1
|
Popiół J, Gunia-Krzyżak A, Słoczyńska K, Piska K, Kocot N, Żelaszczyk D, Krupa A, Wójcik-Pszczoła K, Marona H, Pękala E. In vitro safety evaluation of (6-methoxy-9-oxo-9 H-xanthen-2-yl)methyl ( E)-3-(2,4-dimethoxyphenyl)acrylate (K-116) - the novel potential UV filter designed by means of a double chromophore strategy. Xenobiotica 2024; 54:266-278. [PMID: 38819995 DOI: 10.1080/00498254.2024.2363332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/02/2024]
Abstract
The use of topical photoprotection is necessary to reduce adverse effects caused by excessive exposure to ultraviolet radiation. Despite the high standards set for UV filters, many of them may contribute to the occurrence of adverse effects. The newly synthesised compound K-116, the (E)-cinnamoyl xanthone derivative, could be an alternative. We conducted extended in vitro safety evaluation of compound K-116. The research included assessment of irritation potential on skin tissue, evaluation of penetration through the epidermis, and assessment of phototoxicity, and mutagenicity. Additionally, the eco-safety of compound K-116 was evaluated, including an examination of its degradation pathway in the Cunninghamella echinulata model, as well as in silico simulation of the toxicity of both the parent compound and its degradation products. The research showed that compound K-116 tested in future application conditions is deprived of skin irritant potential additionally it does not penetrate through the epidermis. Results showed that K-116 concentrate is not phototoxic and not mutagenic. The eco-safety studies showed that it undergoes biodegradation in 27% in Cunninghamella echinulata model. The parent compound and formed metabolite are less toxic than reference UV filters (octinoxate and octocrylene).
Collapse
Affiliation(s)
- Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Natalia Kocot
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Kraków, Poland
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
2
|
Pasuch Gluzezak AJ, Dos Santos JL, Maria-Engler SS, Gaspar LR. Evaluation of the photoprotective and antioxidant potential of an avobenzone derivative. Front Physiol 2024; 15:1347414. [PMID: 38487263 PMCID: PMC10937738 DOI: 10.3389/fphys.2024.1347414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Solar radiation can cause damage to the skin, and the use of sunscreens is one of the main protective measures. However, photounstable ultraviolet (UV) filters can generate photoproducts and reactive oxygen species (ROS). Adding antioxidants, such as resveratrol, to enhance the action of UV filters in sunscreens is an interesting strategy for reducing the damage caused by UV radiation exposure. However, new compounds must have their stability, safety and efficacy guaranteed. Avobenzone, a commonly used UV filter, stands out as a promising candidate for structural modification to enhance its stability. Its molecular hybridization with other UV filters and antioxidants can lead to safer and more effective compounds. In this study, the photoprotective and antioxidant potential of a derivative of avobenzone, hybridized with resveratrol's molecule, was evaluated using in vitro models of cells in monolayer and reconstructed human skin (RHS). Phototoxic potential was assessed using fibroblasts, while the antioxidant activity was measured using the DCFH2-DA probe in HaCaT keratinocytes and in-house RHS. The derivative exhibited UV absorption and demonstrated photostability. It did not exhibit any phototoxic nor photoreactivity potential. Additionally, it was able to photo stabilize a combination of photounstable UV filters, avobenzone and octyl methoxycinnamate, and to reduce their phototoxic potential. In terms of antioxidant activity, the derivative successfully protected against UVA-induced ROS production in the HaCaT keratinocytes model, showing statistical equivalence to the antioxidant control, quercetin (10 μg/mL). Furthermore, experiments conducted in the RHS model demonstrated a significant reduction of 30.7% in ROS generation compared to the irradiated control. This study demonstrated that structural modifications of avobenzone can lead to the development of a broad spectrum (absorbing UVB and UVA II radiation, as well as a portion of the UVA I radiation), non-phototoxic, non-photoreactive and photostable derivative for sunscreen and anti-aging formulations. This derivative enhances protection against oxidative stress induced by UV radiation and improves the effectiveness of sun protection. In addition to the monolayer model, the use of a standardized in-house RHS model was highly relevant for evaluating the effects of UV radiation and skin aging. This model closely mimics human physiological conditions and enables the testing of new compounds and the investigation of protective mechanisms against skin damage.
Collapse
Affiliation(s)
| | | | | | - Lorena Rigo Gaspar
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Moi S, Shekh S, Reddy KKA, Dhurjad P, Sonti R, Gowd KH. Peptide Cysteine Thiols Act as Photostabilizer of Avobenzone through Stabilising the Transition State of Keto-enol Tautomerization. Photochem Photobiol 2022; 99:911-919. [PMID: 35975619 DOI: 10.1111/php.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/13/2022] [Indexed: 11/28/2022]
Abstract
Photostabilizers have been used to impart stability to an FDA-approved chemical UV-A filter avobenzone against the UV-A radiations and sunlight. The thiol group of glutathione plays a critical role in imparting the photostabilization activity of glutathione on avobenzone. The current report aims to evaluate the photostabilization activity of multiple thiols containing cysteine peptides on avobenzone. Cysteine-tripeptide and cysteine-pentapeptide were chemically synthesized and characterized using mass spectrometry. Synthetic peptides were assessed for their photostabilization activity on the enolic-form of the avobenzone under natural sunlight using UV-spectroscopy in both protic and aprotic solvents. Unlike glutathione which has pronounced activity in protic solvents, cysteine-pentapeptide exhibits similar photoprotection activity in both protic and aprotic solvents. Computational calculations using DFT suggest that peptide cysteine thiols may assist in the reversal of the photoketonization process of avobenzone thereby exhibiting the photoprotection activity to the enolic-form of avobenzone. Peptide cysteine thiols lower the activation energy barrier of keto-to-enol tautomerization of avobenzone by 30 kcal/mol by assisting the proton shuttle through a six-membered transition state. The current report emphasizes the applications of peptide thiols in cosmetics and may help in the development of peptides as aesthetic medicines.
Collapse
Affiliation(s)
- Smriti Moi
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Shamasoddin Shekh
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - K Kasi Amarnath Reddy
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Pooja Dhurjad
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| |
Collapse
|
4
|
da Silva JF, Corrêa DS, Campos ÉL, Leite GZ, de Oliveira JDM, Fachini J, da Silva J, Obach ES, Campo LF, Grivicich I, de Amorim HLN, Picada JN. Evaluation of toxicological aspects of three new benzoxazole compounds with sunscreen photophysical properties using in silico and in vitro methods. Toxicol In Vitro 2021; 79:105300. [PMID: 34933087 DOI: 10.1016/j.tiv.2021.105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/23/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022]
Abstract
Sunscreening chemicals protect against damage caused by sunlight most absorbing UVA or UVB radiations. In this sense, 2-(2'-hydroxyphenyl)benzoxazole derivatives with amino substituents in the 4' and 5' positions have an outstandingly high Sun Protection Factor and adequate photostability, but their toxicity is not yet known. This study aimed to evaluate the toxicity of three synthetic 2-(2'-hydroxyphenyl)benzoxazole derivatives for their possible application as sunscreens. In silico tools were used in order to assess potential risks regarding mutagenic, carcinogenic, and skin sensitizing potential. Bioassays were performed in L929 cells to assess cytotoxicity in MTT assay and genotoxic activities in the Comet assay and micronucleus test. Also, the Salmonella/microsome assay was performed to evaluate gene mutations. The in silico predictions indicate a low risk of mutagenicity and carcinogenicity of the compounds while the skin sensitizing potential was low or inconclusive. The 2-(4'-amino-2'-hydroxyphenyl)benzoxazol compound was the most cytotoxic and genotoxic among the compounds evaluated in L929 cells, but none induced mutations in the Salmonella/microsome assay. The amino substituted at the 4' position of the phenyl ring appears to have greater toxicological risks than substituents at the 5' position of 2-(phenyl)benzoxazole. The findings warrant further studies of these compounds in cosmetic formulations.
Collapse
Affiliation(s)
- Jâmeson Ferreira da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil; Centro de Pesquisa em Produto e Desenvolvimento (CEPPED), Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil
| | - Dione Silva Corrêa
- Centro de Pesquisa em Produto e Desenvolvimento (CEPPED), Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil
| | - Érico Leite Campos
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil; Centro de Pesquisa em Produto e Desenvolvimento (CEPPED), Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil
| | - Giovana Zamprônio Leite
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil; Centro de Pesquisa em Produto e Desenvolvimento (CEPPED), Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil
| | - João Denis Medeiros de Oliveira
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil
| | - Jean Fachini
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil; Laboratório de Genetica Toxicológica, Universidade La Salle, Av. Victor Barreto, 2288, CEP: 92010-000 Canoas, RS, Brazil
| | - Eliane Sempé Obach
- Laboratório de Tecnologia Farmacêutica, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil
| | - Leandra Franciscato Campo
- Laboratório de Novos Materiais Orgânicos e Quimica Forense, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP: 90650-001 Porto Alegre, RS, Brazil
| | - Ivana Grivicich
- Laboratório de Biologia do Câncer, Universidade Luterana do Brasil (ULBRA), Farroupilha Avenue 8001, CEP: 92425-900 Canoas, RS, Brazil
| | | | - Jaqueline Nascimento Picada
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil; Laboratório de Novos Materiais Orgânicos e Quimica Forense, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP: 90650-001 Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Mycosporine-like amino acids: Algal metabolites shaping the safety and sustainability profiles of commercial sunscreens. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Rosic NN. Recent advances in the discovery of novel marine natural products and mycosporine-like amino acid UV-absorbing compounds. Appl Microbiol Biotechnol 2021; 105:7053-7067. [PMID: 34480237 PMCID: PMC8416575 DOI: 10.1007/s00253-021-11467-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/27/2022]
Abstract
Abstract Bioactive compounds from marine environments represent a rich source of bioproducts for potential use in medicine and biotechnology. To discover and identify novel marine natural products (MNPs), evaluating diverse biological activities is critical. Increased sensitivity and specificity of omics technologies, especially next-generation high-throughput sequencing combined with liquid chromatography-mass spectrometry and nuclear magnetic resonance, are speeding up the discovery of novel bioactive compounds. Mycosporine-like amino acids (MAAs) isolated from many marine microorganisms are among highly promising MNPs characterized by ultraviolet radiation (UV) absorbing capacities and are recognized as a potential source of ecologically friendly sunscreens. MAAs absorb damaging UV radiation with maximum absorption in the range of 310–360 nm, including both UVA and UVB ranges. MAAs are also characterized by other biological activities such as anti-oxidant, anti-cancer, and anti-inflammatory activities. The application of modern omics approaches promoted some recent developments in our understanding of MAAs’ functional significance and diversity. This review will summarize the various modern tools that could be applied during the identification and characterization of MNPs, including MAAs, to further their innovative applications. Key points • New omics technologies are speeding up the discovery of novel bio-products • The vast diversity of bioactive capacities of marine natural products described • Marine microorganisms as a source of environmentally friendly sunscreens
Collapse
Affiliation(s)
- Nedeljka N Rosic
- Faculty of Health, Southern Cross University, Southern Cross Drive, Gold Coast, QLD, 4225, Australia. .,Marine Ecology Research Centre, Southern Cross University, Military Rd, East Lismore, Lismore, NSW, 2480, Australia.
| |
Collapse
|
7
|
Scarpin MS, Kawakami CM, Rangel KC, Pereira KDC, Benevenuto CG, Gaspar LR. Effects of UV-filter Photostabilizers in the Photostability and Phototoxicity of Vitamin A Palmitate Combined with Avobenzone and Octyl Methoxycinnamate. Photochem Photobiol 2021; 97:700-709. [PMID: 33621371 DOI: 10.1111/php.13407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/20/2021] [Indexed: 12/22/2022]
Abstract
A challenge for cosmetic and dermatologic products is to develop new high-performance and safer anti-aging products based on new compounds to enhance the stability of retinyl palmitate combined with broad-spectrum UV-filters. Consequently, the aim of this work was to evaluate the effects of three often used avobenzone photostabilizers-ethylhexyl methoxycrylene (EHMCR), tris(tetramethylhydroxypiperidinol) citrate (TTMHP) and tris-biphenyl triazine (TBPT)-on the photostability and phototoxicity of the combination of avobenzone (AVO), octyl methoxycinnamate (OMC) and retinyl palmitate (RP). The photostability studies were performed by the exposure of formulations to UVA radiation. The phototoxicity was evaluated by the 3T3 neutral red uptake phototoxic assay (OECD TG 432). The addition of EHMCR, TBPT, and TTMHP in the formulations, with/or without RP, improved the photostability of AVO and RP, but EHMCR was the most effective in stabilizing RP. In the phototoxicity assay, the combinations AVO-OMC containing or not RP showed phototoxic potential. EHMCR and TTMHP reduced the phototoxicity of the combination AVO-OMC, whereas EHMCR also decreased the phototoxicity of the combination containing RP. Therefore, EHMCR might be used to the photostabilization of formulations of AVO-OMC with/or not RP, while TTMHP can be added to this photounstable UV-filter combination.
Collapse
Affiliation(s)
- Marcela Silva Scarpin
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Camila Martins Kawakami
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Karen Cristina Rangel
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Karina de Castro Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Carolina Gomes Benevenuto
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lorena Rigo Gaspar
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Mycosporine-Like Amino Acids from Marine Resource. Mar Drugs 2021; 19:md19010018. [PMID: 33406728 PMCID: PMC7824388 DOI: 10.3390/md19010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 01/31/2023] Open
Abstract
In the last 10 years, a great number of publications (both regular papers and reviews) have been published on the interesting molecules—mycosporine-like amino acids (MAAs). Despite significant advances in the research of MAAs, current overviews in the recent publications involving MAA research still need reporting. The aim of this Special Issue is to join, as an interdisciplinary approach, the photochemical and photobiological aspects, with emphasis on new natural resources to obtain both algae and zooplankton MAAs, advances in methodology of extraction and chemical identification of new MAAs. Finally, this Special Issue reviews the bioactivities of MAAs including UVR screen, antioxidant, immunostimulant, growth factor, DNA protection, inhibition of collagenase, elastase and hyaluronidase, and anti-photoaging, among others, and their potential use as nutracosmeceutic molecules (i.e., oral and topic photoprotector).
Collapse
|
9
|
Popiół J, Gunia-Krzyżak A, Słoczyńska K, Koczurkiewicz-Adamczyk P, Piska K, Wójcik-Pszczoła K, Żelaszczyk D, Krupa A, Żmudzki P, Marona H, Pękala E. The Involvement of Xanthone and ( E)-Cinnamoyl Chromophores for the Design and Synthesis of Novel Sunscreening Agents. Int J Mol Sci 2020; 22:E34. [PMID: 33375127 PMCID: PMC7792956 DOI: 10.3390/ijms22010034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 01/06/2023] Open
Abstract
Excessive UV exposure contributes to several pathological conditions like skin burns, erythema, premature skin aging, photodermatoses, immunosuppression, and skin carcinogenesis. Effective protection from UV radiation may be achieved with the use of sunscreens containing UV filters. Currently used UV filters are characterized by some limitations including systemic absorption, endocrine disruption, skin allergy induction, and cytotoxicity. In the research centers all over the world new molecules are developed to improve the safety, photostability, solubility, and absorption profile of new derivatives. In our study, we designed and synthesized seventeen novel molecules by combining in the structures two chromophores: xanthone and (E)-cinnamoyl moiety. The ultraviolet spectroscopic properties of the tested compounds were confirmed in chloroform solutions. They acted as UVB or UVA/UVB absorbers. The most promising compound 9 (6-methoxy-9-oxo-9H-xanthen-2-yl)methyl (E)-3-(2,4-dimethoxyphenyl)acrylate) absorbed UV radiation in the range 290-369 nm. Its photoprotective activity and functional photostability were further evaluated after wet milling and incorporation in the cream base. This tested formulation with compound 9 possessed very beneficial UV protection parameters (SPFin vitro of 19.69 ± 0.46 and UVA PF of 12.64 ± 0.32) which were similar as broad-spectrum UV filter tris-biphenyl triazine. Additionally, compound 9 was characterized by high values of critical wavelength (381 nm) and UVA/UVB ratio (0.830) thus it was a good candidate for broad-spectrum UV filter and it might protect skin against UVA-induced photoaging. Compound 9 were also shown to be photostable, non-cytotoxic at concentrations up to 50 µM when tested on five cell lines, and non-mutagenic in Ames test. It also possessed no estrogenic activity, according to the results of MCF-7 breast cancer model. Additionally, its favorable lipophilicity (miLogP = 5.62) does not predispose it to penetrate across the skin after topical application.
Collapse
Affiliation(s)
- Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.P.); (K.S.); (P.K.-A.); (K.P.); (K.W.-P.); (E.P.)
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (D.Ż.); (H.M.)
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.P.); (K.S.); (P.K.-A.); (K.P.); (K.W.-P.); (E.P.)
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.P.); (K.S.); (P.K.-A.); (K.P.); (K.W.-P.); (E.P.)
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.P.); (K.S.); (P.K.-A.); (K.P.); (K.W.-P.); (E.P.)
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.P.); (K.S.); (P.K.-A.); (K.P.); (K.W.-P.); (E.P.)
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (D.Ż.); (H.M.)
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (D.Ż.); (H.M.)
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.P.); (K.S.); (P.K.-A.); (K.P.); (K.W.-P.); (E.P.)
| |
Collapse
|
10
|
D. Martins T, Lima E, E. Boto R, Ferreira D, R. Fernandes J, Almeida P, F. V. Ferreira L, Silva AM, V. Reis L. Red and Near-Infrared Absorbing DicyanomethyleneSquaraine Cyanine Dyes: PhotophysicochemicalProperties and Anti-Tumor Photosensitizing Effects. MATERIALS 2020; 13:ma13092083. [PMID: 32369923 PMCID: PMC7254310 DOI: 10.3390/ma13092083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/19/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022]
Abstract
Photodynamic therapy is a medical modality developed for the treatment of several diseases of oncological and non-oncological etiology that requires the presence of a photosensitizer, light and molecular oxygen, which combined will trigger physicochemical reactions responsible for reactive oxygen species production. Given the scarcity of photosensitizers that exhibit desirable characteristics for its potential application in this therapeutic strategy, the main aims of this work were the study of the photophysical and photochemical properties and the photobiological activity of several dicyanomethylene squaraine cyanine dyes. Thus, herein, the study of their aggregation character, photobleaching and singlet oxygen production ability, and the further application of the previously synthesized dyes in Caco-2 and HepG2 cancer cell lines, to evaluate their phototherapeutic effects, are described. Dicyanomethylene squaraine dyes exhibited moderate light-stability and, despite the low singlet oxygen quantum yields, were a core of dyes that exhibited relevant in vitro photodynamic activity, as there was an evident increase in the toxicity of some of the tested dyes exclusive to radiation treatments.
Collapse
Affiliation(s)
- Tiago D. Martins
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal; (T.D.M.); (E.L.); (J.R.F.)
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Eurico Lima
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal; (T.D.M.); (E.L.); (J.R.F.)
| | - Renato E. Boto
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-001 Covilhã, Portugal; (R.E.B.); (P.A.)
| | - Diana Ferreira
- Institute of Bioengineering and Biosciences (iBB), Higher Technical Institute, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (D.F.); (L.F.V.F.)
| | - José R. Fernandes
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal; (T.D.M.); (E.L.); (J.R.F.)
| | - Paulo Almeida
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-001 Covilhã, Portugal; (R.E.B.); (P.A.)
| | - Luis F. V. Ferreira
- Institute of Bioengineering and Biosciences (iBB), Higher Technical Institute, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (D.F.); (L.F.V.F.)
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- Correspondence: (A.M.S.); (L.V.R.)
| | - Lucinda V. Reis
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal; (T.D.M.); (E.L.); (J.R.F.)
- Correspondence: (A.M.S.); (L.V.R.)
| |
Collapse
|
11
|
Abstract
Several topical products have been developed to avoid the harmful effects from ultraviolet (UV) radiation, such as sunscreens. Research for actives from natural sources is increasing due to the fact that chemical filters could induce adverse events. The microalgae Botryococcus braunii has potential interest in cosmetic applications. Specialized literature reported that B. braunii aqueous extract induced a reduction in skin dehydration and collagen production and promoted antioxidant activity. This research aimed to produce B. braunii biomass and to investigate its contribution regarding photoprotection. Formulations containing B. braunii dry biomass, with or without UV filters into vehicles composed of an emulsifying polymer or a self-emulsifying base, were evaluated in vitro by means of photoprotective activity and photostability. B. braunii dry biomass did not provide adequate photoprotection efficacy; however, it was observed that the self-emulsifying base promoted better sun protection factor (SPF) in comparison with the emulsifying polymer.
Collapse
|
12
|
Zhong X, Downs CA, Li Y, Zhang Z, Li Y, Liu B, Gao H, Li Q. Comparison of toxicological effects of oxybenzone, avobenzone, octocrylene, and octinoxate sunscreen ingredients on cucumber plants (Cucumis sativus L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136879. [PMID: 32018996 DOI: 10.1016/j.scitotenv.2020.136879] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Oxybenzone (OBZ), avobenzone (AVB), octocrylene (OCR) and octinoxate (OMC) are ultraviolet (UV) filters commonly added to chemical sunscreens. These UV filters are known to widely contaminate the environment through a variety of anthropogenic sources, including sewage discharge. However, systematic studies of the damage caused by these four UV filters and their toxicopathological differences in a variety of plant species are lacking. In this study, we demonstrated that irrigation with water containing these four UV filters could significantly inhibit the aboveground growth of cucumber plant. All of the UV filters decreased photosynthesis through nonstomatal factors but via different inhibitory mechanisms. Only OBZ inhibited photosynthesis by directly inhibiting photosynthetic electron transport, while the other three (AVB, OCR, and OMC) inhibited photosynthesis by inhibiting the Calvin-Benson cycle. Additionally, these four UV filters also decreased plant respiration under long-term treatment. Photosynthesis and respiration inhibition led to the over production of reactive oxygen species (ROS) and the formation of lipid peroxidation damage products, which further damaged the structure and function of plant cells, causing secondary pathologies and potentially leading to reduced crop yields. The study also demonstrated that these four UV filters caused different degrees of phototoxic damage to cucumber plants. On the basis of comprehensive evaluation, we speculated that the order of the four UV filters in terms of plant damage was OBZ > AVB > OMC > OCR. Because of the severe damaging effects of these UV filters on plant growth, the application of contaminated biosolids/reclaimed water in agriculture reduces agricultural production and may damage ecosystems. The results of this study can advance recognition of the hazards associated with environmental and agricultural pollution via UV filters and encourage consumers and the industry to limit or reduce the application of cosmetics and over-the-counter drugs containing these substances.
Collapse
Affiliation(s)
- Xin Zhong
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Craig A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA 24533, USA
| | - Yuting Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China; College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Zishan Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China; College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Yiman Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Binbin Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Huiyuan Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China; College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Qingming Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China.
| |
Collapse
|
13
|
Kumari H, Eisenhart A, Pajoubpong J, Heinrich F, Beck TL. Investigating partitioning of free versus macrocycle bound guest into a model POPC lipid bilayer. RSC Adv 2020; 10:15148-15153. [PMID: 35495443 PMCID: PMC9052308 DOI: 10.1039/d0ra02850a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
We report on the permeation of free and macrocycle-bound avobenzone across a POPC lipid bilayer through combined neutron reflectometry experiments and molecular dynamics simulations. Results indicate that the p-phosphonated calix[8]arene macrocycle limits the avobenzone penetration into the upper leaflet of the membrane. Hence, it could serve as a useful vehicle for safer formulations. We report on the permeation of free and macrocycle-bound avobenzone across a POPC lipid bilayer through combined neutron reflectometry experiments and molecular dynamics simulations.![]()
Collapse
Affiliation(s)
- Harshita Kumari
- James L. Winkle College of Pharmacy
- University of Cincinnati
- Cincinnati
- USA
| | | | | | - Frank Heinrich
- Department of Physics
- Carnegie Mellon University
- Pittsburgh
- USA
- Center for Neutron Research
| | - Thomas L. Beck
- Department of Chemistry
- University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
14
|
Samadarsi R, Mishra D, Dutta D. Mangiferin nanoparticles fortified dairy beverage as a low glycemic food product: its quality attributes and antioxidant properties. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rohini Samadarsi
- Department of Biotechnology National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713209 West Bengal India
| | - Divyani Mishra
- Department of Biotechnology National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713209 West Bengal India
| | - Debjani Dutta
- Department of Biotechnology National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713209 West Bengal India
| |
Collapse
|
15
|
Maciel B, Moreira P, Carmo H, Gonçalo M, Lobo JMS, Almeida IF. Implementation of an in vitro methodology for phototoxicity evaluation in a human keratinocyte cell line. Toxicol In Vitro 2019; 61:104618. [PMID: 31381965 DOI: 10.1016/j.tiv.2019.104618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 06/27/2019] [Accepted: 08/01/2019] [Indexed: 01/15/2023]
Abstract
To assess photoxicity, several in vitro methods using different cellular models have been developed for preclinical testing. Over prediction of the in vivo photosafety hazard has been however appointed. Herein, we describe the implementation and validation of an in vitro methodology for phototoxicity evaluation based on the 3T3 neutral red uptake phototoxicity test using the HaCaT human keratinocyte cell line, and UVA/UVB radiation. Known positive (5-methoxypsoralen, chlorpromazine, and quinine) and negative (acetyl salicylic acid, hexachlorophene, and sodium lauryl sulphate) controls were tested together with a set of chemical currently used in cosmetic/pharmaceutical formulations. Apart from the advantage of using a cell line of human origin, these cells were generally more resistant to the cytotoxic effects of the test substances relative to the 3T3 mouse fibroblasts when exposed to an UVA irradiation dose of 1.7 mW/cm2. Therefore, this HaCaT NRU assay provides a more realistic experimental model that overcomes the over/high sensitivity frequently noted with the 3T3 NRU assay and that is more consistent with the human in vivo situation. Using a more representative method can prevent time-consuming and expensive in vivo testing in both animal models and humans that can significantly delay the clinical development of new chemicals.
Collapse
Affiliation(s)
- B Maciel
- UCIBIO, REQUIMTE, Medtech Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - P Moreira
- UCIBIO, REQUIMTE Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - H Carmo
- UCIBIO, REQUIMTE Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal.
| | - M Gonçalo
- Department of Dermatology, University Hospital and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - J M Sousa Lobo
- UCIBIO, REQUIMTE, Medtech Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - I F Almeida
- UCIBIO, REQUIMTE, Medtech Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| |
Collapse
|
16
|
|
17
|
de la Coba F, Aguilera J, Korbee N, de Gálvez MV, Herrera-Ceballos E, Álvarez-Gómez F, Figueroa FL. UVA and UVB Photoprotective Capabilities of Topical Formulations Containing Mycosporine-like Amino Acids (MAAs) through Different Biological Effective Protection Factors (BEPFs). Mar Drugs 2019; 17:md17010055. [PMID: 30646557 PMCID: PMC6356945 DOI: 10.3390/md17010055] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
The safety and stability of synthetic UV-filters and the procedures for evaluating the photoprotective capability of commercial sunscreens are under continuous review. The influence of pH and temperature stressors on the stability of certain Mycosporine-like amino acids (MAAs) isolated at high purity levels was examined. MAAs were highly stable at room temperature during 24 h at pH 4.5–8.5. At 50 °C, MAAs showed instability at pH 10.5 while at 85 °C, progressive disappearances were observed for MAAs through the studied pH range. In alkaline conditions, their degradation was much faster. Mycosporine-serinol and porphyra-334 (+shinorine) were the most stable MAAs under the conditions tested. They were included in four cosmetically stable topical sunscreens, of which the Sun Protection Factor (SPF) and other Biological Effective Protection Factors (BEPFs) were calculated. The formulation containing these MAAs showed similar SPF and UVB-BEPFs values as those of the reference sunscreen, composed of synthetic UV absorbing filters in similar percentages, while UVA-BEPFs values were slightly lower. Current in vitro data strongly suggest that MAAs, as natural and safe UV-absorbing and antioxidant compounds, have high potential for protection against the diverse harmful effects of solar UV radiation. In addition, novel complementary in vitro tests for evaluation of commercial sunscreens efficacy are proposed.
Collapse
Affiliation(s)
- Francisca de la Coba
- Department of Ecology and Geology, Faculty of Science, University of Malaga, Campus Universitario de Teatinos s/n, E-29071 Malaga, Spain.
- Photobiology Laboratory, Central Service for Research Support (SCAI), University of Malaga, Campus Universitario de Teatinos s/n, E-29071 Malaga, Spain.
| | - José Aguilera
- Photobiological Dermatology Laboratory, Medical Research Centre, University of Malaga, Campus Universitario de Teatinos s/n, E-29071 Malaga, Spain.
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Campus Universitario de Teatinos s/n, E-29071 Malaga, Spain.
| | - Nathalie Korbee
- Department of Ecology and Geology, Faculty of Science, University of Malaga, Campus Universitario de Teatinos s/n, E-29071 Malaga, Spain.
| | - María Victoria de Gálvez
- Photobiological Dermatology Laboratory, Medical Research Centre, University of Malaga, Campus Universitario de Teatinos s/n, E-29071 Malaga, Spain.
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Campus Universitario de Teatinos s/n, E-29071 Malaga, Spain.
| | - Enrique Herrera-Ceballos
- Photobiological Dermatology Laboratory, Medical Research Centre, University of Malaga, Campus Universitario de Teatinos s/n, E-29071 Malaga, Spain.
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Campus Universitario de Teatinos s/n, E-29071 Malaga, Spain.
| | - Félix Álvarez-Gómez
- Department of Ecology and Geology, Faculty of Science, University of Malaga, Campus Universitario de Teatinos s/n, E-29071 Malaga, Spain.
| | - Félix L Figueroa
- Department of Ecology and Geology, Faculty of Science, University of Malaga, Campus Universitario de Teatinos s/n, E-29071 Malaga, Spain.
- Photobiology Laboratory, Central Service for Research Support (SCAI), University of Malaga, Campus Universitario de Teatinos s/n, E-29071 Malaga, Spain.
| |
Collapse
|
18
|
Luo T, Chen J, Li X, Zhang S, Yao H, Peijnenburg WJGM. Effects of lomefloxacin on survival, growth and reproduction of Daphnia magna under simulated sunlight radiation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:63-70. [PMID: 30248562 DOI: 10.1016/j.ecoenv.2018.09.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
Lomefloxacin, an antibacterial agent with known photo-induced toxicity in clinical studies, is frequently detected in aquatic environments. Investigating the photo-induced toxicity of lomefloxacin in aquatic organisms is therefore of importance for assessing its ecological risks. In this study, the effects of lomefloxacin on survival, growth and reproduction of Daphnia magna under simulated sunlight radiation (SSR) were investigated, and the mechanism of action was revealed. Results indicated that SSR containing UV radiation increased the acute toxicity of lomefloxacin to Daphnia magna relative to white fluorescent light irradiation. Under SSR, 100 μM lomefloxacin significantly enhanced reactive oxygen species (ROS) generation and lipid peroxidation, and decreased activities of superoxide dismutase and catalase. The biochemical observations and apparent effects on the organism indicate that oxidative stress plays a central role in the acute photo-induced toxicity. Chronic toxicity results showed that SSR significantly affected growth and reproduction of Daphnia magna, whereas lomefloxacin reduced the damage of UV radiation in SSR through light shielding. This study provides insight into the mechanism of photo-induced toxicity and can support the risk assessment of chemicals in the aquatic environment by including the impacts of sunlight irradiation on toxicity.
Collapse
Affiliation(s)
- Tianlie Luo
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuying Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongye Yao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, 2300 RA Leiden, the Netherlands; National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720 BA Bilthoven, the Netherlands
| |
Collapse
|
19
|
Photostabilization strategies of photosensitive drugs. Int J Pharm 2018; 541:19-25. [DOI: 10.1016/j.ijpharm.2018.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 02/03/2023]
|
20
|
Lauricella M, Emanuele S, Calvaruso G, Giuliano M, D'Anneo A. Multifaceted Health Benefits of Mangifera indica L. (Mango): The Inestimable Value of Orchards Recently Planted in Sicilian Rural Areas. Nutrients 2017; 9:E525. [PMID: 28531110 PMCID: PMC5452255 DOI: 10.3390/nu9050525] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 02/05/2023] Open
Abstract
Historically, Mangifera indica L. cultivations have been widely planted in tropical areas of India, Africa, Asia, and Central America. However, at least 20 years ago its spreading allowed the development of some cultivars in Sicily, an island to the south of Italy, where the favourable subtropical climate and adapted soils represent the perfect field to create new sources of production for the Sicilian agricultural supply chain. Currently, cultivations of Kensington Pride, Keitt, Glenn, Maya, and Tommy Atkins varieties are active in Sicily and their products meet the requirements of local and European markets. Mango plants produce fleshy stone fruits rich in phytochemicals with an undisputed nutritional value for its high content of polyphenolics and vitamins. This review provides an overview of the antioxidant, anti-inflammatory, and anticancer properties of mango, a fruit that should be included in everyone's diet for its multifaceted biochemical actions and health-enhancing properties.
Collapse
Affiliation(s)
- Marianna Lauricella
- Department of Experimental Biomedicine and Clinical Neurosciences, Laboratory of Biochemistry, University of Palermo, via del Vespro 129, 90127 Palermo, Italy.
| | - Sonia Emanuele
- Department of Experimental Biomedicine and Clinical Neurosciences, Laboratory of Biochemistry, University of Palermo, via del Vespro 129, 90127 Palermo, Italy.
| | - Giuseppe Calvaruso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, via del Vespro 129, 90127 Palermo, Italy.
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, via del Vespro 129, 90127 Palermo, Italy.
| | - Antonella D'Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, via del Vespro 129, 90127 Palermo, Italy.
| |
Collapse
|
21
|
Rajnochová Svobodová A, Ryšavá A, Psotová M, Kosina P, Zálešák B, Ulrichová J, Vostálová J. The Phototoxic Potential of the Flavonoids, Taxifolin and Quercetin. Photochem Photobiol 2017; 93:1240-1247. [PMID: 28303596 DOI: 10.1111/php.12755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/14/2017] [Indexed: 12/13/2022]
Abstract
Quercetin, one of the most abundant polyphenols in the plant kingdom has been shown to be photodegraded on exposure to UV light. Despite the fact, it is a component of several dermatological preparations. Its phototoxic potential has not been evaluated to date. The aim of this study was to assess whether photo-induced degradation of quercetin is linked to phototoxic effects on living cells. Its dihydro derivative, taxifolin, was included in the study. For evaluation, the 3T3 Neutral Red Uptake Phototoxicity Test according to OECD TG 432 was used. To better approximate human skin, HaCaT keratinocytes, normal human epidermal keratinocytes and dermal fibroblasts were used, apart from the Balb/c 3T3 cell line. Quercetin showed a dose-dependent photodegradation in aqueous and organic environments and a phototoxic effect on all used cells. Quercetin pretreatment and following UVA exposure resulted in increased reactive oxygen species production and intracellular glutathione level depletion in human dermal fibroblasts. Taxifolin was found completely nonphototoxic and photostable. As only in vitro methodology was used, further studies using 3D skin models and/or human volunteers are needed to confirm whether exposure to sunlight, tanning sunbeds and/or phototherapy in people using cosmetics containing quercetin is a health risk.
Collapse
Affiliation(s)
- Alena Rajnochová Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Alena Ryšavá
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Michaela Psotová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Pavel Kosina
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Bohumil Zálešák
- Department of Plastic and Aesthetic Surgery, University Hospital Olomouc, Olomouc, Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Jitka Vostálová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
22
|
Chhabra G, Ndiaye MA, Garcia-Peterson LM, Ahmad N. Melanoma Chemoprevention: Current Status and Future Prospects. Photochem Photobiol 2017; 93:975-989. [PMID: 28295364 DOI: 10.1111/php.12749] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022]
Abstract
The incidence of skin cancers, both nonmelanoma and melanoma, is increasing in the United States. The ultraviolet radiation, mainly from sun, is considered the major cause for these neoplasms. While nonmelanoma skin cancers are far more numerous, melanoma remains the most challenging. This is because melanoma can become extremely aggressive and its incidence is increasing worldwide due to lack of effective early detection, as well as disease recurrence, following both surgery and chemotherapy. Therefore, in addition to better treatment options, newer means are required to prevent melanomas from developing. Chemoprevention is a reasonable cost-effective approach to prevent carcinogenesis by inhibiting the processes of tumor initiation, promotion and progression. Melanoma is a progressive disease, which makes it very suitable for chemopreventive interventions, by targeting the processes and molecular pathways involved in the progression of melanoma. This review discusses the roles of various chemopreventive agents such as NSAIDs, statins, vitamins and dietary agents in melanoma and highlights current advancements and our perspective on future of melanoma chemoprevention. Although considerable preclinical data suggest that melanoma may be prevented or delayed by a numerous chemopreventive agents, we realize there are insufficient clinical studies evaluating their efficacy and long-term safety for human use.
Collapse
Affiliation(s)
- Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, WI
| | - Mary Ann Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, WI
| | | | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI.,William S. Middleton VA Medical Center, Madison, WI
| |
Collapse
|
23
|
Kawakami CM, Máximo LNC, Fontanezi BB, da Silva RS, Gaspar LR. Diethylamino hydroxybenzoyl hexyl benzoate (DHHB) as additive to the UV filter avobenzone in cosmetic sunscreen formulations - Evaluation of the photochemical behavior and photostabilizing effect. Eur J Pharm Sci 2017; 99:299-309. [DOI: 10.1016/j.ejps.2016.12.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/22/2016] [Accepted: 12/28/2016] [Indexed: 11/15/2022]
|
24
|
Badea G, Badea N, Brasoveanu LI, Mihaila M, Stan R, Istrati D, Balaci T, Lacatusu I. Naringenin improves the sunscreen performance of vegetable nanocarriers. NEW J CHEM 2017. [DOI: 10.1039/c6nj02318e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Naringenin enhances the UV protection, photostability and cell viability of lipid based vegetable nanocarriers.
Collapse
Affiliation(s)
- Gabriela Badea
- Faculty of Applied Chemistry and Material Science
- University POLITEHNICA of Bucharest
- 011061 Bucharest
- Romania
| | - Nicoleta Badea
- Faculty of Applied Chemistry and Material Science
- University POLITEHNICA of Bucharest
- 011061 Bucharest
- Romania
| | | | - Mirela Mihaila
- Romanian Academy
- Stefan S. Nicolau Institute of Virology
- 030304 Bucharest
- Romania
| | - Raluca Stan
- Faculty of Applied Chemistry and Material Science
- University POLITEHNICA of Bucharest
- 011061 Bucharest
- Romania
| | - Daniela Istrati
- Faculty of Applied Chemistry and Material Science
- University POLITEHNICA of Bucharest
- 011061 Bucharest
- Romania
| | - Teodora Balaci
- University of Medicine and Pharmacy Carol Davila
- 70183 Bucharest
- Romania
| | - Ioana Lacatusu
- Faculty of Applied Chemistry and Material Science
- University POLITEHNICA of Bucharest
- 011061 Bucharest
- Romania
| |
Collapse
|
25
|
Rajnochová Svobodová A, Zálešák B, Biedermann D, Ulrichová J, Vostálová J. Phototoxic potential of silymarin and its bioactive components. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 156:61-8. [DOI: 10.1016/j.jphotobiol.2016.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 11/28/2022]
|
26
|
Wang C, Zuo S, Liu W, Yao C, Li X, Li Z. Preparation of rutile TiO2@avobenzone composites for the further enhancement of sunscreen performance. RSC Adv 2016. [DOI: 10.1039/c6ra23282e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is well known that organic avobenzone and inorganic TiO2 are applied to shield UVA and UVB, respectively.
Collapse
Affiliation(s)
- Can Wang
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Shixiang Zuo
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
- R&D Center of Xuyi Attapulgite Applied Technology
| | - Wenjie Liu
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Chao Yao
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
- R&D Center of Xuyi Attapulgite Applied Technology
| | - Xiazhang Li
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
- R&D Center of Xuyi Attapulgite Applied Technology
| | - Zhongyu Li
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| |
Collapse
|