1
|
Arslan NP, Azad F, Orak T, Budak-Savas A, Ortucu S, Dawar P, Baltaci MO, Ozkan H, Esim N, Taskin M. A review on bacteria-derived antioxidant metabolites: their production, purification, characterization, potential applications, and limitations. Arch Pharm Res 2025:10.1007/s12272-025-01541-5. [PMID: 40208553 DOI: 10.1007/s12272-025-01541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Antioxidants are organic molecules that scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS), thereby maintaining cellular redox balance in living organisms. The human body synthesizes endogenous antioxidants, whereas humans obtain exogenous antioxidants from other organisms such as plants, animals, fungi, and bacteria. This review primarily focuses on the antioxidant potential of natural metabolites and extracts from five major bacterial phyla, including the well-studied Actinobacteria and Cyanobacteria, as well as less-studied Bacteroides, Firmicutes, and Proteobacteria. The literature survey revealed that the metabolites and the extracts with antioxidant activity can be obtained from bacterial cells and their culture supernatants. The metabolites with antioxidant activity include pigments, phycobiliproteins, polysaccharides, mycosporins-like amino acids, peptides, phenolic compounds, and alkaloids. Both metabolites and extracts demonstrate in vitro antioxidant capacity through radical-scavenging, metal-reducing, and metal-chelating activity assays. In in vivo models, they can scavenge ROS and RNS directly and/or indirectly eliminate them by enhancing the activities of antioxidant enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase. Due to their antioxidant activities, they may find applications in the cosmetic industry as anti-aging agents for the skin and in medicine as drugs or supplements for combating oxidative stress-related disorders, such as neurodegenerative diseases and diabetes. The literature survey also elucidated that some metabolites and extracts with antioxidant activity also exhibited strong antimicrobial properties. Therefore, we consider that they may have future applications in the treatment of infectious diseases, the preparation of pathogen-free healthy foods, and the extension of food shelf life.
Collapse
Affiliation(s)
| | - Fakhrul Azad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Tugba Orak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Aysenur Budak-Savas
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Serkan Ortucu
- Department of Molecular Biology and Genetics, Science Faculty, Erzurum Technical University, Erzurum, Turkey
| | - Pranav Dawar
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | - Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Hakan Ozkan
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science and Art Faculty, Bingol University, Bingol, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey.
| |
Collapse
|
2
|
Chen Z, Wu X, Liu Z, He Z, Yue HH, Li FF, Xu K, Shao HC, Li WZ, Chen XW. Proteomic insight into growth and defense strategies under low ultraviolet-B acclimation in the cyanobacterium Nostoc sphaeroides. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 264:113101. [PMID: 39854926 DOI: 10.1016/j.jphotobiol.2025.113101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Prioritizing defense over growth often occurs under ultraviolet (UV)-B radiation while several studies showed its growth-promoting effects on photosynthetic organisms, how they overcome the growth-defense trade-off is unclear. This study deciphered the acclimation responses of the cyanobacterium Nostoc sphaeroides to low UV-B radiation (0.08 W m-2) using quantitative proteomic, physiological and biochemical analyses. We identified 628 significantly altered proteins, among which energy production and conversion related proteins dominated. The UV-B-acclimated cells exhibited a significant increase in the abundance of the phycoerythrin and chlorophyll synthesis related enzymes, along with enhanced linear and cyclic electron transport rates, which further led to a rise in light-induced NADPH generation (27 %) and ATP content (67 %). The enhanced photosynthetic energy supply could fuel both growth and defense in Nostoc sphaeroides. The UV-B-acclimated cells showed enhanced photosynthetic carbon fixation, as evidenced by an increase in extracellular carbonic anhydrase activity (142 %), ribulose-1,5-bisphosphate carboxylase/oxygenase activity (87 %) and the pH compensation point, compared to non-UV-B-acclimated cells. Low UV-B also induced ribosome heterogeneity, as indicated by significant changes in the abundance of core ribosomal proteins, RNA modification related enzymes, and ribosome biogenesis and translation related accessory factors. Additionally, low UV-B activated multiple defense strategies, such as significant upregulation of mycosporine-like amino acid synthesis, RecA-dependent DNA repair pathways and the glutathione redox system. Our findings suggested that growth and defense were balanced by enhancing the photosynthetic energy supply under low UV-B acclimation in the cyanobacterium Nostoc sphaeroides, which provides novel insight into mechanisms for overcoming growth-defense trade-offs.
Collapse
Affiliation(s)
- Zhen Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China.
| | - Xun Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Zhe Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Zhen He
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Hua-Hua Yue
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Fei-Fei Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Kui Xu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Hai-Chen Shao
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Wei-Zhi Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Xiong-Wen Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China.
| |
Collapse
|
3
|
Weiss MB, Borges RM, Sullivan P, Domingues JPB, da Silva FHS, Trindade VGS, Luo S, Orjala J, Crnkovic CM. Chemical diversity of cyanobacterial natural products. Nat Prod Rep 2025; 42:6-49. [PMID: 39540765 PMCID: PMC11948988 DOI: 10.1039/d4np00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Covering: 2010 to 2023Cyanobacterial natural products are a diverse group of molecules with promising biotechnological applications. This review examines the chemical diversity of 995 cyanobacterial metabolites reported from 2010 to 2023. A computational analysis using similarity networking was applied to visualize the chemical space and to compare the diversity of cyanobacterial metabolites among taxonomic orders and environmental sources. Key examples are highlighted, detailing their sources, biological activities, and discovery processes.
Collapse
Affiliation(s)
- Márcio B Weiss
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Ricardo M Borges
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Peter Sullivan
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, 66123, Saarbrücken, Germany
| | - João P B Domingues
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Francisco H S da Silva
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Victória G S Trindade
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jimmy Orjala
- College of Pharmacy, University of Illinois at Chicago, 60612, Chicago, IL, USA
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Arsın S, Pollari M, Delbaje E, Jokela J, Wahlsten M, Permi P, Fewer D. A refactored biosynthetic pathway for the production of glycosylated microbial sunscreens. RSC Chem Biol 2024:d4cb00128a. [PMID: 39247679 PMCID: PMC11378024 DOI: 10.1039/d4cb00128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024] Open
Abstract
Mycosporine-like amino acids (MAAs) are a family of water-soluble and colorless secondary metabolites, with high extinction coefficients, that function as microbial sunscreens. MAAs share a cyclohexinimine chromophore that is diversified through amino acid substitutions and attachment of sugar moieties. The genetic and enzymatic bases for the chemical diversity of MAAs remain largely unexplored. Here we report a series of structurally distinct MAAs and evidence for an unusual branched biosynthetic pathway from a cyanobacterium isolated from lake sediment. We used a combination of high-resolution liquid chromatography-mass spectrometry (HR-LCMS) analysis and nuclear magnetic resonance (NMR) spectroscopy to identify diglycosylated-palythine-Ser (C22H36N2O15) as the dominant chemical variant in a series of MAAs from Nostoc sp. UHCC 0302 that contained either Ser or Thr. We obtained a complete 9.9 Mb genome sequence to gain insights into the genetic basis for the biosynthesis of these structurally distinct MAAs. We identified MAA biosynthetic genes encoded at two locations on the circular chromosome. Surprisingly, direct pathway cloning and heterologous expression of the complete mysABCJ 1 D 1 G 1 H biosynthetic gene cluster in Escherichia coli (E. coli) led to the production of 450 Da monoglycosylated-palythine-Thr (C18H30N2O11). We reconstructed combinations of the two distant biosynthetic gene clusters in refactored synthetic pathways and expressed them in the heterologous host. These results demonstrated that the MysD1 and MysD2 enzymes displayed a preference for Thr and Ser, respectively. Furthermore, one of the four glycosyltransferases identified, MysG1, was active in E. coli and catalysed the attachment of a hexose moiety to the palythine-Thr intermediate. Together these results provide the first insights into the enzymatic basis for glycosylation of MAAs and demonstrates how paralogous copies of the MysD enzymes allow the simultaneous biosynthesis of specific chemical variants to increase the structural variation in this family of microbial sunscreens.
Collapse
Affiliation(s)
- Sıla Arsın
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki 00014 Helsinki Finland
| | - Maija Pollari
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki 00014 Helsinki Finland
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki 00014 Helsinki Finland
| | - Endrews Delbaje
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo Ribeirão Preto Brazil
| | - Jouni Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki 00014 Helsinki Finland
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki 00014 Helsinki Finland
| | - Perttu Permi
- Department of Chemistry, University of Jyväskylä 40014 Jyväskylä Finland
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä 40014 Jyväskylä Finland
| | - David Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki 00014 Helsinki Finland
| |
Collapse
|
5
|
Mishra R, Kaur P, Soni R, Madan A, Agarwal P, Singh G. Decoding the photoprotection strategies and manipulating cyanobacterial photoprotective metabolites, mycosporine-like amino acids, for next-generation sunscreens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108744. [PMID: 38781638 DOI: 10.1016/j.plaphy.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The most recent evaluation of the impacts of UV-B radiation and depletion of stratospheric ozone points out the need for effective photoprotection strategies for both biological and nonbiological components. To mitigate the disruptive consequences of artificial sunscreens, photoprotective compounds synthesized from gram-negative, oxygenic, and photoautotrophic prokaryote, cyanobacteria have been studied. In a quest to counteract the harmful UV radiation, cyanobacterial species biosynthesize photoprotective metabolites named as mycosporine-like amino acids (MAAs). The investigation of MAAs as potential substitutes for commercial sunscreen compounds is motivated by their inherent characteristics, such as antioxidative properties, water solubility, low molecular weight, and high molar extinction coefficients. These attributes contribute to the stability of MAAs and make them promising candidates for natural alternatives in sunscreen formulations. They are effective at reducing direct damage caused by UV radiation and do not lead to the production of reactive oxygen radicals. In order to better understand the role, ecology, and its application at a commercial scale, tools like genome mining, heterologous expression, and synthetic biology have been explored in this review to develop next-generation sunscreens. Utilizing tactical concepts of bio-nanoconjugate formation for the development of an efficient MAA-nanoparticle conjugate structure would not only give the sunscreen complex stability but would also serve as a promising tool for the production of analogues. This review would provide insight on efforts to produce MAAs by diversifying the biosynthetic pathways, modulating the precursors and stress conditions, and comprehending the gene cluster arrangement for MAA biosynthesis and its application in developing effective sunscreen.
Collapse
Affiliation(s)
- Reema Mishra
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Pritam Kaur
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Renu Soni
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Akanksha Madan
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Preeti Agarwal
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Garvita Singh
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| |
Collapse
|
6
|
Punchakara A, Prajapat G, Bairwa HK, Jain S, Agrawal A. Applications of mycosporine-like amino acids beyond photoprotection. Appl Environ Microbiol 2023; 89:e0074023. [PMID: 37843273 PMCID: PMC10686070 DOI: 10.1128/aem.00740-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Recent years have seen a lot of interest in mycosporine-like amino acids (MAAs) because of their alleged potential as a natural microbial sunscreen. Since chemical ultraviolet (UV) absorbers are unsafe for long-term usage, the demand for natural UV-absorbing substances has increased. In this situation, MAA is a strong contender for an eco-friendly UV protector. The capacity of MAAs to absorb light in the UV-A (320-400 nm) and UV-B (280-320 nm) range without generating free radicals is potentially relevant in photoprotection. The usage of MAAs for purposes other than photoprotection has now shifted in favor of medicinal applications. Aside from UV absorption, MAAs also have anti-oxidant, anti-inflammatory, wound-healing, anti-photoaging, cell proliferation stimulators, anti-cancer agents, and anti-adipogenic properties. Recently, MAAs application to combat SARS-CoV-2 infection was also investigated. In this review article, we highlight the biomedical applications of MAAs that go beyond photoprotection, which can help in utilizing the MAAs as promising bioactive compounds in both pharmaceutical and cosmetic applications.
Collapse
Affiliation(s)
- Akhila Punchakara
- Energy and Environment Research Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Ganshyam Prajapat
- The Energy and Resources Institute (TERI), Darbari Seth Block, India Habitat Centre, New Delhi, India
| | - Himanshu Kumar Bairwa
- Energy and Environment Research Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shikha Jain
- Department of Chemistry, Manipal University Jaipur, Dehmi Kalan, Jaipur, Rajasthan, India
| | - Akhil Agrawal
- Energy and Environment Research Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
7
|
Arsın S, Delbaje E, Jokela J, Wahlsten M, Farrar ZM, Permi P, Fewer D. A Plastic Biosynthetic Pathway for the Production of Structurally Distinct Microbial Sunscreens. ACS Chem Biol 2023; 18:1959-1967. [PMID: 37603862 PMCID: PMC10510106 DOI: 10.1021/acschembio.3c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Mycosporine-like amino acids (MAAs) are small, colorless, and water-soluble secondary metabolites. They have high molar extinction coefficients and a unique UV radiation absorption mechanism that make them effective sunscreens. Here we report the discovery of two structurally distinct MAAs from the lichen symbiont strain Nostoc sp. UHCC 0926. We identified these MAAs as aplysiapalythine E (C23H38N2O15) and tricore B (C34H53N4O15) using a combination of high-resolution liquid chromatography-mass spectrometry (HR-LCMS) analysis and nuclear magnetic resonance (NMR) spectroscopy. We obtained a 8.3 Mb complete genome sequence of Nostoc sp. UHCC 0926 to gain insights into the genetic basis for the biosynthesis of these two structural distinct MAAs. We identified MAA biosynthetic genes encoded in three separate locations of the genome. The organization of biosynthetic enzymes in Nostoc sp. UHCC 0926 necessitates a branched biosynthetic pathway to produce two structurally distinct MAAs. We detected the presence of such discontiguous MAA biosynthetic gene clusters in 12% of the publicly available complete cyanobacterial genomes. Bioinformatic analysis of public MAA biosynthetic gene clusters suggests that they are subject to rapid evolutionary processes resulting in highly plastic biosynthetic pathways that are responsible for the chemical diversity in this family of microbial sunscreens.
Collapse
Affiliation(s)
- Sıla Arsın
- University
of Helsinki, Department of Microbiology,
Faculty of Agriculture and Forestry, 00014 Helsinki, Finland
| | - Endrews Delbaje
- University
of São Paulo, Center for Nuclear
Energy in Agriculture, Avenida Centenário 303, 13400-970 Piracicaba, São Paulo, Brazil
| | - Jouni Jokela
- University
of Helsinki, Department of Microbiology,
Faculty of Agriculture and Forestry, 00014 Helsinki, Finland
| | - Matti Wahlsten
- University
of Helsinki, Department of Microbiology,
Faculty of Agriculture and Forestry, 00014 Helsinki, Finland
| | - Zoë M. Farrar
- University
of Helsinki, Department of Microbiology,
Faculty of Agriculture and Forestry, 00014 Helsinki, Finland
| | - Perttu Permi
- Department
of Chemistry, University of Jyväskylä, 40014 Jyväskylä, Finland
- Department
of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - David Fewer
- University
of Helsinki, Department of Microbiology,
Faculty of Agriculture and Forestry, 00014 Helsinki, Finland
| |
Collapse
|
8
|
Peng J, Guo F, Liu S, Fang H, Xu Z, Wang T. Recent Advances and Future Prospects of Mycosporine-like Amino Acids. Molecules 2023; 28:5588. [PMID: 37513460 PMCID: PMC10384724 DOI: 10.3390/molecules28145588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Mycosporine-like amino acids (MAAs) are a class of water-soluble active substances produced by various aquatic organisms. However, due to the limitations of low accumulation of MAAs in organisms, the cumbersome extraction process, difficult identification, and high cost, MAAs have not yet been widely used in human life. Recently, there has been an emergence of heterologous synthesis for MAAs, making increasing yield the key to the quantification and application of MAAs. This review summarizes the latest research progress of MAAs, including: (1) introducing the biodistribution of MAAs and the content differences among different species to provide a reference for the selection of research subjects; (2) elaborating the species and molecular information of MAAs; (3) dissecting the synthesis mechanism and sorting out the synthesis pathways of various MAAs; (4) summarizing the methods of extraction and identification, summarizing the advantages and disadvantages, and providing a reference for the optimization of extraction protocols; (5) examining the heterologous synthesis method; and (6) summarizing the physiological functions of MAAs. This paper comprehensively updates the latest research status of MAAs and the various problems that need to be addressed, especially emphasizing the potential advantages of heterologous synthesis in the future production of MAAs.
Collapse
Affiliation(s)
- Jiahui Peng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Fangyu Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Sishi Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Haiyan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| |
Collapse
|
9
|
Marine Natural Products as Innovative Cosmetic Ingredients. Mar Drugs 2023; 21:md21030170. [PMID: 36976219 PMCID: PMC10054431 DOI: 10.3390/md21030170] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Over the course of the last 20 years, numerous studies have identified the benefits of an array of marine natural ingredients for cosmetic purposes, as they present unique characteristics not found in terrestrial organisms. Consequently, several marine-based ingredients and bioactive compounds are under development, used or considered for skin care and cosmetics. Despite the multitude of cosmetics based on marine sources, only a small proportion of their full potential has been exploited. Many cosmetic industries have turned their attention to the sea to obtain innovative marine-derived compounds for cosmetics, but further research is needed to determine and elucidate the benefits. This review gathers information on the main biological targets for cosmetic ingredients, different classes of marine natural products of interest for cosmetic applications, and the organisms from which such products can be sourced. Although organisms from different phyla present different and varied bioactivities, the algae phylum seems to be the most promising for cosmetic applications, presenting compounds of many classes. In fact, some of these compounds present higher bioactivities than their commercialized counterparts, demonstrating the potential presented by marine-derived compounds for cosmetic applications (i.e., Mycosporine-like amino acids and terpenoids’ antioxidant activity). This review also summarizes the major challenges and opportunities faced by marine-derived cosmetic ingredients to successfully reach the market. As a future perspective, we consider that fruitful cooperation among academics and cosmetic industries could lead to a more sustainable market through responsible sourcing of ingredients, implementing ecological manufacturing processes, and experimenting with inventive recycling and reuse programs.
Collapse
|
10
|
Nandagopal P, Steven AN, Chan LW, Rahmat Z, Jamaluddin H, Mohd Noh NI. Bioactive Metabolites Produced by Cyanobacteria for Growth Adaptation and Their Pharmacological Properties. BIOLOGY 2021; 10:1061. [PMID: 34681158 PMCID: PMC8533319 DOI: 10.3390/biology10101061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Cyanobacteria are the most abundant oxygenic photosynthetic organisms inhabiting various ecosystems on earth. As with all other photosynthetic organisms, cyanobacteria release oxygen as a byproduct during photosynthesis. In fact, some cyanobacterial species are involved in the global nitrogen cycles by fixing atmospheric nitrogen. Environmental factors influence the dynamic, physiological characteristics, and metabolic profiles of cyanobacteria, which results in their great adaptation ability to survive in diverse ecosystems. The evolution of these primitive bacteria resulted from the unique settings of photosynthetic machineries and the production of bioactive compounds. Specifically, bioactive compounds play roles as regulators to provide protection against extrinsic factors and act as intracellular signaling molecules to promote colonization. In addition to the roles of bioactive metabolites as indole alkaloids, terpenoids, mycosporine-like amino acids, non-ribosomal peptides, polyketides, ribosomal peptides, phenolic acid, flavonoids, vitamins, and antimetabolites for cyanobacterial survival in numerous habitats, which is the focus of this review, the bioactivities of these compounds for the treatment of various diseases are also discussed.
Collapse
Affiliation(s)
- Pavitra Nandagopal
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Anthony Nyangson Steven
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Liong-Wai Chan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Zaidah Rahmat
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Haryati Jamaluddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Nur Izzati Mohd Noh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| |
Collapse
|
11
|
Geraldes V, Pinto E. Mycosporine-Like Amino Acids (MAAs): Biology, Chemistry and Identification Features. Pharmaceuticals (Basel) 2021; 14:63. [PMID: 33466685 PMCID: PMC7828830 DOI: 10.3390/ph14010063] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/16/2023] Open
Abstract
Mycosporines and mycosporine-like amino acids are ultra-violet-absorbing compounds produced by several organisms such as lichens, fungi, algae and cyanobacteria, especially upon exposure to solar ultraviolet radiation. These compounds have photoprotective and antioxidant functions. Mycosporine-like amino acids have been used as a natural bioactive ingredient in cosmetic products. Several reviews have already been developed on these photoprotective compounds, but they focus on specific features. Herein, an extremely complete database on mycosporines and mycosporine-like amino acids, covering the whole class of these natural sunscreen compounds known to date, is presented. Currently, this database has 74 compounds and provides information about the chemistry, absorption maxima, protonated mass, fragments and molecular structure of these UV-absorbing compounds as well as their presence in organisms. This platform completes the previous reviews and is available online for free and in the public domain. This database is a useful tool for natural product data mining, dereplication studies, research working in the field of UV-absorbing compounds mycosporines and being integrated in mass spectrometry library software.
Collapse
Affiliation(s)
- Vanessa Geraldes
- School of Pharmaceutical Sciences, University of São Paulo, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo-SP CEP 05508-000, Brazil;
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Piracicaba-SP CEP 13400-970, Brazil
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Piracicaba-SP CEP 13400-970, Brazil
| |
Collapse
|
12
|
Transcriptome Profiling of Human Follicle Dermal Papilla Cells in response to Porphyra-334 Treatment by RNA-Seq. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6637513. [PMID: 33519944 PMCID: PMC7817261 DOI: 10.1155/2021/6637513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Porphyra-334 is a kind of mycosporine-like amino acid absorbing ultraviolet-A. Here, we characterized porphyra-334 as a potential antiaging agent. An in vitro assay revealed that porphyra-334 dramatically promoted collagen synthesis in fibroblast cells. The effect of porphyra-334 on cell proliferation was dependent on the cell type, and the increase of cell viability by porphyra-334 was the highest in keratinocyte cells among the three tested cell types. An in vivo clinical test with 22 participants demonstrated the possible role of porphyra-334 in the improvement of periorbital wrinkles. RNA-sequencing using human follicle dermal papilla (HFDP) cells upon porphyra-334 treatment identified the upregulation of metallothionein- (MT-) associated genes, confirming the antioxidant role of porphyra-334 with MT. Moreover, the expression of genes involved in nuclear chromosome segregation and the encoding of components of kinetochores was upregulated by porphyra-334 treatment. Furthermore, we found that several genes associated with the hair follicle cycle, the hair follicle structure, the epidermal structure, and stem cells were upregulated by porphyra-334 treatment, suggesting the potential role of porphyra-334 in hair follicle growth and maintenance. In summary, we provided several new pieces of evidence of porphyra-334 as a potential antiaging cosmetic agent and elucidated the expression network in HFDP cells upon porphyra-334.
Collapse
|
13
|
Amador-Castro F, Rodriguez-Martinez V, Carrillo-Nieves D. Robust natural ultraviolet filters from marine ecosystems for the formulation of environmental friendlier bio-sunscreens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141576. [PMID: 33370909 DOI: 10.1016/j.scitotenv.2020.141576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet radiation (UVR) has detrimental effects on human health. It induces oxidative stress, deregulates signaling mechanisms, and produces DNA mutations, factors that ultimately can lead to the development of skin cancer. Therefore, reducing exposure to UVR is of major importance. Among available measures to diminish exposure is the use of sunscreens. However, recent studies indicate that several of the currently used filters have adverse effects on marine ecosystems and human health. This situation leads to the search for new photoprotective compounds that, apart from offering protection, are environmentally friendly. The answer may lie in the same marine ecosystems since molecules such as mycosporine-like amino acids (MAAs) and scytonemin can serve as the defense system of some marine organisms against UVR. This review will discuss the harmful effects of UVR and the mechanisms that microalgae have developed to cope with it. Then it will focus on the biological distribution, characteristics, extraction, and purification methods of MAAs and scytonemin molecules to finally assess its potential as new filters for sunscreen formulation.
Collapse
Affiliation(s)
- Fernando Amador-Castro
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico
| | - Veronica Rodriguez-Martinez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico.
| |
Collapse
|
14
|
Resilience and self-regulation processes of microalgae under UV radiation stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Geraldes V, de Medeiros LS, Jacinavicius FR, Long PF, Pinto E. Development and validation of a rapid LC-MS/MS method for the quantification of mycosporines and mycosporine-like amino acids (MAAs) from cyanobacteria. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Chen Z, Jiang H, Gao K, Qiu B. Acclimation to low ultraviolet‐B radiation increases photosystem I abundance and cyclic electron transfer with enhanced photosynthesis and growth in the cyanobacterium
Nostoc sphaeroides. Environ Microbiol 2019; 22:183-197. [DOI: 10.1111/1462-2920.14836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/18/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Zhen Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative BiologyCentral China Normal University Wuhan Hubei 430079 People's Republic of China
| | - Hai‐Bo Jiang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative BiologyCentral China Normal University Wuhan Hubei 430079 People's Republic of China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental ScienceXiamen University Xiamen Fujian 361005 People's Republic of China
| | - Bao‐Sheng Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative BiologyCentral China Normal University Wuhan Hubei 430079 People's Republic of China
| |
Collapse
|
17
|
Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals — A new bioactive approach. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101541] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Kageyama H, Waditee-Sirisattha R. Antioxidative, Anti-Inflammatory, and Anti-Aging Properties of Mycosporine-Like Amino Acids: Molecular and Cellular Mechanisms in the Protection of Skin-Aging. Mar Drugs 2019; 17:E222. [PMID: 31013795 PMCID: PMC6521297 DOI: 10.3390/md17040222] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
Prolonged exposure to ultraviolet (UV) radiation causes photoaging of the skin and induces a number of disorders, including sunburn, fine and coarse wrinkles, and skin cancer risk. Therefore, the application of sunscreen has gained much attention to reduce the harmful effects of UV irradiation on our skin. Recently, there has been a growing demand for the replacement of chemical sunscreens with natural UV-absorbing compounds. Mycosporine-like amino acids (MAAs), promising alternative natural UV-absorbing compounds, are a group of widely distributed, low molecular-weight, water-soluble molecules that can absorb UV radiation and disperse the absorbed energy as heat, without generating reactive oxygen species (ROS). More than 30 MAAs have been characterized, from a variety of organisms. In addition to their UV-absorbing properties, there is substantial evidence that MAAs have the potential to protect against skin aging, including antioxidative activity, anti-inflammatory activity, inhibition of protein-glycation, and inhibition of collagenase activity. This review will provide an overview of MAAs, as potential anti-aging ingredients, beginning with their structure, before moving on to discuss the most recent experimental observations, including the molecular and cellular mechanisms through which MAAs might protect the skin. In particular, we focus on the potential anti-aging activity of mycosporine-2-glycine (M2G).
Collapse
Affiliation(s)
- Hakuto Kageyama
- Department of Chemistry, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan.
| | - Rungaroon Waditee-Sirisattha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
19
|
Inoue-Sakamoto K, Nazifi E, Tsuji C, Asano T, Nishiuchi T, Matsugo S, Ishihara K, Kanesaki Y, Yoshikawa H, Sakamoto T. Characterization of mycosporine-like amino acids in the cyanobacterium Nostoc verrucosum. J GEN APPL MICROBIOL 2018; 64:203-211. [PMID: 29709901 DOI: 10.2323/jgam.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aquatic cyanobacterium Nostoc verrucosum forms macroscopic colonies in streams, and its appearance is superficially similar to that of the terrestrial cyanobacterium Nostoc commune. N. verrucosum is sensitive to desiccation, unlike N. commune, although these Nostoc cyanobacterial species share physiological features, including massive extracellular polysaccharide production and trehalose accumulation capability. In this study, water-soluble sunscreen pigments of mycosporine-like amino acids (MAAs) were characterized in N. verrucosum, and the mysABCD genes responsible for MAA biosynthesis in N. verrucosum and N. commune were compared. N. verrucosum produced porphyra-334 and shinorine, with porphyra-334 accounting for >90% of the total MAAs. Interestingly, porphyra-334 is an atypical cyanobacteial MAA, whereas shinorine is known as a common and dominant MAA in cyanobacteria. Porphyra-334 from N. verrucosum showed little or no radical scavenging activity in vitro, although the glycosylated derivatives of porphyra-334 from N. commune are potent radical scavengers. The presence of the mysABCD gene cluster in N. commune strain KU002 (genotype A) supported its porphyra-334 producing capability via the Nostoc-type mechanism, although the genotype A of N. commune mainly produces the arabinose-bound porphyra-334. The mysABC gene cluster was conserved in N. verrucosum, but the mysD gene was not included in the cluster. These results suggest that the mysABCD gene products are involved in the biosynthesis of porphyra-334 commonly in these Nostoc species, and that the genotype A of N. commune additionally acquired the glycosylation of porphyra-334.
Collapse
Affiliation(s)
- Kaori Inoue-Sakamoto
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology
| | - Ehsan Nazifi
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University
| | - Chieri Tsuji
- Division of Biological Sciences, Graduate School of Natural Science and Technology, Kanazawa University
| | - Tomoya Asano
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University
| | - Seiichi Matsugo
- School of Natural System, College of Science and Engineering, Kanazawa University
| | - Kenji Ishihara
- Marine Biochemistry Division, National Research Institute of Fisheries Science
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture
| | | | - Toshio Sakamoto
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University.,Division of Biological Sciences, Graduate School of Natural Science and Technology, Kanazawa University.,School of Natural System, College of Science and Engineering, Kanazawa University
| |
Collapse
|
20
|
Mycosporine-Like Amino Acids as Multifunctional Secondary Metabolites in Cyanobacteria: From Biochemical to Application Aspects. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64179-3.00005-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Brunt EG, Burgess JG. The promise of marine molecules as cosmetic active ingredients. Int J Cosmet Sci 2017; 40:1-15. [PMID: 29057483 DOI: 10.1111/ics.12435] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/01/2017] [Indexed: 12/21/2022]
Abstract
The marine environment represents an underexploited resource for the discovery of novel products, despite its high level of biological and chemical diversity. With increasing awareness of the harmful effects of chronic ultraviolet exposure, and a universal desire to improve cosmetic appearance, the market for new cosmetic ingredients is growing, and current trends have generated a greater demand for products sourced from the environment. A growing number of novel molecules from marine flora and fauna exhibit potent and effective dermatological activities. Secondary metabolites isolated from macroalgae, including carotenoids and polyphenols, have demonstrated antioxidant, anti-ageing and anti-inflammatory activities. In addition, marine extremophilic bacteria have recently been shown to produce bioactive exopolymeric molecules, some of which have been commercialized. Available data on their activities show significant antioxidant, moisturizing and anti-ageing activities, but a more focussed investigation into their mechanisms and applications is required. This review surveys the reported biological activities of an emerging and growing portfolio of marine molecules that show promise in the treatment of cosmetic skin problems including ultraviolet damage, ageing and cutaneous dryness.
Collapse
Affiliation(s)
- E G Brunt
- School of Marine Science and Technology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, U.K
| | - J G Burgess
- School of Marine Science and Technology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, U.K
| |
Collapse
|
22
|
Chrapusta E, Kaminski A, Duchnik K, Bober B, Adamski M, Bialczyk J. Mycosporine-Like Amino Acids: Potential Health and Beauty Ingredients. Mar Drugs 2017; 15:md15100326. [PMID: 29065484 PMCID: PMC5666432 DOI: 10.3390/md15100326] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022] Open
Abstract
Human skin is constantly exposed to damaging ultraviolet radiation (UVR), which induces a number of acute and chronic disorders. To reduce the risk of UV-induced skin injury, people apply an additional external protection in the form of cosmetic products containing sunscreens. Nowadays, because of the use of some chemical filters raises a lot of controversies, research focuses on exploring novel, fully safe and highly efficient natural UV-absorbing compounds that could be used as active ingredients in sun care products. A promising alternative is the application of multifunctional mycosporine-like amino acids (MAAs), which can effectively compete with commercially available filters. Here, we outline a complete characterization of these compounds and discuss their enormous biotechnological potential with special emphasis on their use as sunscreens, activators of cells proliferation, anti-cancer agents, anti-photoaging molecules, stimulators of skin renewal, and functional ingredients of UV-protective biomaterials.
Collapse
Affiliation(s)
- Ewelina Chrapusta
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
- Institute of Botany, Faculty of Biology and Earth Sciences, Jagiellonian University, Kopernika 27, 31-501 Krakow, Poland.
| | - Ariel Kaminski
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Kornelia Duchnik
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Beata Bober
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Michal Adamski
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Jan Bialczyk
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|