1
|
Shruthi Keerthi D, Vani MM, Likith G, Sai Nikhil B, Krishnamurthy B. Nature-powered bio-cathodes: Synergistic effects of laccase immobilization and green nanoparticles on enhanced PGEs for sustainable biofuel cells. Bioelectrochemistry 2025; 165:108996. [PMID: 40339395 DOI: 10.1016/j.bioelechem.2025.108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/21/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
As part of growing energy demands and threats to ecology, there is an immense need for greener energy technologies that are novel, cost-effective, and ecofriendly. This paper presents a scalable strategy that uses biocompatible nanomaterials to modify the surface of a pencil graphite electrode (PGE) to enhance the performance of enzymatic biofuel cells (EBFC). Rosa centifolia flowers, an abundantly available plant extract, was used to green synthesize Ag and Cu nanoparticles and applied to various grades of pencil graphite lead surfaces (2H, HB, 2B) via dip-coating, and covalently immobilized with laccase enzyme. Unlike conventional nanoparticles, green-synthesized nanoparticles retain functional groups from phytochemicals that facilitate stable enzyme immobilization, resulting in effective electron transfer. Among the tested biocathodes 2B grade Lac/AgNP/PGE and Lac/CuNP/PGE demonstrated the highest open circuit potentials of 0.611 V and 0.498 V and current densities 1343.15 μA cm-2 and 1054.17 μA cm-2 respectively resulting in a significant raise of 70.84 % over pristine PGEs. Polarization studies revealed superior power density for Lac/AgNP/PGE-2B (20.629 μW cm-2 at 65.21 μA cm-2 current density) over Lac/CuNP/PGE-2B (17.39 μW cm-2 at 61.9 μA cm-2 current density). SEM confirmed enzyme immobilization, and FTIR and XPS validated the presence of carboxyl functional groups. Considering the stability of the modified electrode, Lac/AgNP/PGE-2B retained 62.93 % of its original current density on Day 20. This approach delivered a performance-enhanced biocathode design using functional nanomaterials and a bio-supportive strategy that displayed remarkable stability, longevity, and efficiency, and could potentially optimize the cost of EBFC design and promote miniaturization.
Collapse
Affiliation(s)
- D Shruthi Keerthi
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Secunderabad, Telangana 500078, India; School of Engineering, Anurag University, Venkatapur, Ghatkesar, Hyderabad, Telangana 500088, India
| | - M Mukunda Vani
- Department of Chemical Engineering, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana 500075, India.
| | - G Likith
- School of Engineering, Anurag University, Venkatapur, Ghatkesar, Hyderabad, Telangana 500088, India
| | - B Sai Nikhil
- School of Engineering, Anurag University, Venkatapur, Ghatkesar, Hyderabad, Telangana 500088, India
| | - Balaji Krishnamurthy
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Secunderabad, Telangana 500078, India.
| |
Collapse
|
2
|
Ugwuoji ET, Eze IS, Nwagu TNT, Ezeogu LI. Enhancement of stability and activity of RSD amylase from Paenibacillus lactis OPSA3 for biotechnological applications by covalent immobilization on green silver nanoparticles. Int J Biol Macromol 2024; 279:135132. [PMID: 39208879 DOI: 10.1016/j.ijbiomac.2024.135132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The key challenge to the biotechnological applications of amylases is achieving high activity and stability under extreme pH, temperature and often high levels of enzyme denaturants. This study immobilized a novel raw starch-digesting (RSD) amylase from Paenibacillus lactis OPSA3 on glutaraldehyde-activated silver nanoparticles. Effects of time, glutaraldehyde concentration, pH, temperature, and enzyme concentration on immobilization were studied, and the immobilized enzymes were characterized. pH 9.0 was optimum for the enzyme immobilization. The maximum immobilization efficiency of 82.23 ± 7.99 % was achieved at 25 °C for 120 min. After immobilization, the optimum pH and temperature changed from 9.0 to 11.0 and 60 to 70, respectively. Immobilization reduced the amylase's activation energy (KJ/mol) from the initial 58.862 to 45.449 following immobilization. The Km of the amylase decreased after immobilization, while the Vmax increased. The immobilized amylase showed significantly greater storage and thermal stability than the free amylase. At 80, enzyme half-life (min) and D value (min) increased from 12.33 to 179.11 and 40.94 to 594.98, respectively. The immobilized amylase (80-88 %) had more stability to the effects of the studied surfactants than the free enzyme. It also showed improved stability in the presence of commercial detergents compared to the free enzyme. The amylase's enhanced kinetic parameters and stability following successful immobilization on silver nanoparticles indicate its potential for application in the range of biotechnological processes where alkaline- and temperature-stable amylases are employed.
Collapse
Affiliation(s)
- Emmanuel Tobechukwu Ugwuoji
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria; Department of Biology, Baylor University, Waco, TX, USA; Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ifeanyi S Eze
- Department of Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Tochukwu Nwamaka T Nwagu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Lewis Iheanacho Ezeogu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; UNESCO International Centre for Biotechnology, Nsukka, Nigeria.
| |
Collapse
|
3
|
Khafaga DSR, Muteeb G, Elgarawany A, Aatif M, Farhan M, Allam S, Almatar BA, Radwan MG. Green nanobiocatalysts: enhancing enzyme immobilization for industrial and biomedical applications. PeerJ 2024; 12:e17589. [PMID: 38993977 PMCID: PMC11238728 DOI: 10.7717/peerj.17589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Nanobiocatalysts (NBCs), which merge enzymes with nanomaterials, provide a potent method for improving enzyme durability, efficiency, and recyclability. This review highlights the use of eco-friendly synthesis methods to create sustainable nanomaterials for enzyme transport. We investigate different methods of immobilization, such as adsorption, ionic and covalent bonding, entrapment, and cross-linking, examining their pros and cons. The decreased environmental impact of green-synthesized nanomaterials from plants, bacteria, and fungi is emphasized. The review exhibits the various uses of NBCs in food industry, biofuel production, and bioremediation, showing how they can enhance effectiveness and eco-friendliness. Furthermore, we explore the potential impact of NBCs in biomedicine. In general, green nanobiocatalysts are a notable progression in enzyme technology, leading to environmentally-friendly and effective biocatalytic methods that have important impacts on industrial and biomedical fields.
Collapse
Affiliation(s)
- Doaa S. R. Khafaga
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Salma Allam
- Faculty of Medicine, Galala University, Suez, Egypt
| | - Batool Abdulhadi Almatar
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | | |
Collapse
|
4
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|
5
|
Ayub J, Saeed MU, Hussain N, Zulfiqar I, Mehmood T, Iqbal HMN, Bilal M. Designing robust nano-biocatalysts using nanomaterials as multifunctional carriers - expanding the application scope of bio-enzymes. Top Catal 2023; 66:625-648. [DOI: 10.1007/s11244-022-01657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
|
6
|
Gkantzou E, Chatzikonstantinou AV, Fotiadou R, Giannakopoulou A, Patila M, Stamatis H. Trends in the development of innovative nanobiocatalysts and their application in biocatalytic transformations. Biotechnol Adv 2021; 51:107738. [PMID: 33775799 DOI: 10.1016/j.biotechadv.2021.107738] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
The ever-growing demand for cost-effective and innocuous biocatalytic transformations has prompted the rational design and development of robust biocatalytic tools. Enzyme immobilization technology lies in the formation of cooperative interactions between the tailored surface of the support and the enzyme of choice, which result in the fabrication of tremendous biocatalytic tools with desirable properties, complying with the current demands even on an industrial level. Different nanoscale materials (organic, inorganic, and green) have attracted great attention as immobilization matrices for single or multi-enzymatic systems. Aiming to unveil the potentialities of nanobiocatalytic systems, we present distinct immobilization strategies and give a thorough insight into the effect of nanosupports specific properties on the biocatalysts' structure and catalytic performance. We also highlight the development of nanobiocatalysts for their incorporation in cascade enzymatic processes and various types of batch and continuous-flow reactor systems. Remarkable emphasis is given on the application of such nanobiocatalytic tools in several biocatalytic transformations including bioremediation processes, biofuel production, and synthesis of bioactive compounds and fine chemicals for the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Elena Gkantzou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Alexandra V Chatzikonstantinou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Renia Fotiadou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Archontoula Giannakopoulou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Michaela Patila
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
7
|
Ashkan Z, Hemmati R, Homaei A, Dinari A, Jamlidoost M, Tashakor A. Immobilization of enzymes on nanoinorganic support materials: An update. Int J Biol Macromol 2020; 168:708-721. [PMID: 33232698 DOI: 10.1016/j.ijbiomac.2020.11.127] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Despite the widespread use in various industries, enzyme's instability and non-reusability limit their applications which can be overcome by immobilization. The nature of the enzyme's support material and method of immobilization affect activity, stability, and kinetics properties of enzymes. Here, we report a comparative study of the effects of inorganic support materials on immobilized enzymes. Accordingly, immobilization of enzymes on nanoinorganic support materials significantly improved thermal and pH stability. Furthermore, immobilizations of enzymes on the materials mainly increased Km values while decreased the Vmax values of enzymes. Immobilized enzymes on nanoinorganic support materials showed the increase in ΔG value, and decrease in both ΔH and ΔS values. In contrast to weak physical adsorption immobilization, covalently-bound and multipoint-attached immobilized enzymes do not release from the support surface to contaminate the product and thus the cost is decreased while the product quality is increased. Nevertheless, nanomaterials can enter the environment and increase health and environmental risks and should be used cautiously. Altogether, it can be predicated that hybrid support materials, directed immobilization methods, site-directed mutagenesis, recombinant fusion protein technology, green nanomaterials and trailor-made supports will be used increasingly to produce more efficient immobilized industrial enzymes in near future.
Collapse
Affiliation(s)
- Zahra Ashkan
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Sharekord, Iran
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Sharekord, Iran; Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran.
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ali Dinari
- Department of Polymer Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Iran
| | - Marzieh Jamlidoost
- Department of Virology, Clinical Microbiology Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Iran
| | - Amin Tashakor
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin 2, Ireland; School of Pharmacy and Bimolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
8
|
Characterization of biogenically synthesized silver nanoparticles for therapeutic applications and enzyme nanocomplex generation. 3 Biotech 2020; 10:462. [PMID: 33088659 DOI: 10.1007/s13205-020-02450-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/21/2020] [Indexed: 12/30/2022] Open
Abstract
The present study describes green synthesis of silver nanoparticles (AgNPs) and inulin hydrolyzing enzyme nanocomplexes (ENC) using Azadirachta indica (Ai) and Punica granatum (Pg) leaf extracts. Surface topology and physico-chemical characteristics of AgNPs were studied using surface plasmon resonance (SPR), FTIR, SEM, AFM and EDX analyses. Particle size analysis using dynamic light scattering and AFM studies revealed that Ai-AgNPs (76.4 nm) were spherical in shape having central bigger nano-regime with smaller surroundings while Pg-AgNPs (72.1 nm) and ENCs (Inulinase-Pg-AgNPs ~ 145 nm) were spherical particles having smooth surfaces. Pg-AgNPs exhibited significant photocatalysis of a thiazine dye, methylene blue. Both Ai- and Pg-AgNPs showed selective antibacterial action by inhibiting pathogenic Bacillus cereus, while the probiotic Lactobacillus strains remained unaffected. Ai-AgNPs showed potential anti-biofilm effect (30% viability) on B. cereus biofilms. Pg-AgNPs showed anti-cancer effect against human colon cancer cell lines (Caco-2) resulting in 40% cell death in 48 h. Enzymes (inulinase, L-asparaginase and glucose oxidase) were successfully immobilized onto nanoparticles together with the biogenic synthesis of AgNPs and recyclability of the Inulinase-Pg-AgNPs complex was demonstrated. The study elaborates characteristics of green synthesized nanoparticles and their potential applications as anti-cancer, antibacterial and antioxidant nano drugs that could be used in food and nutraceutical industries. Enzyme immobilization on AgNPs without any toxic cross-linker opens up newer possibilites in enzyme-nanocomplex research.
Collapse
|
9
|
Yang SQ, Dai XY, Wei XY, Zhu Q, Zhou T. Co-immobilization of pectinase and glucoamylase onto sodium aliginate/graphene oxide composite beads and its application in the preparation of pumpkin-hawthorn juice. J Food Biochem 2018; 43:e12741. [PMID: 31353557 DOI: 10.1111/jfbc.12741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 12/16/2022]
Abstract
Co-immobilization of pectinase and glucoamylase onto sodium alginate/graphene oxide beads was achieved by N,N'-dicyclohexylcarbodiimide/N-hydroxysuccinimide as activating agent. The co-immobilized pectinase-glucoamylase (I-PG) prepared under optimal conditions (pH 4.0, 40°C and 35 min) possessed pectinase activity of 1,227.5 ± 36.5U/g and glucoamylase activity of 1,027.2 ± 29.2U/g, with activity recovery of 73.8% and 85.2%, respectively. Both pectinase and glucoamylase in I-PG possessed wider pH tolerance and superior thermal stability to those of their free counterparts. Reusability studies indicated that both enzymes in I-PG retained over 60% of initial activity after six times of reuse. Conditions for the hydrolysis of the pumpkin-hawthorn compound juice by I-PG were optimized using orthogonal experiments. After treatment with I-PG, light transmittance, soluble solids, and reducing sugar content in the resulting juice increased significantly, whereas soluble protein and pectin content decreased appreciably. Therefore, the use of I-PG provided an effective and feasible method for improving quality of the pumpkin-hawthorn juice. PRACTICAL APPLICATIONS: In order to overcome the drawbacks of using free pectinase and glucoamylase, an effective method for the co-immobilization of these two enzymes onto sodium alginate/graphene oxide beads was developed. The co-immobilized pectinase/glucoamylase developed in this study could be applied in the clarification of juice rich in pectin and starch.
Collapse
Affiliation(s)
- Si-Qi Yang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Xiao-Yan Dai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Xiao-Yi Wei
- Faculty of Hospitality Management, Department of Food Science, Shanghai Business School, Shanghai, P. R. China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| |
Collapse
|
10
|
Ali Z, Tian L, Zhang B, Ali N, Khan M, Zhang Q. Synthesis of fibrous and non-fibrous mesoporous silica magnetic yolk–shell microspheres as recyclable supports for immobilization of Candida rugosa lipase. Enzyme Microb Technol 2017; 103:42-52. [DOI: 10.1016/j.enzmictec.2017.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/05/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|