1
|
Fukuzumi S, Lee YM, Nam W. Functional molecular models of photosynthesis. iScience 2024; 27:110694. [PMID: 39286498 PMCID: PMC11404225 DOI: 10.1016/j.isci.2024.110694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
This perspective focuses on functional models of photosynthesis to achieve molecular photocatalytic systems that mimic photosystems I and II (PSI and PSII). A long-lived and high-energy electron-transfer state of 9-mesityl-10-methylacridinium ion (Acr+-Mes) has been attained as a simple and useful model of the photosynthetic reaction center. Acr+-Mes has been used as an effective photoredox catalyst for photocatalytic hydrogen evolution and regioselective reduction of NAD(P)+ from plastoquinone analogs as a molecular functional model of PSI. A functional molecular model system to mimic the function of PSII has also been developed to oxidize water by plastoquinone analogs to produce O2 and plastoquinol analogs. The PSI molecular models have finally been integrated with the PSII molecular models to achieve production of a solar fuel (hydrogen) and NAD(P)H and its analogs from water by use of solar energy as a molecular artificial photosynthesis.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Research Institute for Basic Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
2
|
Hong YH, Nilajakar M, Lee YM, Nam W, Fukuzumi S. Artificial Photosynthesis for Regioselective Reduction of NAD(P) + to NAD(P)H Using Water as an Electron and Proton Source. J Am Chem Soc 2024; 146:5152-5161. [PMID: 38350862 DOI: 10.1021/jacs.3c10369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
In photosynthesis, four electrons and four protons taken from water in photosystem II (PSII) are used to reduce NAD(P)+ to produce NAD(P)H in photosystem I (PSI), which is the most important reductant to reduce CO2. Despite extensive efforts to mimic photosynthesis, artificial photosynthesis to produce NAD(P)H using water electron and proton sources has yet to be achieved. Herein, we report the photocatalytic reduction of NAD(P)+ to NAD(P)H and its analogues in a molecular model of PSI, which is combined with water oxidation in a molecular model of PSII. Photoirradiation of a toluene/trifluoroethanol (TFE)/borate buffer aqueous solution of hydroquinone derivatives (X-QH2), 9-mesityl-10-methylacridinium ion, cobaloxime, and NAD(P)+ (PSI model) resulted in the quantitative and regioselective formation of NAD(P)H and p-benzoquinone derivatives (X-Q). X-Q was reduced to X-QH2, accompanied by the oxidation of water to dioxygen under the photoirradiation of a toluene/TFE/borate buffer aqueous solution of [(N4Py)FeII]2+ (PSII model). The PSI and PSII models were combined using two glass membranes and two liquid membranes to produce NAD(P)H using water as an electron and proton source with the turnover number (TON) of 54. To the best of our knowledge, this is the first time to achieve the stoichiometry of photosynthesis, photocatalytic reduction of NAD(P)+ by water to produce NAD(P)H and O2.
Collapse
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Madhuri Nilajakar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Department of Chemistry, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
3
|
Hong YH, Lee YM, Nam W, Fukuzumi S. Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| |
Collapse
|
4
|
Hong YH, Lee YM, Nam W, Fukuzumi S. Molecular Photocatalytic Water Splitting by Mimicking Photosystems I and II. J Am Chem Soc 2022; 144:695-700. [PMID: 34990144 DOI: 10.1021/jacs.1c11707] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In nature, water is oxidized by plastoquinone to evolve O2 and form plastoquinol in Photosystem II (PSII), whereas NADP+ is reduced by plastoquinol to produce NADPH and regenerate plastoquinone in Photosystem I (PSI), using homogeneous molecular photocatalysts. However, water splitting to evolve H2 and O2 in a 2:1 stoichiometric ratio has yet to be achieved using homogeneous molecular photocatalysts, remaining as one of the biggest challenges in science. Herein, we demonstrate overall water splitting to evolve H2 and O2 in a 2:1 ratio using a two liquid membranes system composed of two toluene phases, which are separated by a solvent mixture of water and trifluoroethanol (H2O/TFE, 3:1 v/v), with a glass membrane to combine PSI and PSII molecular models. A PSII model contains plastoquinone analogs [p-benzoquinone derivatives (X-Q)] in toluene and an iron(II) complex as a molecular oxidation catalyst in H2O/TFE (3:1 v/v), which evolves a stoichiometric amount of O2 and forms plastoquinol analogs (X-QH2) under photoirradiation. On the other hand, a PSI model contains nothing in toluene but contains X-QH2, 9-mesityl-10-methylacridinium ion (Acr+-Mes) as a photocatalyst, and a cobalt(III) complex as an H2 evolution catalyst in H2O/TFE (3:1 v/v), which evolves a stoichiometric amount of H2 and forms X-Q under photoirradiation. When a PSII model system is combined with a PSI model system with two glass membranes and two liquid membranes, photocatalytic water splitting with homogeneous molecular photocatalysts is achieved to evolve hydrogen and oxygen with the turnover number (TON) of >100.
Collapse
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
5
|
Hong YH, Lee YM, Nam W, Fukuzumi S. Photocatalytic Hydrogen Evolution from Plastoquinol Analogues as a Potential Functional Model of Photosystem I. Inorg Chem 2020; 59:14838-14846. [PMID: 33023288 DOI: 10.1021/acs.inorgchem.0c02254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recent development of a functional model of photosystem II (PSII) has paved a new way to connect the PSII model with a functional model of photosystem I (PSI). However, PSI functional models have yet to be reported. We report herein the first potential functional model of PSI, in which plastoquinol (PQH2) analogues were oxidized to plastoquinone (PQ) analogues, accompanied by hydrogen (H2) evolution. Photoirradiation of a deaerated acetonitrile (MeCN) solution containing hydroquinone derivatives (X-QH2) as a hydrogen source, 9-mesityl-10-methylacridinium ion (Acr+-Mes) as a photoredox catalyst, and a cobalt(III) complex, CoIII(dmgH)2pyCl (dmgH = dimethylglyoximate monoanion; py = pyridine) as a redox catalyst resulted in the evolution of H2 and formation of the corresponding p-benzoquinone derivatives (X-Q) quantitatively. The maximum quantum yield for photocatalytic H2 evolution from tetrachlorohydroquinone (Cl4QH2) with Acr+-Mes and CoIII(dmgH)2pyCl and H2O in deaerated MeCN was determined to be 10%. Photocatalytic H2 evolution is started by electron transfer (ET) from Cl4QH2 to the triplet ET state of Acr+-Mes to produce Cl4QH2•+ and Acr•-Mes with a rate constant of 7.2 × 107 M-1 s-1, followed by ET from Acr•-Mes to CoIII(dmgH)2pyCl to produce [CoII(dmgH)2pyCl]-, accompanied by the regeneration of Acr+-Mes. On the other hand, Cl4QH2•+ is deprotonated to produce Cl4QH•, which transfers either a hydrogen-atom transfer or a proton-coupled electron transfer to [CoII(dmgH)2pyCl]- to produce a cobalt(III) hydride complex, [CoIII(H)(dmgH)2pyCl]-, which reacts with H+ to evolve H2, accompanied by the regeneration of CoIII(dmgH)2pyCl. The formation of [CoII(dmgH)2pyCl]- was detected by electron paramagnetic resonance measurements.
Collapse
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-0073, Japan
| |
Collapse
|
6
|
Mirzaei S, Mansouri M, Mohammadi-Nejad G, Sablok G. Comparative assessment of chloroplast transcriptional responses highlights conserved and unique patterns across Triticeae members under salt stress. PHOTOSYNTHESIS RESEARCH 2018; 136:357-369. [PMID: 29230609 DOI: 10.1007/s11120-017-0469-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Chloroplast functional genomics, in particular understanding the chloroplast transcriptional response is of immense importance mainly due to its role in oxygenic photosynthesis. As a photosynthetic unit, its efficiency and transcriptional activity is directly regulated by reactive oxygen species during abiotic and biotic stress and subsequently affects carbon assimilation, and plant biomass. In crops, understanding photosynthesis is crucial for crop domestication by identifying the traits that could be exploited for crop improvement. Transcriptionally and translationally active chloroplast plays a key role by regulating the PSI and PSII photo-reaction centres, which ubiquitously affects the light harvesting. Using a comparative transcriptomics mapping approach, we identified differential regulation of key chloroplast genes during salt stress across Triticeae members with potential genes involved in photosynthesis and electron transport system such as CytB6f. Apart from differentially regulated genes involved in PSI and PSII, we found widespread evidence of intron splicing events, specifically uniquely spliced petB and petD in Triticum aestivum and high proportion of RNA editing in ndh genes across the Triticeae members during salt stress. We also highlight the role and differential regulation of ATP synthase as member of CF0CF1 and also revealed the effect of salt stress on the water-splitting complex under salt stress. It is worthwhile to mention that the observed conserved down-regulation of psbJ across the Triticeae is limiting the assembly of water-splitting complexes and thus making the BEP clade Triticeae members more vulnerable to high light during the salt stress. Comparative understanding of the chloroplast transcriptional dynamics and photosynthetic regulation will improve the approaches for improved crop domestication.
Collapse
Affiliation(s)
- Saeid Mirzaei
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, 7631818356, Iran.
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ghasem Mohammadi-Nejad
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Gaurav Sablok
- Finnish Museum of Natural History (Botany), PO Box 7, 00014, Helsinki, Finland
- Department of Bioscience, Viikki Plant Science Center, PO Box 7, 00014, Helsinki, Finland
| |
Collapse
|
7
|
Lei R, Du Z, Kong J, Li G, He Y, Qiu Y, Yan J, Zhu S. Blue Native/SDS-PAGE and iTRAQ-Based Chloroplasts Proteomics Analysis of Nicotiana tabacum Leaves Infected with M Strain of Cucumber Mosaic Virus Reveals Several Proteins Involved in Chlorosis Symptoms. Proteomics 2018; 18. [PMID: 29193783 DOI: 10.1002/pmic.201700359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/16/2017] [Indexed: 01/05/2023]
Abstract
Virus infection in plants involves necrosis, chlorosis, and mosaic. The M strain of cucumber mosaic virus (M-CMV) has six distinct symptoms: vein clearing, mosaic, chlorosis, partial green recovery, complete green recovery, and secondary mosaic. Chlorosis indicates the loss of chlorophyll which is highly abundant in plant leaves and plays essential roles in photosynthesis. Blue native/SDS-PAGE combined with mass spectrum was performed to detect the location of virus, and proteomic analysis of chloroplast isolated from virus-infected plants was performed to quantify the changes of individual proteins in order to gain a global view of the total chloroplast protein dynamics during the virus infection. Among the 438 proteins quantified, 33 showed a more than twofold change in abundance, of which 22 are involved in the light-dependent reactions and five in the Calvin cycle. The dynamic change of these proteins indicates that light-dependent reactions are down-accumulated, and the Calvin cycle was up-accumulated during virus infection. In addition to the proteins involved in photosynthesis, tubulin was up-accumulated in virus-infected plant, which might contribute to the autophagic process during plant infection. In conclusion, this extensive proteomic investigation on intact chloroplasts of virus-infected tobacco leaves provided some important novel information on chlorosis mechanisms induced by virus infection.
Collapse
Affiliation(s)
- Rong Lei
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Zhixin Du
- Guangxi Entry-Exit Inspection and Quarantine Bureau, Nanning, Guangxi, P. R. China
| | - Jun Kong
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Guifen Li
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Yan He
- Animal and Plant and Food Testing Center, Tianjin Entry Exit Inspection and Quarantine Bureau, Tianjin, P. R. China
| | - Yanhong Qiu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Jin Yan
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Shuifang Zhu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| |
Collapse
|
8
|
Wang G, Bi A, Amombo E, Li H, Zhang L, Cheng C, Hu T, Fu J. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue. FRONTIERS IN PLANT SCIENCE 2017; 8:2032. [PMID: 29250091 PMCID: PMC5715236 DOI: 10.3389/fpls.2017.02032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue (Festuca arundinacea Schreber) treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype "TF133" were subjected to the control (CK), salinity (S), salinity + calcium nitrate (SC), and salinity + ethylene glycol tetraacetic acid (SE). Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size), N (number of [Formula: see text] redox turnovers until Fm is reached), ψE0, or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from QA to QB or PSI acceptors), ABS/RC (Absorbed photon flux per RC). All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond [Formula: see text]) and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca2+, and K+ in the SC regime than S regime. Interrelated analysis indicated that ψE0, δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca2+ and K+ content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role of exogenous calcium in tall fescue under salt stress.
Collapse
Affiliation(s)
- Guangyang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aoyue Bi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiying Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Liang Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Cheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jinmin Fu
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|