1
|
Khatun R, Modak R, Islam ASM, Moni D, Sepay N, Mukherjee R, Das G, Murmu N, Ali M. Small Molecule Interactions with Biomacromolecules: DNA Binding Interactions of a Manganese(III) Schiff Base Complex with Potential Anticancer Activities. ACS APPLIED BIO MATERIALS 2023; 6:3176-3188. [PMID: 37548990 DOI: 10.1021/acsabm.3c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A manganese(III) complex, [MnIII(L)(SCN)(enH)](NO3)·H2O (1•H2O) (H2L = 2-((E)-(2-((E)-2-hydroxy-3-methoxybenzylidene-amino)-ethyl-imino)methyl)-6-methoxyphenol), has been synthesized and characterized by single-crystal X-ray diffraction analysis. The interaction of 1•H2O with DNA was studied by monitoring the decrease in absorbance of the complex at λ = 324 nm with the increase in DNA concentration, providing an opportunity to determine the binding constant of the 1•H2O-ct-DNA complex as 5.63 × 103 M-1. Similarly, fluorescence titration was carried out by adding ct-DNA gradually and monitoring the increase in emission intensity at 453 nm on excitation at λex = 324 nm. A linear form of the Benesi-Hildebrand equation yields a binding constant of 4.40 × 103 M-1 at 25 °C, establishing the self-consistency of our results obtained from absorption and fluorescence titrations. The competitive displacement reactions of dyes like ethidium bromide, Hoechst, and DAPI (4',6-diamidine-2'-phenylindole dihydrochloride) from dye-ct-DNA conjugates by 1•H2O were analyzed, and the corresponding KSV values are 1.05 × 104, 1.25 × 104, and 1.35 × 104 M-1 and the Kapp values are 2.16 × 103, 8.34 × 103, and 9.0 × 103 M-1, from which it is difficult to infer the preference of groove binding over intercalation by these DNA trackers. However, the molecular docking experiments and viscosity measurement clearly indicate the preference for minor groove binding over intercalation, involving a change in Gibbs free energy of -8.56 kcal/mol. The 1•H2O complex was then evaluated for its anticancer potential in breast cancer MCF-7 cells, which severely abrogates the growth of the cells in both 2D and 3D mammospheres, indicating its promising application as an anticancer drug through a minor groove binding interaction with ct-DNA.
Collapse
Affiliation(s)
- Rousunara Khatun
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, West Bengal 700 032, India
- Aliah University, ll-A/27, Action Area II, Newtown, Action Area II, Kolkata, West Bengal 700160, India
| | - Ritwik Modak
- Department of Chemistry, Manipal Academy of Higher Education, Manipal Institute of Technology Bengaluru, Manipal 560064, India
| | - Abu Saleh Musha Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2B, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Dolan Moni
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, West Bengal 700 032, India
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata, West Bengal 700 017, India
| | - Rimi Mukherjee
- Department of Signal Transduction and Biogenic Amines, Chittanranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal 700 026, India
| | - Gaurav Das
- Department of Signal Transduction and Biogenic Amines, Chittanranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal 700 026, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittanranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal 700 026, India
| | - Mahammad Ali
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, West Bengal 700 032, India
| |
Collapse
|
2
|
Raksha K, Kandoth N, Gupta S, Gupta S, Pramanik SK, Das A. Modulating Resonance Energy Transfer with Supramolecular Control in a Layered Hybrid Perovskite and Chromium Photosensitizer Assembly. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25148-25160. [PMID: 35944204 DOI: 10.1021/acsami.2c09281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Recently, the low-dimensional organic-inorganic halide perovskites (OIHP) have been exploited heavily for their favorable exciton dynamics, broad-band emission, remarkable stability, and tunable band-edge excited-state energy compared to their 3D counterparts for potential optoelectronic applications. Low-dimensional perovskites are generally good candidates for utilization as room-temperature photoluminescence (PL) materials. Further, doping divalent transition metals like Mn2+ into OIHP is expected to introduce a 4T1-6A1-based low-energy luminescence emission around 600 nm; an optical property that is favorable for biomedical optoelectronics. Doping Mn2+ in the perovskite lattice is also expected to induce the generation of cytotoxic singlet oxygen species (1O2), a ROS that is being exploited for various therapeutic applications. To integrate these optical and therapeutic properties of a 2D (PEA)2PbBr4 (Pb PeV; PEA = phenylethylammonium cation) perovskite alloyed with Mn2+ ions (Mn:PbPeV) and the option for a photoinduced energy transfer process involving a Cr(III)-based 1O2 generating photosensitizer (CrPS), we designed a unique purpose-built nanoassembly (Mn:PbPeV@PCD) using the encapsulation properties of a water-soluble polymer derived from β-cyclodextrin (PCD). Here the PCD is observed to modulate the classical internal energy transfer of Pb2+ exciton to alloyed Mn2+ orange emission, resulting in the emergence of a new blue emission. The addition of CrPS into the Mn:PbPeV@PCD to generate the CrPS@Mn:PbPeV@PCD assembly results in restoring perovskite luminescence followed by the external energy transfer to CrPS. We have elucidated the mechanism of these cascade energy transfer processes between multiple components using steady-state and time-resolved luminescence techniques. Efficient ROS generation and its potential to induce an oxidation reaction of a biomolecule are realized using guanine as the target molecule. Further photoinduced cleavage studies with biomolecules confirmed the efficacy of the nanoassembly in inducing the cleavage of guanine-rich DNA. The study opens up a new direction in the field of perovskite for biomedical applications.
Collapse
Affiliation(s)
- Kumari Raksha
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Noufal Kandoth
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Shresth Gupta
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Subhadeep Gupta
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sumit Kumar Pramanik
- Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Amitava Das
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
3
|
Alfonso‐Herrera LA, Rosete‐Luna S, Hernández‐Romero D, Rivera‐Villanueva JM, Olivares‐Romero JL, Cruz‐Navarro JA, Soto‐Contreras A, Arenaza‐Corona A, Morales‐Morales D, Colorado‐Peralta R. Transition Metal Complexes with Tridentate Schiff Bases (O N O and O N N) Derived from Salicylaldehyde: An Analysis of Their Potential Anticancer Activity. ChemMedChem 2022; 17:e202200367. [PMID: 36068174 PMCID: PMC9826236 DOI: 10.1002/cmdc.202200367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Although it is known that the first case of cancer was recorded in ancient Egypt around 1600 BC, it was not until 1917 during the First World War and the development of mustard gas that chemotherapy against cancer became relevant; however, its properties were not recognised until 1946 to later be used in patients. In this sense, the use of metallopharmaceuticals in cancer therapy was extensively explored until the 1960s with the discovery of cisplatin and its anticancer activity. From that date to the present, the search for more effective, more selective metallodrugs with fewer side effects has been an area of continuous exploration. Efforts have led to considering a wide variety of metals from the periodic table, mainly from the d-block, as well as a wide variety of organic ligands, preferably with proven biological activity. In this sense, various research groups have found an ideal binder in Schiff bases, since their raw materials are easily accessible, their synthesis conditions are friendly and their denticity can be manipulated. Therefore, in this review, we have explored the anticancer and antitumor activity reported in the literature for coordination complexes of d-block metals coordinated with tridentate Schiff bases (O N O and O N N) derived from salicylaldehyde. For this work, we have used the main scientific databases CCDC® and SciFinder®.
Collapse
Affiliation(s)
- Luis A. Alfonso‐Herrera
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
- Universidad Autónoma de Nuevo León Facultad de Ingeniería Civil Departamento de Ecomateriales y Energía Av. Universidad S/N Ciudad Universitaria64455San Nicolás de los GarzaNuevo LeónMéxico
| | - Sharon Rosete‐Luna
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| | - Delia Hernández‐Romero
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| | - José M. Rivera‐Villanueva
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| | - José L. Olivares‐Romero
- Instituto de Ecología A.C. Red de Estudios Moleculares AvanzadosClúster Científico y Tecnológico BioMimic® Carretera Antigua a Coatepec, No. 35191070Xalapa, VeracruzMéxico
| | - J. Antonio Cruz‐Navarro
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
- Universidad Autónoma del Estado de HidalgoÁrea Académica de Química Km 4.5 Carretera Pachuca-Tulancingo42184, Mineral de la ReformaHidalgoMéxico
| | - Anell Soto‐Contreras
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
- Universidad VeracruzanaFacultad de Ciencias Biológicas y Agropecuarias Km 177 Camino Peñuela-Amatlán S/N94500, Peñuela, Amatlán de los ReyesVeracruzMéxico
| | - Antonino Arenaza‐Corona
- Universidad Nacional Autónoma de México Instituto de Química, Circuito Exterior S/N04510Ciudad de MéxicoMéxico
| | - David Morales‐Morales
- Universidad Nacional Autónoma de México Instituto de Química, Circuito Exterior S/N04510Ciudad de MéxicoMéxico
| | - Raúl Colorado‐Peralta
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| |
Collapse
|
4
|
Manganese Schiff Base Complexes, Crystallographic Studies, Anticancer Activities, and Molecular Docking. J CHEM-NY 2022. [DOI: 10.1155/2022/7062912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Choice of ligands is significant to successful synthesis of metal complexes (coordination compounds). This study reports the use of Schiff base as the right ligand to control the poor bioavailability and neurodegenerative toxicity challenges of manganese ion. In line with this study, document analysis was used as the methodological approach to evaluate the significance of Schiff base ligands in easing these manganese’s challenges and aligning the resultant coordination compounds (manganese Schiff base complexes) as therapeutic agents in anticancer studies. Report also involves crystallographic studies where single crystal X-ray crystallography was used as a chemical characterization technique. In addition, molecular docking studies, MOE2008, and AutoDock software were used to reveal the mode of interaction between the Schiff base and the manganese(II) and (III) ions, as well as scrutinizing the biological efficacy of the manganese(II) and manganese(III) Schiff bases coordination compounds as anticancer agents against some anticancer cell lines. Conclusion drawn was that manganese(II) and manganese(III) Schiff bases coordination compounds gave more active and potent activities than the corresponding Schiff bases. As a result, challenges of neurodegenerative toxicity and poor bioavailability of manganese ion were overcome, and the chelation therapy was fulfilled. Results from single crystal X-ray crystallography confirmed the successful synthesis of manganese(II) and manganese(III) Schiff bases coordination compounds and revealed the mechanism of reaction, while the molecular docking buttressed the biological activities of the Schiff base ligand and manganese Schiff base coordination compounds by portraying the structure activity relationship (SAR) between either Schiff base or the manganese Schiff base coordination compounds and the virtual cancer cell line (receptor protein), where hits were obtained for lead optimizations.
Collapse
|
5
|
Ašanin DP, Skaro Bogojevic S, Perdih F, Andrejević TP, Milivojevic D, Aleksic I, Nikodinovic-Runic J, Glišić BĐ, Turel I, Djuran MI. Structural Characterization, Antimicrobial Activity and BSA/DNA Binding Affinity of New Silver(I) Complexes with Thianthrene and 1,8-Naphthyridine. Molecules 2021; 26:1871. [PMID: 33810316 PMCID: PMC8037121 DOI: 10.3390/molecules26071871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Three new silver(I) complexes [Ag(NO3)(tia)(H2O)]n (Ag1), [Ag(CF3SO3)(1,8-naph)]n (Ag2) and [Ag2(1,8-naph)2(H2O)1.2](PF6)2 (Ag3), where tia is thianthrene and 1,8-naph is 1,8-naphthyridine, were synthesized and structurally characterized by different spectroscopic and electrochemical methods and their crystal structures were determined by single-crystal X-ray diffraction analysis. Their antimicrobial potential was evaluated against four bacterial and three Candida species, and the obtained results revealed that these complexes showed significant activity toward the Gram-positive Staphylococcus aureus, Gram-negative Pseudomonas aeruginosa and the investigated Candida species with minimal inhibitory concentration (MIC) values in the range 1.56-7.81 μg/mL. On the other hand, tia and 1,8-naph ligands were not active against the investigated strains, suggesting that their complexation with Ag(I) ion results in the formation of antimicrobial compounds. Moreover, low toxicity of the complexes was detected by in vivo model Caenorhabditis elegans. The interaction of the complexes with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied to evaluate their binding affinity towards these biomolecules for possible insights into the mode of antimicrobial activity. The binding affinity of Ag1-3 to BSA was higher than that for DNA, indicating that proteins could be more favorable binding sites for these complexes in comparison to the nucleic acids.
Collapse
Affiliation(s)
- Darko P. Ašanin
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| | - Sanja Skaro Bogojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (D.M.); (I.A.)
| | - Franc Perdih
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| | - Tina P. Andrejević
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia;
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (D.M.); (I.A.)
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (D.M.); (I.A.)
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (D.M.); (I.A.)
| | - Biljana Đ. Glišić
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia;
| | - Iztok Turel
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| | - Miloš I. Djuran
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Han W, Liu X, Wang L, Zhou X. Engineering of lipid microbubbles-coated copper and selenium nanoparticles: Ultrasound-stimulated radiation of anticancer activity ian human ovarian cancer cells. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Synthesis, Characterization, and In Vitro Cytotoxicity of Platinum(II) Complexes Bearing Chiral Tetradentate Salicylaldimine Ligands. J CHEM-NY 2020. [DOI: 10.1155/2020/5414959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of platinum(II) complexes with chiral Schiff base ligands derived from various salicylaldehydes with (R,R′)- and (S,S′)-cyclohexanediamine were synthesized and characterized by ESI-MS, IR, and NMR. Obtained spectra with typical signals were in agreement with suggested molecular formulae of the complexes. Their photophysical properties were studied by UV-visible and emission spectroscopies. The UV-Vis showed the typical band with low energy at visible range 400–500 nm for MLCT, and this band can emit the luminescent band with emission maximum wavelengths at 529–595 nm. The in vitro cytotoxicity of obtained platinum(II) complexes was screened for KB and MCF-7 human cancer cell lines. The results showed that (S)-enantiomers were more active than (R)-enantiomers and the different positions of methoxy group in salicyl ring gave different cytotoxicities.
Collapse
|
8
|
Chang GL, Li Z, Niu MJ, Wang SN. Studies on the manganese and copper complexes derived from chiral Schiff base: synthesis, structure, cytotoxicity and DNA/BSA interaction. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1652275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Guo-Liang Chang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, People’s Republic of China
| | - Zhen Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, People’s Republic of China
| | - Mei-Ju Niu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, People’s Republic of China
| | - Su-Na Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, People’s Republic of China
| |
Collapse
|
9
|
Bao Z, Lai D, Shen P, Yu M, Kumar R, Liu Y, Chen Z, Liang H. A New Samarium(III) Complex of Liriodenine: Synthesis, Crystal Structure, Antitumor Activity, and DNA Binding Study. Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201800343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhichun Bao
- School of Chemistry and Pharmaceutical Sciences; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; Guangxi Normal University; No. 15 Yucai Road 541004 Guilin Guangxi P. R. China
| | - Delin Lai
- School of Chemistry and Pharmaceutical Sciences; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; Guangxi Normal University; No. 15 Yucai Road 541004 Guilin Guangxi P. R. China
| | - Pengchang Shen
- School of Chemistry and Pharmaceutical Sciences; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; Guangxi Normal University; No. 15 Yucai Road 541004 Guilin Guangxi P. R. China
| | - Mengxin Yu
- School of Chemistry and Pharmaceutical Sciences; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; Guangxi Normal University; No. 15 Yucai Road 541004 Guilin Guangxi P. R. China
| | - Rajesh Kumar
- School of Chemistry and Pharmaceutical Sciences; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; Guangxi Normal University; No. 15 Yucai Road 541004 Guilin Guangxi P. R. China
| | - Yancheng Liu
- School of Chemistry and Pharmaceutical Sciences; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; Guangxi Normal University; No. 15 Yucai Road 541004 Guilin Guangxi P. R. China
| | - Zhenfeng Chen
- School of Chemistry and Pharmaceutical Sciences; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; Guangxi Normal University; No. 15 Yucai Road 541004 Guilin Guangxi P. R. China
| | - Hong Liang
- School of Chemistry and Pharmaceutical Sciences; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; Guangxi Normal University; No. 15 Yucai Road 541004 Guilin Guangxi P. R. China
| |
Collapse
|
10
|
Enantiomeric pairs of copper(II) polypyridyl-alanine complex salts: anticancer studies. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0234-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Tamayo LV, Santos AF, Ferreira IP, Santos VG, Lopes MTP, Beraldo H. Silver(I) complexes with chromone-derived hydrazones: investigation on the antimicrobial and cytotoxic effects. Biometals 2017; 30:379-392. [PMID: 28409296 DOI: 10.1007/s10534-017-0013-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/24/2017] [Indexed: 11/29/2022]
Abstract
Complexes [Ag(HCrPh)2]NO3·2H2O (1) and [Ag(HCrpClPh)2]NO3 (2) were obtained with 3-formyl-6-methylchromone-phenyl hydrazone (HCrPh, HL1) and 3-formyl-6-methylchromone-para-chloro-phenyl hydrazone (HCrpClPh, HL2). Although the hydrazones were inactive, upon coordination to silver(I) antifungal activity significantly improved against several Candida strains. Complexes (1-2) revealed to be more active than silver nitrate, silver sulfadiazine and the reference drug nystatin against Candida parapsilosis. The cytotoxic activities of the hydrazones and their silver(I) complexes were evaluated in comparison with cisplatin on B16F10 (metastatic melanoma) and Melan-a (non-tumorigenic melanocyte) cells. The hydrazones showed low cytotoxicity against B16F10 cells, reducing only about 20% of cell viability at the concentration of 10 μM. Upon coordination to silver(I) the cytotoxic effect did not appreciably change in complex (1) while complex (2) proved to be as cytotoxic as cisplatin and much more cytotoxic than both the free ligand and silver nitrate at 1 μM. Both complexes (1) and (2) were less active than cisplatin on non-malignant Melan-a cells, indicating that these compounds might promote less damage on normal cells.
Collapse
Affiliation(s)
- Lenka V Tamayo
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ane F Santos
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Isabella P Ferreira
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Verlane G Santos
- Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Miriam T P Lopes
- Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Heloisa Beraldo
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
12
|
Li Z, Yan H, Chang G, Hong M, Dou J, Niu M. Cu(II), Ni(II) complexes derived from chiral Schiff-base ligands: Synthesis, characterization, cytotoxicity, protein and DNA–binding properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:403-12. [DOI: 10.1016/j.jphotobiol.2016.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/03/2016] [Indexed: 10/21/2022]
|