1
|
Mate N, Satwani V, Pranav, Mobin SM. Blazing Carbon Dots: Unfolding its Luminescence Mechanism to Photoinduced Biomedical Applications. Chem Asian J 2025; 20:e202401098. [PMID: 39499673 DOI: 10.1002/asia.202401098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/07/2024]
Abstract
Carbon dots (CDs) are carbon-based nanomaterials that have garnered immense attention owing to their exceptional photophysical and optoelectronic properties. They have been employed extensively for biomedical imaging and phototherapy due to their superb water dispersibility, low toxicity, outstanding biocompatibility, and exceptional tissue permeability. This review summarizes the structural classification of CDs, the classification of CDs according to precursor sources, and the luminescence mechanism of CDs. The modification in CDs via various doping routes is comprehensively reviewed, and the effect of such alterations on their photophysical properties, such as absorbance, photoluminescence (PL), and reactive oxygen species generation ability, is also highlighted. This review strives to summarize the role of CDs in cellular imaging and fluorescence lifetime imaging for cellular metabolism. Subsequently, recent advancements and the future potential of CDs as nanotheranostic agents have been discussed. Herein, we have discussed the role of CDs in photothermal, photodynamic, and synergistic therapy of anticancer, antiviral, and antibacterial applications. The overall summary of the review highlights the prospects of CD-based research in bioimaging and biomedicine.
Collapse
Affiliation(s)
- Nirmiti Mate
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Vinita Satwani
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Pranav
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore Campus, Vellore, India, 632014
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
- Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| |
Collapse
|
2
|
Freitas RB, Rodrigues MJLF, Pimenta S, Belsley M, Correia JH, Maciel MJ. Highly-selective optical filter for NADH fluorescence detection in multiphoton microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:3317-3328. [PMID: 38855678 PMCID: PMC11161364 DOI: 10.1364/boe.506777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 06/11/2024]
Abstract
Colorectal cancer (CRC) is a pressing global health concern, emphasizing the need for early detection tools. In this study an optical filter for precise detection of nicotinamide adenine dinucleotide (NADH) fluorescence via two-photon excitation fluorescence (TPEF) was developed. Fabricated with silicon dioxide and titanium dioxide thin films in a Fabry-Perot structure, the filter achieved a peak transmittance of about 95% at 483 nm, with a 12 nm full-width at half maximum. TPEF measurements using a tailored setup and NADH liquid phantoms underscored the filter's significance in selectively capturing NADH fluorescence while mitigating interference from other fluorophores. This work marks a substantial stride towards integrating multiphoton microscopy into conventional colonoscopy, enabling non-invasive, objective optical biopsy for colorectal tissue analysis. Further refinements of the experimental setup are imperative to advance tissue differentiation and enhance CRC diagnosis.
Collapse
Affiliation(s)
- R. B. Freitas
- CMEMS-UMinho, University of Minho, 4800-058, Guimarães, Portugal
| | - M. J. L. F. Rodrigues
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Materials and Emergent Technologies (LAPMET), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - S. Pimenta
- CMEMS-UMinho, University of Minho, 4800-058, Guimarães, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - M. Belsley
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Materials and Emergent Technologies (LAPMET), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - J. H. Correia
- CMEMS-UMinho, University of Minho, 4800-058, Guimarães, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - M. J. Maciel
- CMEMS-UMinho, University of Minho, 4800-058, Guimarães, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Spadin FS, Gergely LP, Kämpfer T, Frenz M, Vermathen M. Fluorescence lifetime imaging and phasor analysis of intracellular porphyrinic photosensitizers applied with different polymeric formulations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 254:112904. [PMID: 38579534 DOI: 10.1016/j.jphotobiol.2024.112904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The fluorescence lifetime of a porphyrinic photosensitizer (PS) is an important parameter to assess the aggregation state of the PS even in complex biological environments. Aggregation-induced quenching of the PS can significantly reduce the yield of singlet oxygen generation and thus its efficiency as a medical drug in photodynamic therapy (PDT) of diseased tissues. Hydrophobicity and the tendency to form aggregates pose challenges on the development of efficient PSs and often require carrier systems. A systematic study was performed to probe the impact of PS structure and encapsulation into polymeric carriers on the fluorescence lifetime in solution and in the intracellular environment. Five different porphyrinic PSs including chlorin e6 (Ce6) derivatives and tetrakis(m-hydroxyphenyl)-porphyrin and -chlorin were studied in free form and combined with polyvinylpyrrolidone (PVP) or micelles composed of triblock-copolymers or Cremophor. Following incubation of HeLa cells with these systems, fluorescence lifetime imaging combined with phasor analysis and image segmentation was applied to study the lifetime distribution in the intracellular surrounding. The data suggest that for free PSs, the structure-dependent cell uptake pathways determine their state and emission lifetimes. PS localization in the plasma membrane yielded mostly monomers with long fluorescence lifetimes whereas the endocytic pathway with subsequent lysosomal deposition adds a short-lived component for hydrophilic anionic PSs. Prolonged incubation times led to increasing contributions from short-lived components that derive from aggregates mainly localized in the cytoplasm. Encapsulation of PSs into polymeric carriers led to monomerization and mostly fluorescence emission decays with long fluorescence lifetimes in solution. However, the efficiency depended on the binding strength that was most pronounced for PVP. In the cellular environment, PVP was able to maintain monomeric long-lived species over prolonged incubation times. This was most pronounced for Ce6 derivatives with a logP value around 4.5. Micellar encapsulation led to faster release of the PSs resulting in multiple components with long and short fluorescence lifetimes. The hydrophilic hardly aggregating PS exhibited a mostly stable invariant lifetime distribution over time with both carriers. The presented data are expected to contribute to optimized PDT treatment protocols and improved PS-carrier design for preventing intracellular fluorescence quenching. In conclusion, amphiphilic and concurrent hydrophobic PSs with high membrane affinity as well as strong binding to the carrier have best prospects to maintain their photophysical properties in vivo and serve thus as efficient photodynamic diagnosis and PDT drugs.
Collapse
Affiliation(s)
- Florentin S Spadin
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Lea P Gergely
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Freiestrasse 3, 3012 Bern, Switzerland
| | - Tobias Kämpfer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Freiestrasse 3, 3012 Bern, Switzerland
| | - Martin Frenz
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland.
| | - Martina Vermathen
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
4
|
Nikolaev VV, Kistenev YV, Kröger M, Zuhayri H, Darvin ME. Review of optical methods for noninvasive imaging of skin fibroblasts-From in vitro to ex vivo and in vivo visualization. JOURNAL OF BIOPHOTONICS 2024; 17:e202300223. [PMID: 38018868 DOI: 10.1002/jbio.202300223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
Fibroblasts are among the most common cell types in the stroma responsible for creating and maintaining the structural organization of the extracellular matrix in the dermis, skin regeneration, and a range of immune responses. Until now, the processes of fibroblast adaptation and functioning in a varying environment have not been fully understood. Modern laser microscopes are capable of studying fibroblasts in vitro and ex vivo. One-photon- and two-photon-excited fluorescence microscopy, Raman spectroscopy/microspectroscopy are well-suited noninvasive optical methods for fibroblast imaging in vitro and ex vivo. In vivo staining-free fibroblast imaging is not still implemented. The exception is fibroblast imaging in tattooed skin. Although in vivo noninvasive staining-free imaging of fibroblasts in the skin has not yet been implemented, it is expected in the future. This review summarizes the state-of-the-art in fibroblast visualization using optical methods and discusses the advantages, limitations, and prospects for future noninvasive imaging.
Collapse
Affiliation(s)
- Viktor V Nikolaev
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Yury V Kistenev
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Marius Kröger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | - Hala Zuhayri
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Maxim E Darvin
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| |
Collapse
|
5
|
Awasthi K, Wu TE, Hsu HY, Ohta N. Application of Nanosecond Pulsed Electric Field and Autofluorescence Lifetime Microscopy of FAD in Lung Cells. J Phys Chem B 2023. [PMID: 37319427 DOI: 10.1021/acs.jpcb.3c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exposure of nanosecond pulsed electric fields (nsPEFs) to live cells is an increasing research interest in biology and medicine. Despite extensive studies, a question still remains as to how effects of application of nsPEF on intracellular functions are different between cancerous cells and normal cells and how the difference can be detected. Herein, we have presented an approach of autofluorescence lifetime (AFL) microscopy of flavin adenine dinucleotide (FAD) to detect effects of application of nsPEF having 50 ns of a pulse width, nsPEF(50), on intracellular function in lung cancerous cells, A549 and H661, which show nsPEF(50)-induced apoptosis, and normal cells, MRC-5, in which the field effect is less or not induced. Then, the application of nsPEF(50) is shown to increase the lifetime of FAD autofluorescence in lung cancerous cells, whereas the electric field effects on the autofluorescence of FAD was not significant in normal healthy cells, which indicates that the lifetime measurements of FAD autofluorescence are applicable to detect the field-induced change in intracellular functions. Lifetime and intensity microscopic images of FAD autofluorescence in these lung cells were also acquired after exposure to the apoptosis-inducer staurosporine (STS). Then, it was found that the AFL of FAD became longer after exposure not only in the cancerous cells but also in the normal cells. These results indicate that nsPEF(50) applied to lung cells induced apoptotic cell death only in lung cancerous cells (H661 and A549) but not in lung normal cells (MRC-5), whereas STS induced apoptotic cell death both in lung cancerous cells and in lung normal cells. The lifetime microscopy of FAD autofluorescence is suggested to be very useful as a sensitive detection method of nsPEF-induced apoptotic cell death.
Collapse
Affiliation(s)
- Kamlesh Awasthi
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 300093, Taiwan
| | - Tsai-En Wu
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 300093, Taiwan
| | - Hsin-Yun Hsu
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 300093, Taiwan
| | - Nobuhiro Ohta
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 300093, Taiwan
| |
Collapse
|
6
|
Matsuura U, Tahara S, Kajimoto S, Nakabayashi T. Label-free autofluorescence lifetime reveals the structural dynamics of ataxin-3 inside droplets formed via liquid-liquid phase separation. Sci Rep 2023; 13:6389. [PMID: 37076520 PMCID: PMC10113985 DOI: 10.1038/s41598-023-33268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Liquid-liquid phase separation is a phenomenon that features the formation of liquid droplets containing concentrated solutes. The droplets of neurodegeneration-associated proteins are prone to generate aggregates and cause diseases. To uncover the aggregation process from the droplets, it is necessary to analyze the protein structure with keeping the droplet state in a label-free manner, but there was no suitable method. In this study, we observed the structural changes of ataxin-3, a protein associated with Machado-Joseph disease, inside the droplets, using autofluorescence lifetime microscopy. Each droplet showed autofluorescence due to tryptophan (Trp) residues, and its lifetime increased with time, reflecting structural changes toward aggregation. We used Trp mutants to reveal the structural changes around each Trp and showed that the structural change consists of several steps on different timescales. We demonstrated that the present method visualizes the protein dynamics inside a droplet in a label-free manner. Further investigations revealed that the aggregate structure formed in the droplets differs from that formed in dispersed solutions and that a polyglutamine repeat extension in ataxin-3 hardly modulates the aggregation dynamics in the droplets. These findings highlight that the droplet environment facilitates unique protein dynamics different from those in solutions.
Collapse
Affiliation(s)
- Uchu Matsuura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Shinya Tahara
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- JST PRESTO, Kawaguchi, Saitama, 332-0012, Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
7
|
Schmitz RL, Tweed KE, Rehani P, Samimi K, Riendeau J, Jones I, Maly EM, Guzman EC, Forsberg MH, Shahi A, Capitini CM, Walsh AJ, Skala MC. Autofluorescence lifetime imaging classifies human lymphocyte activation and subtype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525260. [PMID: 36747690 PMCID: PMC9900834 DOI: 10.1101/2023.01.23.525260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
New non-destructive tools are needed to reliably assess lymphocyte function for immune profiling and adoptive cell therapy. Optical metabolic imaging (OMI) is a label-free method that measures the autofluorescence intensity and lifetime of metabolic cofactors NAD(P)H and FAD to quantify metabolism at a single-cell level. Here, we investigate whether OMI can resolve metabolic changes between human quiescent versus IL4/CD40 activated B cells and IL12/IL15/IL18 activated memory-like NK cells. We found that quiescent B and NK cells were more oxidized compared to activated cells. Additionally, the NAD(P)H mean fluorescence lifetime decreased and the fraction of unbound NAD(P)H increased in the activated B and NK cells compared to quiescent cells. Machine learning classified B cells and NK cells according to activation state (CD69+) based on OMI parameters with up to 93.4% and 92.6% accuracy, respectively. Leveraging our previously published OMI data from activated and quiescent T cells, we found that the NAD(P)H mean fluorescence lifetime increased in NK cells compared to T cells, and further increased in B cells compared to NK cells. Random forest models based on OMI classified lymphocytes according to subtype (B, NK, T cell) with 97.8% accuracy, and according to activation state (quiescent or activated) and subtype (B, NK, T cell) with 90.0% accuracy. Our results show that autofluorescence lifetime imaging can accurately assess lymphocyte activation and subtype in a label-free, non-destructive manner.
Collapse
Affiliation(s)
| | - Kelsey E. Tweed
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Peter Rehani
- Morgridge Institute for Research, Madison, WI, USA
| | | | | | - Isabel Jones
- Morgridge Institute for Research, Madison, WI, USA
| | | | | | - Matthew H. Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ankita Shahi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
8
|
Choosing the Probe for Single-Molecule Fluorescence Microscopy. Int J Mol Sci 2022; 23:ijms232314949. [PMID: 36499276 PMCID: PMC9735909 DOI: 10.3390/ijms232314949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Probe choice in single-molecule microscopy requires deeper evaluations than those adopted for less sensitive fluorescence microscopy studies. Indeed, fluorophore characteristics can alter or hide subtle phenomena observable at the single-molecule level, wasting the potential of the sophisticated instrumentation and algorithms developed for advanced single-molecule applications. There are different reasons for this, linked, e.g., to fluorophore aspecific interactions, brightness, photostability, blinking, and emission and excitation spectra. In particular, these spectra and the excitation source are interdependent, and the latter affects the autofluorescence of sample substrate, medium, and/or biological specimen. Here, we review these and other critical points for fluorophore selection in single-molecule microscopy. We also describe the possible kinds of fluorophores and the microscopy techniques based on single-molecule fluorescence. We explain the importance and impact of the various issues in fluorophore choice, and discuss how this can become more effective and decisive for increasingly demanding experiments in single- and multiple-color applications.
Collapse
|
9
|
Vasanthakumari P, Romano RA, Rosa RGT, Salvio AG, Yakovlev V, Kurachi C, Hirshburg JM, Jo JA. Discrimination of cancerous from benign pigmented skin lesions based on multispectral autofluorescence lifetime imaging dermoscopy and machine learning. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:066002. [PMID: 35701871 PMCID: PMC9196925 DOI: 10.1117/1.jbo.27.6.066002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Accurate early diagnosis of malignant skin lesions is critical in providing adequate and timely treatment; unfortunately, initial clinical evaluation of similar-looking benign and malignant skin lesions can result in missed diagnosis of malignant lesions and unnecessary biopsy of benign ones. AIM To develop and validate a label-free and objective image-guided strategy for the clinical evaluation of suspicious pigmented skin lesions based on multispectral autofluorescence lifetime imaging (maFLIM) dermoscopy. APPROACH We tested the hypothesis that maFLIM-derived autofluorescence global features can be used in machine-learning (ML) models to discriminate malignant from benign pigmented skin lesions. Clinical widefield maFLIM dermoscopy imaging of 41 benign and 19 malignant pigmented skin lesions from 30 patients were acquired prior to tissue biopsy sampling. Three different pools of global image-level maFLIM features were extracted: multispectral intensity, time-domain biexponential, and frequency-domain phasor features. The classification potential of each feature pool to discriminate benign versus malignant pigmented skin lesions was evaluated by training quadratic discriminant analysis (QDA) classification models and applying a leave-one-patient-out cross-validation strategy. RESULTS Classification performance estimates obtained after unbiased feature selection were as follows: 68% sensitivity and 80% specificity with the phasor feature pool, 84% sensitivity, and 71% specificity with the biexponential feature pool, and 84% sensitivity and 32% specificity with the intensity feature pool. Ensemble combinations of QDA models trained with phasor and biexponential features yielded sensitivity of 84% and specificity of 90%, outperforming all other models considered. CONCLUSIONS Simple classification ML models based on time-resolved (biexponential and phasor) autofluorescence global features extracted from maFLIM dermoscopy images have the potential to provide objective discrimination of malignant from benign pigmented lesions. ML-assisted maFLIM dermoscopy could potentially assist with the clinical evaluation of suspicious lesions and the identification of those patients benefiting the most from biopsy examination.
Collapse
Affiliation(s)
- Priyanka Vasanthakumari
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Renan A. Romano
- University of São Paulo, São Carlos Institute of Physics, São Paulo, Brazil
| | - Ramon G. T. Rosa
- University of São Paulo, São Carlos Institute of Physics, São Paulo, Brazil
| | - Ana G. Salvio
- Skin Department of Amaral Carvalho Hospital, São Paulo, Brazil
| | - Vladislav Yakovlev
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Cristina Kurachi
- University of São Paulo, São Carlos Institute of Physics, São Paulo, Brazil
| | - Jason M. Hirshburg
- University of Oklahoma Health Science Center, Department of Dermatology, Oklahoma City, Oklahoma, United States
| | - Javier A. Jo
- University of Oklahoma, School of Electrical and Computer Engineering, Norman, Oklahoma, United States
| |
Collapse
|
10
|
Application of Rapid Fluorescence Lifetime Imaging Microscopy (RapidFLIM) to Examine Dynamics of Nanoparticle Uptake in Live Cells. Cells 2022; 11:cells11040642. [PMID: 35203292 PMCID: PMC8870300 DOI: 10.3390/cells11040642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
A key challenge in nanomedicine stems from the continued need for a systematic understanding of the delivery of nanoparticles in live cells. Complexities in delivery are often influenced by the biophysical characteristics of nanoparticles, where even subtle changes to nanoparticle designs can alter cellular uptake, transport and activity. Close examination of these processes, especially with imaging, offers important insights that can aid in future nanoparticle design or translation. Rapid fluorescence lifetime imaging microscopy (RapidFLIM) is a potentially valuable technology for examining intracellular mechanisms of nanoparticle delivery by directly correlating visual data with changes in the biological environment. To date, applications for this technology in nanoparticle research have not been explored. A PicoQuant RapidFLIM system was used together with commercial silica nanoparticles to follow particle uptake in glioblastoma cells. Importantly, RapidFLIM imaging showed significantly improved image acquisition speeds over traditional FLIM, which enabled the tracking of nanoparticle uptake into subcellular compartments. We determined mean lifetime changes and used this to delineate significant changes in nanoparticle lifetimes (>0.39 ns), which showed clustering of these tracks proximal to both extracellular and nuclear membrane boundaries. These findings demonstrate the ability of RapidFLIM to track, localize and quantify changes in single nanoparticle fluorescence lifetimes and highlight RapidFLIM as a valuable tool for multiparameter visualization and analysis of nanoparticle molecular dynamics in live cells.
Collapse
|
11
|
Zherebtsov EA, Potapova EV, Mamoshin AV, Shupletsov VV, Kandurova KY, Dremin VV, Abramov AY, Dunaev AV. Fluorescence lifetime needle optical biopsy discriminates hepatocellular carcinoma. BIOMEDICAL OPTICS EXPRESS 2022; 13:633-646. [PMID: 35284175 PMCID: PMC8884204 DOI: 10.1364/boe.447687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 05/06/2023]
Abstract
This work presents results of in vivo and in situ measurements of hepatocellular carcinoma by a developed optical biopsy system. Here, we describe the technical details of the implementation of fluorescence lifetime and diffuse reflectance measurements by the system, equipped with an original needle optical probe, compatible with the 17.5G biopsy needle standard. The fluorescence lifetime measurements observed by the setup were verified in fresh solutions of NADH and FAD++, and then applied in a murine model for the characterisation of inoculated hepatocellular carcinoma (HCC) and adjacent liver tissue. The technique, applied in vivo and in situ and supplemented by measurements of blood oxygen saturation, made it possible to reveal statistically significant transformation in the set of measured parameters linked with the cellular pools of NADH and NADPH. In the animal model, we demonstrate that the characteristic changes in registered fluorescent parameters can be used to reliably distinguish the HCC tissue, liver tissue in the control, and the metabolically changed liver tissues of animals with the developed HCC tumour. For further transition to clinical applications, the optical biopsy system was tested during the routing procedure of the PNB in humans with suspected HCC. The comparison of the data from murine and human HCC tissues suggests that the tested animal model is generally representative in the sense of the registered fluorescence lifetime parameters, while statistically significant differences between their absolute values can still be observed.
Collapse
Affiliation(s)
- Evgenii A Zherebtsov
- Research & Development Center of Biomedical Photonics, Orel State University, Orel, Russia
- Optoelectronics and Measurement Techniques unit, University of Oulu, Oulu, Finland
- Co-first authors with equal contribution
| | - Elena V Potapova
- Research & Development Center of Biomedical Photonics, Orel State University, Orel, Russia
- Co-first authors with equal contribution
| | - Andrian V Mamoshin
- Research & Development Center of Biomedical Photonics, Orel State University, Orel, Russia
- Orel Regional Clinical Hospital, Orel, Russia
| | - Valery V Shupletsov
- Research & Development Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Ksenia Y Kandurova
- Research & Development Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Viktor V Dremin
- Research & Development Center of Biomedical Photonics, Orel State University, Orel, Russia
- College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| | - Andrey Y Abramov
- Research & Development Center of Biomedical Photonics, Orel State University, Orel, Russia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Andrey V Dunaev
- Research & Development Center of Biomedical Photonics, Orel State University, Orel, Russia
| |
Collapse
|
12
|
Ouyang Y, Liu Y, Wang ZM, Liu Z, Wu M. FLIM as a Promising Tool for Cancer Diagnosis and Treatment Monitoring. NANO-MICRO LETTERS 2021; 13:133. [PMID: 34138374 PMCID: PMC8175610 DOI: 10.1007/s40820-021-00653-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/19/2021] [Indexed: 05/04/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) has been rapidly developed over the past 30 years and widely applied in biomedical engineering. Recent progress in fluorophore-dyed probe design has widened the application prospects of fluorescence. Because fluorescence lifetime is sensitive to microenvironments and molecule alterations, FLIM is promising for the detection of pathological conditions. Current cancer-related FLIM applications can be divided into three main categories: (i) FLIM with autofluorescence molecules in or out of a cell, especially with reduced form of nicotinamide adenine dinucleotide, and flavin adenine dinucleotide for cellular metabolism research; (ii) FLIM with Förster resonance energy transfer for monitoring protein interactions; and (iii) FLIM with fluorophore-dyed probes for specific aberration detection. Advancements in nanomaterial production and efficient calculation systems, as well as novel cancer biomarker discoveries, have promoted FLIM optimization, offering more opportunities for medical research and applications to cancer diagnosis and treatment monitoring. This review summarizes cutting-edge researches from 2015 to 2020 on cancer-related FLIM applications and the potential of FLIM for future cancer diagnosis methods and anti-cancer therapy development. We also highlight current challenges and provide perspectives for further investigation.
Collapse
Affiliation(s)
- Yuzhen Ouyang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, People's Republic of China
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yanping Liu
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
- Shenzhen Research Institute of Central South University, A510a, Virtual University Building, Nanshan District, Southern District, High-tech Industrial Park, Yuehai Street, Shenzhen, People's Republic of China.
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, People's Republic of China
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
13
|
Schmitz R, Tweed K, Walsh C, Walsh AJ, Skala MC. Extracellular pH affects the fluorescence lifetimes of metabolic co-factors. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210047LR. [PMID: 34032035 PMCID: PMC8144436 DOI: 10.1117/1.jbo.26.5.056502] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Autofluorescence measurements of the metabolic cofactors NADH and flavin adenine dinucleotide (FAD) provide a label-free method to quantify cellular metabolism. However, the effect of extracellular pH on flavin lifetimes is currently unknown. AIM To quantify the relationship between extracellular pH and the fluorescence lifetimes of FAD, flavin mononucleotide (FMN), and reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H]. APPROACH Human breast cancer (BT474) and HeLa cells were placed in pH-adjusted media. Images of an intracellular pH indicator or endogenous fluorescence were acquired using two-photon fluorescence lifetime imaging. Fluorescence lifetimes of FAD and FMN in solutions were quantified over the same pH range. RESULTS The relationship between intracellular and extracellular pH was linear in both cell lines. Between extracellular pH 4 to 9, FAD mean lifetimes increased with increasing pH. NAD(P)H mean lifetimes decreased with increasing pH between extracellular pH 5 to 9. The relationship between NAD(P)H lifetime and extracellular pH differed between the two cell lines. Fluorescence lifetimes of FAD, FAD-cholesterol oxidase, and FMN solutions decreased, showed no trend, and showed no trend, respectively, with increasing pH. CONCLUSIONS Changes in endogenous fluorescence lifetimes with extracellular pH are mostly due to indirect changes within the cell rather than direct pH quenching of the endogenous molecules.
Collapse
Affiliation(s)
- Rebecca Schmitz
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Kelsey Tweed
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Christine Walsh
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Alex J. Walsh
- Morgridge Institute for Research, Madison, Wisconsin, United States
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
14
|
Rivas Aiello MB, Azcárate JC, Zelaya E, David Gara P, Bosio GN, Gensch T, Mártire DO. Photothermal therapy with silver nanoplates in HeLa cells studied by in situ fluorescence microscopy. Biomater Sci 2021; 9:2608-2619. [PMID: 33595000 DOI: 10.1039/d0bm01952f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photothermal therapy (PTT) is a noninvasive treatment for cancer relying on the incorporation of NIR-light absorbing nanomaterials into cells, which upon illumination release heat causing thermally induced cell death. We prove that irradiation of aqueous suspensions of poly(vinylpyrrolidone)-coated silver nanoplates (PVPAgNP) or PVPAgNP in HeLa cells with red or NIR lasers causes a sizeable photothermal effect, which in cells can be visualized with the temperature sensing fluorophore Rhodamine B (RhB) using spinning disk confocal fluorescence microscopy or fluorescence lifetime imaging. Upon red-light irradiation of cells that were incubated with both, RhB and PVPAgNP at concentrations with no adverse effects on cell viability, a substantial heat release is detected. Initiation of cell death by photothermal effect is observed by positive signals of fluorescent markers for early and late apoptosis. Surprisingly, a new nanomaterial-assisted cell killing mode is operating when PVPAgNP-loaded HeLa cells are excited with moderate powers of fs-pulsed NIR light. Small roundish areas are generated with bright and fast (<1 ns) decaying emission, which expand fast and destroy the whole cell in seconds. This characteristic emission is assigned to efficient optical breakdown initiation around the strongly absorbing PVPAgNP leading to plasma formation that spreads fast through the cell.
Collapse
Affiliation(s)
- María Belén Rivas Aiello
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 16, Suc. 4, (1900) La Plata, Argentina.
| | | | | | | | | | | | | |
Collapse
|
15
|
Zherebtsov E, Zajnulina M, Kandurova K, Potapova E, Dremin V, Mamoshin A, Sokolovski S, Dunaev A, Rafailov EU. Machine Learning Aided Photonic Diagnostic System for Minimally Invasive Optically Guided Surgery in the Hepatoduodenal Area. Diagnostics (Basel) 2020; 10:E873. [PMID: 33121013 PMCID: PMC7693603 DOI: 10.3390/diagnostics10110873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/29/2022] Open
Abstract
Abdominal cancer is a widely prevalent group of tumours with a high level of mortality if diagnosed at a late stage. Although the cancer death rates have in general declined over the past few decades, the mortality from tumours in the hepatoduodenal area has significantly increased in recent years. The broader use of minimal access surgery (MAS) for diagnostics and treatment can significantly improve the survival rate and quality of life of patients after surgery. This work aims to develop and characterise an appropriate technical implementation for tissue endogenous fluorescence (TEF) and assess the efficiency of machine learning methods for the real-time diagnosis of tumours in the hepatoduodenal area. In this paper, we present the results of the machine learning approach applied to the optically guided MAS. We have elaborated tissue fluorescence approach with a fibre-optic probe to record the TEF and blood perfusion parameters during MAS in patients with cancers in the hepatoduodenal area. The measurements from the laser Doppler flowmetry (LDF) channel were used as a sensor of the tissue vitality to reduce variability in TEF data. Also, we evaluated how the blood perfusion oscillations are changed in the tumour tissue. The evaluated amplitudes of the cardiac (0.6-1.6 Hz) and respiratory (0.2-0.6 Hz) oscillations was significantly higher in intact tissues (p < 0.001) compared to the cancerous ones, while the myogenic (0.2-0.06 Hz) oscillation did not demonstrate any statistically significant difference. Our results demonstrate that a fibre-optic TEF probe accompanied with ML algorithms such as k-Nearest Neighbours or AdaBoost is highly promising for the real-time in situ differentiation between cancerous and healthy tissues by detecting the information about the tissue type that is encoded in the fluorescence spectrum. Also, we show that the detection can be supplemented and enhanced by parallel collection and classification of blood perfusion oscillations.
Collapse
Affiliation(s)
- Evgeny Zherebtsov
- Research and Development Center of Biomedical Photonics, Orel State University, 302026 Orel, Russia; (K.K.); (E.P.); (V.D.); (A.M.); (A.D.)
- Faculty of Information Technology and Electrical Engineering, University of Oulu, Optoelectronics and Measurement Techniques Unit, 90570 Oulu, Finland
| | - Marina Zajnulina
- Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK; (M.Z.); (S.S.); (E.U.R.)
| | - Ksenia Kandurova
- Research and Development Center of Biomedical Photonics, Orel State University, 302026 Orel, Russia; (K.K.); (E.P.); (V.D.); (A.M.); (A.D.)
| | - Elena Potapova
- Research and Development Center of Biomedical Photonics, Orel State University, 302026 Orel, Russia; (K.K.); (E.P.); (V.D.); (A.M.); (A.D.)
| | - Viktor Dremin
- Research and Development Center of Biomedical Photonics, Orel State University, 302026 Orel, Russia; (K.K.); (E.P.); (V.D.); (A.M.); (A.D.)
- Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK; (M.Z.); (S.S.); (E.U.R.)
| | - Andrian Mamoshin
- Research and Development Center of Biomedical Photonics, Orel State University, 302026 Orel, Russia; (K.K.); (E.P.); (V.D.); (A.M.); (A.D.)
- Department of X-ray Surgical Methods of Diagnosis and Treatment, Orel Regional Clinical Hospital, 302028 Orel, Russia
| | - Sergei Sokolovski
- Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK; (M.Z.); (S.S.); (E.U.R.)
| | - Andrey Dunaev
- Research and Development Center of Biomedical Photonics, Orel State University, 302026 Orel, Russia; (K.K.); (E.P.); (V.D.); (A.M.); (A.D.)
| | - Edik U. Rafailov
- Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK; (M.Z.); (S.S.); (E.U.R.)
| |
Collapse
|
16
|
Optical percutaneous needle biopsy of the liver: a pilot animal and clinical study. Sci Rep 2020; 10:14200. [PMID: 32848190 PMCID: PMC7449966 DOI: 10.1038/s41598-020-71089-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
This paper presents the results of the experiments which were performed using the optical biopsy system specially developed for in vivo tissue classification during the percutaneous needle biopsy (PNB) of the liver. The proposed system includes an optical probe of small diameter acceptable for use in the PNB of the liver. The results of the feasibility studies and actual tests on laboratory mice with inoculated hepatocellular carcinoma and in clinical conditions on patients with liver tumors are presented and discussed. Monte Carlo simulations were carried out to assess the diagnostic volume and to trace the sensing depth. Fluorescence and diffuse reflectance spectroscopy measurements were used to monitor metabolic and morphological changes in tissues. The tissue oxygen saturation was evaluated using a recently developed approach to neural network fitting of diffuse reflectance spectra. The Support Vector Machine Classification was applied to identify intact liver and tumor tissues. Analysis of the obtained results shows the high sensitivity and specificity of the proposed multimodal method. This approach allows to obtain information before the tissue sample is taken, which makes it possible to significantly reduce the number of false-negative biopsies.
Collapse
|
17
|
Awasthi K, Chang FL, Hsieh PY, Hsu HY, Ohta N. Characterization of endogenous fluorescence in nonsmall lung cancerous cells: A comparison with nonmalignant lung normal cells. JOURNAL OF BIOPHOTONICS 2020; 13:e201960210. [PMID: 32067342 DOI: 10.1002/jbio.201960210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Monitoring fluorescence properties of endogenous fluorophores such as nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) in normal and cancerous cells provide substantial information noninvasively on biochemical and biophysical aspects of metabolic dysfunction of cancerous cells. Time-resolved spectral profiles and fluorescence lifetime images of NADH and FAD were obtained in human lung nonsmall carcinomas (H661 and A549) and normal lung cells (MRC-5). Both fluorophores show the fast and slowly decaying emission components upon pulsed excitation, and fluorescence spectra of NADH and FAD show blue- and red-shifts, respectively, during their decay. All identified lifetime components of NADH and FAD were found to be shorter in cancerous cells than in normal cells, no matter how they were measured under different extra-cellular conditions (cells suspended in cuvette and cells attached on glass substrate), indicating that the changes in metabolism likely altered the subcellular milieu and potentially also affected the interaction of NADH and FAD with enzymes to which these cofactors were bound. The intensity ratio of NADH and FAD of cancerous cells was also shown to be larger than that of normal cells.
Collapse
Affiliation(s)
- Kamlesh Awasthi
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Feng-Lin Chang
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Pei-Ying Hsieh
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Hsin-Yun Hsu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Nobuhiro Ohta
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
18
|
Majumder P, Blacker TS, Nolan LS, Duchen MR, Gale JE. Multiphoton NAD(P)H FLIM reveals metabolic changes in individual cell types of the intact cochlea upon sensorineural hearing loss. Sci Rep 2019; 9:18907. [PMID: 31827194 PMCID: PMC6906381 DOI: 10.1038/s41598-019-55329-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022] Open
Abstract
An increasing volume of data suggests that changes in cellular metabolism have a major impact on the health of tissues and organs, including in the auditory system where metabolic alterations are implicated in both age-related and noise-induced hearing loss. However, the difficulty of access and the complex cyto-architecture of the organ of Corti has made interrogating the individual metabolic states of the diverse cell types present a major challenge. Multiphoton fluorescence lifetime imaging microscopy (FLIM) allows label-free measurements of the biochemical status of the intrinsically fluorescent metabolic cofactors NADH and NADPH with subcellular spatial resolution. However, the interpretation of NAD(P)H FLIM measurements in terms of the metabolic state of the sample are not completely understood. We have used this technique to explore changes in metabolism associated with hearing onset and with acquired (age-related and noise-induced) hearing loss. We show that these conditions are associated with altered NAD(P)H fluorescence lifetimes, use a simple cell model to confirm an inverse relationship between τbound and oxidative stress, and propose such changes as a potential index of oxidative stress applicable to all mammalian cell types.
Collapse
Affiliation(s)
- Paromita Majumder
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK.
| | - Thomas S Blacker
- Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK. .,Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK. .,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Lisa S Nolan
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK
| | - Michael R Duchen
- Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jonathan E Gale
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK.,Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
19
|
Kolenc OI, Quinn KP. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD. Antioxid Redox Signal 2019; 30:875-889. [PMID: 29268621 PMCID: PMC6352511 DOI: 10.1089/ars.2017.7451] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Optical imaging using the endogenous fluorescence of metabolic cofactors has enabled nondestructive examination of dynamic changes in cell and tissue function both in vitro and in vivo. Quantifying NAD(P)H and FAD fluorescence through an optical redox ratio and fluorescence lifetime imaging (FLIM) provides sensitivity to the relative balance between oxidative phosphorylation and glucose catabolism. Since its introduction decades ago, the use of NAD(P)H imaging has expanded to include applications involving almost every major tissue type and a variety of pathologies. Recent Advances: This review focuses on the use of two-photon excited fluorescence and NAD(P)H fluorescence lifetime techniques in cancer, neuroscience, tissue engineering, and other biomedical applications over the last 5 years. In a variety of cancer models, NAD(P)H fluorescence intensity and lifetime measurements demonstrate a sensitivity to the Warburg effect, suggesting potential for early detection or high-throughput drug screening. The sensitivity to the biosynthetic demands of stem cell differentiation and tissue repair processes indicates the range of applications for this imaging technology may be broad. CRITICAL ISSUES As the number of applications for these fluorescence imaging techniques expand, identifying and characterizing additional intrinsic fluorophores and chromophores present in vivo will be vital to accurately measure and interpret metabolic outcomes. Understanding the full capabilities and limitations of FLIM will also be key to future advances. FUTURE DIRECTIONS Future work is needed to evaluate whether a combination of different biochemical and structural outcomes using these imaging techniques can provide complementary information regarding the utilization of specific metabolic pathways.
Collapse
Affiliation(s)
- Olivia I Kolenc
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Kyle P Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
20
|
Blacker TS, Sewell MDE, Szabadkai G, Duchen MR. Metabolic Profiling of Live Cancer Tissues Using NAD(P)H Fluorescence Lifetime Imaging. Methods Mol Biol 2019; 1928:365-387. [PMID: 30725465 DOI: 10.1007/978-1-4939-9027-6_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Altered metabolism is a hallmark of cancer, both resulting from and driving oncogenesis. The NAD and NADP redox couples play a key role in a large number of the metabolic pathways involved. In their reduced forms, NADH and NADPH, these molecules are intrinsically fluorescent. As the average time for fluorescence to be emitted following excitation by a laser pulse, the fluorescence lifetime, is exquisitely sensitive to changes in the local environment of the fluorophore, imaging the fluorescence lifetime of NADH and NADPH offers the potential for label-free monitoring of metabolic changes inside living tumors. Here, we describe the biological, photophysical, and methodological considerations required to establish fluorescence lifetime imaging (FLIM) of NAD(P)H as a routine method for profiling the metabolism of living cancer cells and tissues.
Collapse
Affiliation(s)
- Thomas S Blacker
- Research Department of Cell & Developmental Biology, University College London, London, UK.
- UCL Consortium for Mitochondrial Research, University College London, London, UK.
- Department of Physics & Astronomy, University College London, London, UK.
| | - Michael D E Sewell
- Research Department of Cell & Developmental Biology, University College London, London, UK
| | - Gyorgy Szabadkai
- Research Department of Cell & Developmental Biology, University College London, London, UK
- UCL Consortium for Mitochondrial Research, University College London, London, UK
- The Francis Crick Institute, London, UK
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Michael R Duchen
- Research Department of Cell & Developmental Biology, University College London, London, UK
- UCL Consortium for Mitochondrial Research, University College London, London, UK
| |
Collapse
|
21
|
Croce AC, Ferrigno A, Bottiroli G, Vairetti M. Autofluorescence-based optical biopsy: An effective diagnostic tool in hepatology. Liver Int 2018; 38:1160-1174. [PMID: 29624848 DOI: 10.1111/liv.13753] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/27/2018] [Indexed: 12/15/2022]
Abstract
Autofluorescence emission of liver tissue depends on the presence of endogenous biomolecules able to fluoresce under suitable light excitation. Overall autofluorescence emission contains much information of diagnostic value because it is the sum of individual autofluorescence contributions from fluorophores involved in metabolism, for example, NAD(P)H, flavins, lipofuscins, retinoids, porphyrins, bilirubin and lipids, or in structural architecture, for example, fibrous proteins, in close relationship with normal, altered or diseased conditions of the liver. Since the 1950s, hepatocytes and liver have been historical models to study NAD(P)H and flavins as in situ, real-time autofluorescence biomarkers of energy metabolism and redox state. Later investigations designed to monitor organ responses to ischaemia/reperfusion were able to predict the risk of dysfunction in surgery and transplantation or support the development of procedures to ameliorate the liver outcome. Subsequently, fluorescent fatty acids, lipofuscin-like lipopigments and collagen were characterized as optical biomarkers of liver steatosis, oxidative stress damage, fibrosis and disease progression. Currently, serum AF is being investigated to improve non-invasive optical diagnosis of liver disease. Validation of endogenous fluorophores and in situ discrimination of cancerous from non-cancerous tissue belong to the few studies on liver in human subjects. These reports along with other optical techniques and the huge work performed on animal models suggest many optically based applications in hepatology. Optical diagnosis is currently offering beneficial outcomes in clinical fields ranging from the respiratory and gastrointestinal tracts, to dermatology and ophthalmology. Accordingly, this review aims to promote an effective bench to bedside transfer in hepatology.
Collapse
Affiliation(s)
- Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Pavia, Italy.,Department of Biology & Biotechnology, University of Pavia, Pavia, Italy
| | - Andrea Ferrigno
- Internal Medicine and Therapy Department, University of Pavia, Pavia, Italy
| | - Giovanni Bottiroli
- Institute of Molecular Genetics, Italian National Research Council (CNR), Pavia, Italy.,Department of Biology & Biotechnology, University of Pavia, Pavia, Italy
| | - Mariapia Vairetti
- Internal Medicine and Therapy Department, University of Pavia, Pavia, Italy
| |
Collapse
|
22
|
Awasthi K, Nakabayashi T, Li L, Ohta N. Effects of Nanosecond Pulsed Electric Field on Intracellular NADH Autofluorescence: A Comparison between Normal and Cancer Cells. ACS OMEGA 2017; 2:2916-2924. [PMID: 30023680 PMCID: PMC6044780 DOI: 10.1021/acsomega.7b00315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/09/2017] [Indexed: 06/08/2023]
Abstract
Intracellular fluorescence lifetime and intensity images of the endogenous fluorophore of nicotinamide adenine dinucleotide (NADH) have been observed before and after application of nanosecond pulsed electric field (nsPEF) in normal and cancer cells, that is, in Wistar-King-Aptekman rat fetus fibroblast (WFB) cells and W31 cells, which are the malignant transformed cells from WFB. The application of nsPEF induces a change both in intensity and lifetime of NADH, indicating that the intracellular function is affected by application of nsPEF in both normal and cancer cells. The application of nsPEF induces an increase in the fluorescence lifetime of NADH and a morphological change, which is attributed to the induction of apoptosis by nsPEF. The field effect on the intensity and lifetime clearly depends on the pulse width, and magnitude of the field-induced increase in the fluorescence lifetime of NADH has a tendency to increase with a decreasing pulse width. It is also found that apoptosis can be induced only in cancer cells using a suitable nsPEF, showing a possibility that ultrashort pulsed electric field is applicable for drug-free cancer therapy.
Collapse
Affiliation(s)
- Kamlesh Awasthi
- Department
of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001, Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Takakazu Nakabayashi
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, Aoba-ku, Sendai 980-8578, Japan
| | - Liming Li
- Department
of Bio- and Material Photonics, Chitose
Institute of Science and Technology, Chitose 066-8655, Japan
| | - Nobuhiro Ohta
- Department
of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001, Ta-Hsueh Road, Hsinchu 30010, Taiwan
| |
Collapse
|