indicate noticeable interaction between ct-DNA and the complex with the binding constant (4.2±0.11)×10(6)M(-1). Life-time measurements have been studied to determine the relative amplitude of binding of the complex to ct-DNA base pairs. Mode of binding interaction of the complex with ct-DNA has been deciphered by viscosity measurements. CD spectra have also been used to understand the changes in ct-DNA structure upon binding with the metal complex. Density functional theory (DFT) and molecular docking analysis have been employed in highlighting the interactive phenomenon and binding location of the complex with the macromolecules.
Collapse
Affiliation(s)
- Suparna Rudra
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Somnath Dasmandal
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Chiranjit Patra
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Arjama Kundu
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | | |
Collapse
|
19
|
Wei Q, Dong J, Zhao P, Li M, Cheng F, Kong J, Li L. DNA binding, BSA interaction and SOD activity of two new nickel(II) complexes with glutamine Schiff base ligands. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:355-67. [DOI: 10.1016/j.jphotobiol.2016.03.053] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/10/2016] [Accepted: 03/24/2016] [Indexed: 12/31/2022]
|
20
|
Zhao P, Wei Q, Dong J, Ding F, Li J, Li L. Synthesis, structure and spectroscopic studies on DNA binding, BSA interaction of a nickel(II) complex containing l–methionine Schiff base and 1,10-phenanthroline. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1206657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Peiran Zhao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Qiang Wei
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Jianfang Dong
- Department of Material Science, Shandong Polytechnic Technician College, Liaocheng, PR China
| | - Feifei Ding
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Jinghong Li
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, PR China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| |
Collapse
|
21
|
Zhang W, Yao D, Wei Y, Tang J, Bian HD, Huang FP, Liang H. Synthesis, characterization, DNA/protein interaction and cytotoxicity studies of Cu(II) and Co(II) complexes derived from dipyridyl triazole ligands. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 163:28-44. [PMID: 27043870 DOI: 10.1016/j.saa.2016.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
Four different transition metal complexes containing dipyridyl triazole ligands, namely [Cu(abpt)2Cl2]·2H2O (1), [Cu(abpt)2(ClO4)2] (2), [Co2(abpt)2(H2O)2Cl2]·Cl2·4H2O (3) and [Co2(Hbpt)2(CH3OH)2(NO3)2] (4) have been designed, synthesized and further structurally characterized by X-ray crystallography, ESI-MS, elemental analysis, IR and Raman spectroscopy. In these complexes, the both ligands act as bidentate ligands with N, N donors. DNA binding interactions with calf thymus DNA (ct-DNA) of the ligand and its complexes 1~4 were investigated via electronic absorption, fluorescence quenching, circular dichroism and viscosity measurements as well as confocal Laser Raman spectroscopy. The results show these complexes are able to bind to DNA via the non-covalent mode i.e. intercalation and groove binding or electrostatic interactions. The interactions with bovine serum albumin (BSA) were also studied using UV-Vis and fluorescence spectroscopic methods which indicated that fluorescence quenching of BSA by these compounds was the presence of both static and dynamic quenching. Moreover, the in vitro cytotoxic effects of the complexes against four cell lines SK-OV-3, HL-7702, BEL7404 and NCI-H460 showed the necessity of the coordination action on the biological properties on the respective complex and that all four complexes exhibited substantial cytotoxic activity.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, PR China
| | - Di Yao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, PR China.
| | - Yi Wei
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, PR China
| | - Jie Tang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, PR China
| | - He-Dong Bian
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, PR China; School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530008, PR China
| | - Fu-Ping Huang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, PR China.
| | - Hong Liang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, PR China
| |
Collapse
|
22
|
Paul A, Anbu S, Sharma G, Kuznetsov ML, Koch B, Guedes da Silva MFC, Pombeiro AJL. Synthesis, DNA binding, cellular DNA lesion and cytotoxicity of a series of new benzimidazole-based Schiff base copper(II) complexes. Dalton Trans 2016; 44:19983-96. [PMID: 26523453 DOI: 10.1039/c5dt02880a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A series of new benzimidazole containing compounds 2-((1-R-1-H-benzimidazol-2-yl)phenyl-imino)naphthol HL(1-3) (R = methyl, ethyl or propyl, respectively) have been synthesized by Schiff base condensation of 2-(1-R-1-H-benzo[d]imidazol-2-yl)aniline and 2-hydroxy-1-naphthaldehyde. The reactions of HL(1-3) with Cu(NO3)2·2.5H2O led to the corresponding copper(II) complexes [Cu(L)(NO3)] 1-3. All the compounds were characterized by conventional analytical techniques and, for 1 and 3, also by single-crystal X-ray analysis. The interactions of complexes 1-3 with calf thymus DNA were studied by absorption and fluorescence spectroscopic techniques and the calculated binding constants (K(b)) are in the range of 3.5 × 10(5) M(-1)-3.2 × 10(5) M(-1). Complexes 1-3 effectively bind DNA through an intercalative mode, as proved by molecular docking studies. The binding affinity of the complexes decreases with the size increase of the N-alkyl substituent, in the order of 1 > 2 > 3, which is also in accord with the calculated LUMO(complex) energies. They show substantial in vitro cytotoxic effect against human lung (A-549), breast (MDA-MB-231) and cervical (HeLa) cancer cell lines. Complex 1 exhibits a significant inhibitory effect on the proliferation of the A-549 cancer cells. The antiproliferative efficacy of 1 has also been analysed by a DNA fragmentation assay, fluorescence activated cell sorting (FACS) and nuclear morphology using a fluorescence microscope. The possible mode for the apoptosis pathway of 1 has also been evaluated by a reactive oxygen species (ROS) generation study.
Collapse
Affiliation(s)
- Anup Paul
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sellamuthu Anbu
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Gunjan Sharma
- Departments of Zoology, Faculty of Science, Banaras Hindu University, Varanasi-221 005, U.P., India.
| | - Maxim L Kuznetsov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Biplob Koch
- Departments of Zoology, Faculty of Science, Banaras Hindu University, Varanasi-221 005, U.P., India.
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
23
|
Niu M, Li Z, Li X, Huang X. Two chiral alkanolamine Schiff base Cu(ii) complexes as potential anticancer agents: synthesis, structure, DNA/protein interactions, and cytotoxic activity. RSC Adv 2016. [DOI: 10.1039/c6ra17830h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two novel chiral copper complexes have been synthesized and expressed DNA/protein binding strength and substantial cytotoxic activity.
Collapse
Affiliation(s)
- Meiju Niu
- School of Chemistry and Chemical Engineering
- Liaocheng University
- China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- Liaocheng University
| | - Zhen Li
- School of Chemistry and Chemical Engineering
- Liaocheng University
- China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- Liaocheng University
| | - Xiao Li
- School of Chemistry and Chemical Engineering
- Liaocheng University
- China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- Liaocheng University
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering
- Liaocheng University
- China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- Liaocheng University
| |
Collapse
|
24
|
Li Z, Niu M, Chang G, Zhao C. Chiral manganese (IV) complexes derived from Schiff base ligands: Synthesis, characterization, in vitro cytotoxicity and DNA/BSA interaction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:473-82. [PMID: 26596505 DOI: 10.1016/j.jphotobiol.2015.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/15/2022]
Abstract
Two new couples of chiral manganese (IV) complexes with Schiff-base ligands, Λ-[Mn(R-L(1))2]·2(CH3OH) (Λ-1) and Δ-[Mn(S-L(1))2]·2(CH3OH) (Δ-1), Λ-[Mn(R-L(2))2]·(H2O)2 (Λ-2) and Δ-[Mn(S-L(2))2]·(H2O)2 (Δ-2), {H2L(1)=(R/S)-(±)-1-[(1-hydroxymethyl-propylimino)-methyl]-naphthalen-2-ol, H2L(2)=(R/S)-(±)-1-[(1-Hydroxymethyl-2-phenyl-ethylimino)-methyl]-naphthalen-2-ol} have been synthesized, and fully characterized by elemental analyses, UV-Vis spectrum, circular dichroism spectrum, FT-IR spectrum, mass spectrum, and single crystal X-ray diffraction (SXRD). The interaction of the four chiral Mn (IV) complexes with CT-DNA and BSA were also investigated by various spectroscopic techniques (UV-visible, fluorescence spectroscopic). The results show that the Δ-complexes exhibit more efficient CT-DNA interaction with respect to the Λ-complexes. All the complexes could quench the intrinsic fluorescence of BSA by a static quenching process. In addition, the vitro cytotoxicity of these complexes toward four kinds of cancerous cell lines (A549, HeLa, HL-60, and Caco-2) was assayed by the MTT method, which exhibited to be selectively active against certain cell lines.
Collapse
Affiliation(s)
- Zhen Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Meiju Niu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Guoliang Chang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Changqiu Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|