1
|
Bai L, Liang S, Li H, Wang C, Wu X, Xu M, Shi J, Zhu F, Chen W, Gu C. Aging of Polystyrene Micro/Nanoplastics Enhances Cephalosporin Phototransformation via Structure-Sensitive Interfacial Hydrogen Bonding. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1388-1398. [PMID: 39791484 DOI: 10.1021/acs.est.4c11206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Beyond their roles in adsorbing and transporting pollutants, microplastics (MPs) and nanoplastics (NPs), particularly polystyrene variants (PS-M/NPs), have emerged as potential accelerators for the transformation of coexisting contaminants. This study uncovered a novel environmental phenomenon induced by aged PS-M/NPs and delved into the underlying mechanisms. Our findings revealed that the aged PS-M/NP particles significantly amplified the photodegradation of common cephalosporin antibiotics, and the extent of enhancement was tightly correlated to the molecular structures of cephalosporin antibiotics. Notably, the results confirmed that the hydroxyl radical (OH•) acted as the primary agent to drive the accelerated degradation. Furthermore, in-depth analysis utilizing in situ Fourier transform infrared spectroscopy, batch adsorption experiments, and theoretical calculations underscored that the structure-dependent enhancement stemmed from the specific hydrogen bonding sites, rather than mere adsorption capacity. Specifically, the -OOH group (hydroperoxyl group) on the PS surface exhibited a greater potential to generate OH• compared to the -OH group. Therefore, cephalosporins that formed hydrogen bonds with -OOH moieties on the aged PS surfaces, as opposed to -OH, would experience a more pronounced degradation enhancement. Thus, the unique interaction pattern between contaminants and PS-M/NPs transforms aged PS into a selective reactor, facilitating the targeted degradation of pharmaceuticals in aquatic ecosystems.
Collapse
Affiliation(s)
- Lihua Bai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Sijia Liang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Hongjian Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
- Key Laboratory of Environmental Remediation and Ecological Health (Ministry of Industry and Information Technology), Jiangsu Province Ecology and Environment Protection Engineering Research Center of Groundwater Pollution Prevention and Control, Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210019, Jiangsu, China
| | - Xinda Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Min Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Jiaqi Shi
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, Jiangsu, China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wei Chen
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
2
|
Zhan Y, Hu H, Yu Y, Chen C, Zhang J, Jarnda KV, Ding P. Therapeutic strategies for drug-resistant Pseudomonas aeruginosa: Metal and metal oxide nanoparticles. J Biomed Mater Res A 2024; 112:1343-1363. [PMID: 38291785 DOI: 10.1002/jbm.a.37677] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Pseudomonas aeruginosa (PA) is a widely prevalent opportunistic pathogen. Multiple resistant strains of PA have emerged from excessive or inappropriate use of antibiotics, making their eradication increasingly difficult. Therefore, the search for highly efficient and secure novel antimicrobial agents is crucial. According to reports, there is an increasing exploration of nanometals for antibacterial purposes. The antibacterial mechanisms involving the nanomaterials themselves, the release of ions, and the induced oxidative stress causing leakage and damage to biomolecules are widely accepted. Additionally, the study of the cytotoxicity of metal nanoparticles is crucial for their antibacterial applications. This article summarizes the types of metal nanomaterials and metal oxide nanomaterials that can be used against PA, their respective unique antibacterial mechanisms, cytotoxicity, and efforts made to improve antibacterial performance and reduce toxicity, including combination therapy with other materials and antibiotics, as well as green synthesis approaches.
Collapse
Affiliation(s)
- Yujuan Zhan
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Huiting Hu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Ying Yu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Cuimei Chen
- School of Public Health, Xiangnan University, Chenzhou, Hunan, China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Kermue Vasco Jarnda
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| |
Collapse
|
3
|
Kamel MM, Badr A, Alkhalifah DHM, Mahmoud R, GadelHak Y, Hozzein WN. Unveiling the Impact of Eco-Friendly Synthesized Nanoparticles on Vegetative Growth and Gene Expression in Pelargonium graveolens and Sinapis alba L. Molecules 2024; 29:3394. [PMID: 39064972 PMCID: PMC11280068 DOI: 10.3390/molecules29143394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Nanoscale geranium waste (GW) and magnesium nanoparticle/GW nanocomposites (Mg NP/GW) were prepared using green synthesis. The Mg NP/GW samples were subjected to characterization using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR-FT). The surface morphology of the materials was examined using a scanning electron microscope (SEM), and their thermal stability was assessed through thermal gravimetric analysis (TG). The BET-specific surface area, pore volume, and pore size distribution of the prepared materials were determined using the N2 adsorption-desorption method. Additionally, the particle size and zeta potentials of the materials were also measured. The influence of the prepared nanomaterials on seed germination was intensively investigated. The results revealed an increase in seed germination percent at low concentrations of Mg NP/GWs. Upon treatment with Mg NP/GW nanoparticles, a reduction in the mitotic index (MI) was observed, indicating a decrease in cell division. Additionally, an increase in chromosomal abnormalities was detected. The efficacy of GW and Mg NP/GW nanoparticles as new elicitors was evaluated by studying their impact on the expression levels of the farnesyl diphosphate synthase (FPPS1) and geranylgeranyl pyrophosphate (GPPS1) genes. These genes play a crucial role in the terpenoid biosynthesis pathway in Sinapis alba (S. alba) and Pelargonium graveolens (P. graveolens) plants. The expression levels were analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The qRT-PCR analysis of FPPS and GPPS gene expression was performed. The outputs of FPPS1 gene expression demonstrated high levels of mRNA in both S. alba and P. graveolens with fold changes of 25.24 and 21.68, respectively. In contrast, the minimum expression levels were observed for the GPPS1 gene, with fold changes of 11.28 and 6.48 in S. alba and P. graveolens, respectively. Thus, this study offers the employment of medicinal plants as an alternative to fertilizer usage resulting in promoting environmental preservation, optimal waste utilization, reducing water consumption, and cost reduction.
Collapse
Affiliation(s)
- Maha M. Kamel
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Bani Suef 62521, Egypt; (M.M.K.); (W.N.H.)
| | - Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Cairo 11790, Egypt
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt
| | - Yasser GadelHak
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef 62511, Egypt
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Bani Suef 62521, Egypt; (M.M.K.); (W.N.H.)
| |
Collapse
|
4
|
Azeez L, Lateef A, Olabode O. An overview of biogenic metallic nanoparticles for water treatment and purification: the state of the art. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:851-873. [PMID: 37651325 PMCID: wst_2023_255 DOI: 10.2166/wst.2023.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The environment is fundamental to human existence, and protecting it from dangerous contaminants should be a top priority for all stakeholders. Reducing garbage output has helped, but as the world's population grows, more waste will be generated. Tons of waste inadvertently and advertently received by environmental matrixes adversely affect the sustainable environment. The pollution caused by these activities affects the environment and human health. Conventional remediation processes ranging from chemical, physical, and biological procedures use macroaggregated materials and microorganisms to degrade or remove pollutants. Undesirable limitations of expensiveness, disposal challenges, maintenance, and formation of secondary contaminants abound. Additionally, multiple stages of treatments to remove different contaminants are time-consuming. The need to avoid these limitations and shift towards sustainable approaches brought up nanotechnology options. Currently, nanomaterials are being used for environmental rejuvenation that involves the total degradation of pollutants without secondary pollution. As nanoparticles are primed with vast and modifiable reactive sites for adsorption, photocatalysis, and disinfection, they are more useful in remediating pollutants. Review articles on metallic nanoparticles usually focus on chemically synthesized ones, with a particular focus on their adsorption capacity and toxicities. Therefore, this review evaluates the current status of biogenic metallic nanoparticles for water treatment and purification.
Collapse
Affiliation(s)
- Luqmon Azeez
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria E-mail:
| | - Agbaje Lateef
- Nanotechnology Research Group (NANO+), Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Olalekan Olabode
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria; Department of Chemistry, Mississippi State University, MS 39762-9573, USA
| |
Collapse
|
5
|
Góral D, Marczuk A, Góral-Kowalczyk M, Koval I, Andrejko D. Application of Iron Nanoparticle-Based Materials in the Food Industry. MATERIALS (BASEL, SWITZERLAND) 2023; 16:780. [PMID: 36676517 PMCID: PMC9862918 DOI: 10.3390/ma16020780] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Due to their different properties compared to other materials, nanoparticles of iron and iron oxides are increasingly used in the food industry. Food technologists have especially paid attention to their ease of separation by magnetic fields and biocompatibility. Unfortunately, the consumption of increasing amounts of nanoparticles has raised concerns about their biotoxicity. Hence, knowledge about the applicability of iron nanoparticle-based materials in the food industry is needed not only among scientists, but also among all individuals who are involved in food production. The first part of this article describes typical methods of obtaining iron nanoparticles using chemical synthesis and so-called green chemistry. The second part of this article describes the use of iron nanoparticles and iron nanoparticle-based materials for active packaging, including the ability to eliminate oxygen and antimicrobial activity. Then, the possibilities of using the magnetic properties of iron nano-oxides for enzyme immobilization, food analysis, protein purification and mycotoxin and histamine removal from food are described. Other described applications of materials based on iron nanoparticles are the production of artificial enzymes, process control, food fortification and preserving food in a supercooled state. The third part of the article analyzes the biocompatibility of iron nanoparticles, their impact on the human body and the safety of their use.
Collapse
Affiliation(s)
- Dariusz Góral
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Andrzej Marczuk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Małgorzata Góral-Kowalczyk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Iryna Koval
- Department of Physical, Analytical and General Chemistry, Lviv Polytechnic National University, 79013 Lviv, Ukraine
| | - Dariusz Andrejko
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| |
Collapse
|
6
|
Zhang C, Shi Y, Wang Z, Liu C, Hou Y, Bi J, Wu L. Electrostatic interaction and surface S vacancies synergistically enhanced the photocatalytic degradation of ceftriaxone sodium. CHEMOSPHERE 2023; 311:137053. [PMID: 36332732 DOI: 10.1016/j.chemosphere.2022.137053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
ZnIn2S4 ultrathin 2D nanosheets with a positive surface charge are synthesized by a hydrothermal method and different contents of surface S vacancies are induced via heat treatment of as-prepared ZnIn2S4 (ZIS). As the S vacancies contents increased, the photocatalytic degradation efficiency of ceftriaxone (CTRX) sodium is promoted. Especially, ZIS-300 shows the best degradation efficiency (88.8%) for an initial CTRX concentration of 10 mg L-1 in 2 h. It is found that S vacancies cause the electron density of surface metal atoms (Zn, In) to be decreased, which makes the effective adsorption and activation of ceftriaxone anions through electrostatic adsorption interactions. Meanwhile, S vacancies also serve as active centers to promote the absorption of O2 and gather electrons to form •O2- species. The photogenerated holes quickly transfer to the surface of the catalyst to directly degrade the adsorbed CTRX. Thus, the photocatalytic CTRX degradation efficiency is significantly improved. Finally, a possible mechanism for over defective ZIS is proposed. This work provides a feasible strategy for the efficient degradation of antibiotics from the perspective of electrostatic adsorption and molecule activation.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Yingzhang Shi
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Zhiwen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Cheng Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Jinhong Bi
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China; Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, China.
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China.
| |
Collapse
|
7
|
Chen M, Zhuang K, Sui J, Sun C, Song Y, Jin N. Hydrodynamic cavitation-enhanced photocatalytic activity of P-doped TiO 2 for degradation of ciprofloxacin: Synergetic effect and mechanism. ULTRASONICS SONOCHEMISTRY 2023; 92:106265. [PMID: 36527763 PMCID: PMC9760655 DOI: 10.1016/j.ultsonch.2022.106265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/26/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Hybrid methods with an enhanced oxidation capacity have been proposed for the removal of organic contaminants based on combining hydrodynamic cavitation (HC) with advanced oxidation processes (AOPs). In this study, we utilize the synergetic effect between photocatalytic processes and HC to strengthen ciprofloxacin (CIP) degradation by P-doped TiO2 catalysts. In comparison to a degradation ratio of 20.37 % in HC and 55.7 % in P-TiO2-based photocatalytic processes alone, the CIP degradation ratio reached as high as 90.63 % in HC-assisted photocatalytic processes with the optimal experimental parameters. The mechanic microjets treatment originated from HC make P-TiO2 nano photocatalysts with significantly increased surface area, smaller particle sizes, cleaner surface and improved dispersion, which were found using SEM, TEM, and BET analysis. Possible degradation mechanisms and reaction pathways of CIP during hybrid HC + photocatalytic processes were explored by coupling free radical capture experiments and liquid chromatography-mass spectrometry . This hybrid HC + photocatalytic technique has a potential application in the treatment of antibiotic sewage at the industrial level.
Collapse
Affiliation(s)
- Mengfan Chen
- College of Environment, Liaoning University, Shenyang 110036, PR China
| | - Kai Zhuang
- College of Environment, Liaoning University, Shenyang 110036, PR China
| | - Jiayi Sui
- College of Environment, Liaoning University, Shenyang 110036, PR China
| | - Congting Sun
- College of Environment, Liaoning University, Shenyang 110036, PR China.
| | - Youtao Song
- College of Environment, Liaoning University, Shenyang 110036, PR China.
| | - Nanxun Jin
- College of Environment, Liaoning University, Shenyang 110036, PR China
| |
Collapse
|
8
|
Meghana Navada K, Nagaraja GK, Neetha D'Souza J, Kouser S, Ranjitha R, Ganesha A, Manasa DJ. Synthesis of Phyto-functionalized nano hematite for lung cancer suppressive activity and Paracetamol sensing by electrochemical studies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Franco D, Calabrese G, Guglielmino SPP, Conoci S. Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Application. Microorganisms 2022; 10:microorganisms10091778. [PMID: 36144380 PMCID: PMC9503339 DOI: 10.3390/microorganisms10091778] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
The growing increase in antibiotic-resistant bacteria has led to the search for new antibacterial agents capable of overcoming the resistance problem. In recent years, nanoparticles (NPs) have been increasingly used to target bacteria as an alternative to antibiotics. The most promising nanomaterials for biomedical applications are metal and metal oxide NPs, due to their intrinsic antibacterial activity. Although NPs show interesting antibacterial properties, the mechanisms underlying their action are still poorly understood, limiting their use in clinical applications. In this review, an overview of the mechanisms underlying the antibacterial activity of metal and metal oxide NPs will be provided, relating their efficacy to: (i) bacterial strain; (ii) higher microbial organizations (biofilm); (iii) and physico-chemical properties of NPs. In addition, bacterial resistance strategies will be also discussed to better evaluate the feasibility of the different treatments adopted in the clinical safety fields. Finally, a wide analysis on recent biomedical applications of metal and metal oxide NPs with antibacterial activity will be provided.
Collapse
Affiliation(s)
- Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
- Correspondence:
| | - Salvatore Pietro Paolo Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
- Department of Chemistry ‘‘Giacomo Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- LabSense Beyond Nano, URT Department of Physic, National Research Council (CNR), Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| |
Collapse
|
10
|
Abedini A, Rostami M, Banafshe HR, Rahimi-Nasrabadi M, SobhaniNasab A, Ganjali MR. Utility of Biogenic Iron and Its Bimetallic Nanocomposites for Biomedical Applications: A Review. Front Chem 2022; 10:893793. [PMID: 35844637 PMCID: PMC9283709 DOI: 10.3389/fchem.2022.893793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Nanotechnology mainly deals with the production and application of compounds with dimensions in nanoscale. Given their dimensions, these materials have considerable surface/volume ratios, and hence, specific characteristics. Nowadays, environmentally friendly procedures are being proposed for fabrication of Fe nanoparticles because a large amount of poisonous chemicals and unfavorable conditions are needed to prepare them. This work includes an inclusive overview on the economical and green procedures for the preparation of such nanoparticles (flower, fruits, tea, carbohydrates, and leaves). Pure and bimetallic iron nanoparticles, for instance, offer a high bandwidth and excitation binding energy and are applicable in different areas ranging from antibacterial, anticancer, and bioimaging agents to drug delivery systems. Preparation of nano-sized particles, such as those of Fe, requires the application of high quantities of toxic materials and harsh conditions, and naturally, there is a tendency to develop more facile and even green pathways (Sultana, Journal of Materials Science & Technology, 2013, 29, 795–800; Bushra et al., Journal of hazardous materials, 2014, 264, 481–489; Khan et al., Ind. Eng. Chem. Res., 2015, 54, 76–82). This article tends to provide an overview on the reports describing green and biological methods for the synthesis of Fe nanoparticles. The present review mainly highlights selenium nanoparticles in the biomedical domain. Specifically, this review will present detailed information on drug delivery, bioimaging, antibacterial, and anticancer activity. It will also focus on procedures for their green synthesis methods and properties that make them potential candidates for various biomedical applications. Finally, we provide a detailed future outlook.
Collapse
Affiliation(s)
- Ali Abedini
- Young Researchers and Elite club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Hamid Reza Banafshe
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Freiberg, Germany
| | - Ali SobhaniNasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Ali SobhaniNasab,
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
11
|
Nisar A, Ajabia DK, Agrawal SB, Varma S, Chaudhari BP, Tupe RS. Mechanistic insight into differential interactions of iron oxide nanoparticles with native, glycated albumin and their effect on erythrocytes parameters. Int J Biol Macromol 2022; 212:232-247. [PMID: 35597380 DOI: 10.1016/j.ijbiomac.2022.05.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/05/2022]
Abstract
Nanoparticles and protein bioconjugates have been studied for multiple biomedical applications. We sought to investigate the interaction and structural modifications of bovine serum albumin (BSA) with iron oxide nanoparticles (IONPs). The IONPs were green synthesized using E. crassipes aqueous leaf extract following characterization using transmission electron microscopy, energy dispersive X-ray analysis and X-Ray Diffraction. Two different concentrations of native/glycated albumin (0.5 and 1.5 mg/ml) with IONPs were allowed to interact for 1 h at 37 °C. Glycation markers, protein modification markers, cellular antioxidant, and hemolysis studies showed structural modifications and conformational changes in albumin due to the presence of IONPs. UV-Visible absorbance resulted in hyperchromic and bathochromic effects of IONPs-BSA conjugates. Fluorescence measurements of tyrosine, tryptophan, advanced glycated end products, and ANS binding assay were promising and quenching effects proved IONPs-BSA conjugate formation. In FTIR of BSA-IONPs, transmittance was increased in amide A and B bands while decreased in amide I and II bands. In summary, native PAGE, HPLC, and FTIR analysis displayed a differential behaviour of IONPs with native and glycated BSA. These results provided an understanding of the interaction and structural modifications of glycated and native BSA which may provide fundamental repercussions in future studies.
Collapse
Affiliation(s)
- Akib Nisar
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Katraj, Pune 411041, India
| | - Devangi K Ajabia
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Katraj, Pune 411041, India
| | - Sanskruthi B Agrawal
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sanjana Varma
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhushan P Chaudhari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India.
| |
Collapse
|
12
|
Chitosan-capped silver nanoparticles: fabrication, oxidative dissolution, sensing properties, and antimicrobial activity. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02673-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Kobylinska N, Klymchuk D, Shakhovsky A, Khainakova O, Ratushnyak Y, Duplij V, Matvieieva N. Biosynthesis of magnetite and cobalt ferrite nanoparticles using extracts of "hairy" roots: preparation, characterization, estimation for environmental remediation and biological application. RSC Adv 2021; 11:26974-26987. [PMID: 35480010 PMCID: PMC9037682 DOI: 10.1039/d1ra04080d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
The "green" synthesis of magnetite and cobalt ferrite nanoparticles (Fe3O4-NPs and CoFe2O4-NPs) using extracts of Artemisia annua L "hairy" roots was proposed. In particular, the effect and role of important variables in the 'green' synthesis process, including the metal-salt ratio, various counter ions in the reaction mixture, concentration of total flavonoids and reducing power of the extract, were evaluated. The morphology and size distribution of the magnetic nanoparticles (MNPs) depended on the metal oxidation state and ratio of Fe(iii) : Fe(ii) in the initial reaction mixture. MNPs obtained from divalent metal salts in the reaction mixture were non-uniform in size with high aggregation level. Samples obtained by the FeCl3/FeSO4 mixture with a ratio of Fe(iii) : Fe(ii) = 1 : 2 showed an irregular shape of the nanoparticles and high aggregation level. MNPs obtained by the FeCl3/FeSO4/CoCl2 mixture showed a regular shape with slight aggregation, and were in the nanosize range (10-17 nm). Thus, this mixture as a metal-precursor was used for MNP biosynthesis in the subsequent experiments. The XRD data showed that the magnetic specimens contained mainly spinel type phase. The data of EDX and XPS analysis indicated that the product of the "green" synthesis was magnetite with some impurities, owing to the obtained ratio of Fe : O being similar to the theoretical atomic ratio of magnetite (3 : 4). The Fe3O4-NP samples were superparamagnetic with high magnetization (until 68 emu g-1). The Co-containing MNPs demonstrated low ferromagnetic properties. The MNPs with pure magnetite phase, very good magnetization and uniform size distribution (ca. 12-14 nm) were prepared by the "hairy" root extract characterized by the highest amount of total flavonoids. According to the FTIR data, the synthesized Fe3O4-NPs had a core-shell like structure, in which the core was composed of Fe3O4, and the shell was formed by bioactive molecules. The presence of several organic compounds (such as flavonoids or carboxylic acids) plays a key role in the suppression of Fe3O4-NP aggregation without addition of a stabilizing agents. Synthesized Fe3O4-NP samples effectively removed Cu(ii) and Cd(ii) with the maximum adsorption capacity, reaching 29.9 mg g-1 and 33.5 mg g-1, respectively. It is probable that the presence of organic components in extracts plays an important role in the adsorption properties of biosynthesised MNPs. The obtained MNPs were successfully applied to the removal of heavy metal ions in the environmental water samples. Fe3O4-NPs also negatively affected plant growth in the case of using "hairy" roots as a test model, and the greatest inhibitory activity (99.56 wt%) was possessed by MNPs with high magnetic properties.
Collapse
Affiliation(s)
- Natalia Kobylinska
- A. V. Dumansky Institute of Colloid and Water Chemistry, NAS of Ukraine Ak. Vernadsky blv. 42 Kyiv 03142 Ukraine
| | - Dmytro Klymchuk
- M. G. Kholodny Institute of Botany, NAS of Ukraine 2 Tereshchenkivska Str Kyiv 02000 Ukraine
| | - Anatolij Shakhovsky
- Institute of Cell Biology and Genetic Engineering, NAS of Ukraine 148 Zabolotnogo Str. Kyiv 03143 Ukraine
| | | | - Yakiv Ratushnyak
- Institute of Cell Biology and Genetic Engineering, NAS of Ukraine 148 Zabolotnogo Str. Kyiv 03143 Ukraine
| | - Volodymyr Duplij
- Institute of Cell Biology and Genetic Engineering, NAS of Ukraine 148 Zabolotnogo Str. Kyiv 03143 Ukraine
| | - Nadiia Matvieieva
- Institute of Cell Biology and Genetic Engineering, NAS of Ukraine 148 Zabolotnogo Str. Kyiv 03143 Ukraine
| |
Collapse
|
14
|
Gomathi E, Jayapriya M, Arulmozhi M. Environmental benign synthesis of tin oxide (SnO2) nanoparticles using Actinidia deliciosa (Kiwi) peel extract with enhanced catalytic properties. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Aboelmaati MG, Abdel Gaber SA, Soliman WE, Elkhatib WF, Abdelhameed AM, Sahyon HA, El-Kemary M. Biogenic and biocompatible silver nanoparticles for an apoptotic anti-ovarian activity and as polydopamine-functionalized antibiotic carrier for an augmented antibiofilm activity. Colloids Surf B Biointerfaces 2021; 206:111935. [PMID: 34252691 DOI: 10.1016/j.colsurfb.2021.111935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022]
Abstract
Silver nanoparticles (AgNPs) could be employed in the combat against COVID-19, yet are associated with toxicities. In this study, biogenic and biocompatible AgNPs using the agro-waste, non-edible Hibiscus sabdariffa stem were synthesized. Under optimized reaction conditions, synthesized green AgNPs were crystalline, face cubic centered, spherical with a diameter of around 17 nm and a surface charge of -20 mV. Their murine lethal dose 50 (LD50) was 4 folds higher than the chemical AgNPs. Furthermore, they were more murine hepato- and nephro-tolerated than chemical counterparts due to activation of Nrf-2 and HO-1 pathway. They exerted an apoptotic anti-ovarian cancer activity with IC50 value 6 times more than the normal cell line. Being functionalized with polydopamine and conjugated to either moxifloxacin or gatifloxacin, the conjugates exerted an augmented antibiofilm activity against Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii biofilms that was significantly higher than antibiotic alone or functionalized AgNPs suggesting a synergistic activity. In conclusion, this study introduced a facile one-pot synthesis of biogenic and biocompatible AgNPs with preferential anti-cancer activity and could be utilized as antibiotic delivery system for a successful eradication of Gram-negative biofilms.
Collapse
Affiliation(s)
- Mohamed G Aboelmaati
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Sara A Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Wafaa E Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 31982, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University of Science and Technology, Gamasa, Mansoura, 11152, Egypt
| | - Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, 11566, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
| | - Amr M Abdelhameed
- Institute of Global Public Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, Cairo, 11835, Egypt
| | - Heba A Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Maged El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
16
|
|
17
|
Green Synthesis of Silver and Gold Nanoparticles via Sargassum serratifolium Extract for Catalytic Reduction of Organic Dyes. Catalysts 2021. [DOI: 10.3390/catal11030347] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The green synthesis of inorganic nanoparticles (NPs) using bio-materials has attained enormous attention in recent years due to its simple, eco-friendly, low-cost and non-toxic nature. In this work, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized by the marine algae extract, Sargassum serratifolium (SS). The characteristic studies of bio-synthesized SS-AgNPs and SS-AuNPs were carried out by using ultraviolet–visible (UV–Vis) absorption spectroscopy, dynamic light scattering (DLS), high-resolution transmission electron microscope (HR-TEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Phytochemicals in the algae extract, such as meroterpenoids, acted as a capping agent for the NPs’ growth. The synthesized Ag and Au NPs were found to have important catalytic activity for the degradation of organic dyes, including methylene blue, rhodamine B and methyl orange. The reduction of dyes by SS-AgNPs and -AuNPs followed the pseudo-first order kinetics.
Collapse
|
18
|
Ibrahim UH, Devnarain N, Govender T. Biomimetic strategies for enhancing synthesis and delivery of antibacterial nanosystems. Int J Pharm 2021; 596:120276. [DOI: 10.1016/j.ijpharm.2021.120276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022]
|
19
|
Salem MA, Zayed A, Beshay ME, Abdel Mesih MM, Ben Khayal RF, George FA, Ezzat SM. Hibiscus sabdariffa L.: phytoconstituents, nutritive, and pharmacological applications. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00542-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Din MI, Zahoor A, Hussain Z, Khalid R. A review on green synthesis of iron (Fe) nanomaterials, its alloys and oxides. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1862229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Ayesha Zahoor
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Zaib Hussain
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Rida Khalid
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
21
|
Xiao C, Li H, Zhao Y, Zhang X, Wang X. Green synthesis of iron nanoparticle by tea extract (polyphenols) and its selective removal of cationic dyes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111262. [PMID: 32858272 DOI: 10.1016/j.jenvman.2020.111262] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/01/2020] [Accepted: 08/17/2020] [Indexed: 05/15/2023]
Abstract
The traditional synthesis of iron nanoparticles has the problems of high cost and secondary pollution. There is an urgent need for an economic, effective and environment-friendly method to solve this key issue. Here, the iron nanoparticles were prepared by a novel biosynthesis based on extracted tea polyphenols. Five kinds of tea were tested by microwave method, and the optimum extraction conditions were determined by orthogonal experiment L9 (34). The obtained materials were characterized by XRD, SEM, FTIR, XPS, Zeta potential and UV-Vis. The iron nanoparticle has a regular spherical or ellipsoidal shape with a particle size of about 75-100 nm. It was noted that it shows good selective removal for cationic dyes (malachite green (MG), rhodamine B (RB) and methylene blue (MB)). Kinetic experiment of iron nanoparticle on cationic dyes was in accordance with the pseudo first order kinetic model. Further, the possible removal mechanism was proposed, which mainly involves the process of adsorption and reduction. Mostly, its removal capacity of Malachite green reaches as high as 190.3 mg/g.
Collapse
Affiliation(s)
- Changyuan Xiao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Haiyan Li
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
| | - Yan Zhao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Xin Zhang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xiaoyu Wang
- School of Environment Sciences, Northeast Normal University, Changchun, 130117, China
| |
Collapse
|
22
|
Khabeeri OM, Al-Thabaiti SA, Khan Z. Citrus sinensis peel waste assisted synthesis of AgNPs: effect of surfactant on the nucleation and morphology. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03801-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
23
|
Khan Z, Al-Thabaiti SA. Interaction of CTAB capped gold@iron bimetallic nanomaterials with bovine serum albumin: A multi-technique approach. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Efficient photocatalytic degradation of toxic Alizarin yellow R dye from industrial wastewater using biosynthesized Fe nanoparticle and study of factors affecting the degradation rate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 202:111682. [DOI: 10.1016/j.jphotobiol.2019.111682] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 11/23/2022]
|
25
|
Sun Q, Li K, Wu S, Han B, Sui L, Dong L. Remarkable improvement of TiO2 for dye photocatalytic degradation by a facile post-treatment. NEW J CHEM 2020. [DOI: 10.1039/c9nj05120a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A neutral, facile and universal hydrothermal post-treatment of TiO2 was developed to significantly improve its photocatalytic activity.
Collapse
Affiliation(s)
- Qiong Sun
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266000
- China
| | - Kaijing Li
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266000
- China
| | - Songhao Wu
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266000
- China
| | - Bing Han
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266000
- China
| | - Lina Sui
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266000
- China
| | - Lifeng Dong
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266000
- China
- Department of Physics
| |
Collapse
|
26
|
Kosa SA, Zaheer Z. Betanin assisted synthesis of betanin@silver nanoparticles and their enhanced adsorption and biological activities. Food Chem 2019; 298:125014. [DOI: 10.1016/j.foodchem.2019.125014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 01/13/2023]
|
27
|
Phyto-Nanocatalysts: Green Synthesis, Characterization, and Applications. Molecules 2019; 24:molecules24193418. [PMID: 31547052 PMCID: PMC6804184 DOI: 10.3390/molecules24193418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 01/14/2023] Open
Abstract
Catalysis represents the cornerstone of chemistry, since catalytic processes are ubiquitous in almost all chemical processes developed for obtaining consumer goods. Nanocatalysis represents nowadays an innovative approach to obtain better properties for the catalysts: stable activity, good selectivity, easy to recover, and the possibility to be reused. Over the last few years, for the obtaining of new catalysts, classical methods—based on potential hazardous reagents—have been replaced with new methods emerged by replacing those reagents with plant extracts obtained in different conditions. Due to being diversified in morphology and chemical composition, these materials have different properties and applications, representing a promising area of research. In this context, the present review focuses on the metallic nanocatalysts’ importance, different methods of synthesis with emphasis to the natural compounds used as support, characterization techniques, parameters involved in tailoring the composition, size and shape of nanoparticles and applications in catalysis. This review presents some examples of green nanocatalysts, grouped considering their nature (mono- and bi-metallic nanoparticles, metallic oxides, sulfides, chlorides, and other complex catalysts).
Collapse
|
28
|
Khan Z, Al-Thabaiti SA. Biogenic silver nanoparticles: Green synthesis, encapsulation, thermal stability and antimicrobial activities. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Alavi M, Karimi N, Valadbeigi T. Antibacterial, Antibiofilm, Antiquorum Sensing, Antimotility, and Antioxidant Activities of Green Fabricated Ag, Cu, TiO 2, ZnO, and Fe 3O 4 NPs via Protoparmeliopsis muralis Lichen Aqueous Extract against Multi-Drug-Resistant Bacteria. ACS Biomater Sci Eng 2019; 5:4228-4243. [PMID: 33417780 DOI: 10.1021/acsbiomaterials.9b00274] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Consideration of lichen organisms as the ecofriendly source of metal nanoparticles (MNPs) and metal oxide NPs (MONPs) synthesis is seldom. In this study, Ag and Cu MNPs as well as TiO2, ZnO, and Fe3O4 MONPs were green synthesized by Protoparmeliopsis muralis lichen aqueous extract. First, physicochemical characterization by UV-vis spectroscopy, XRD, FT-IR, FESEM, and TEM techniques demonstrated the presence possibility of secondary metabolites around formed MNPs/MONPs with different diameters and shapes (spherical, triangular, polyhedral, and cubic). The antibacterial, antibiofilm, antiquorum sensing, and antioxidant abilities of these MNPs/MONPs against multi drug resistant (MDR) bacterium (Staphylococcus aureus ATCC 43300) and reference bacteria (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853) were then evaluated by in vitro tests. Results of disc diffusion and MIC/MBC assays of Ag NPs as an effective antibacterial agent illustrated a higher sensitivity of the P. aeruginosa pathogen than E. coli and S. aureus. In next steps, a significant reduction was observed in the biofilm formation of each bacterium and pyocyanin synthesis by P. aeruginosa under Ag NPs. This investigation presents novel clean production of five MNPs/MONPs with prominent advantages of being ecofriendly and cost-effective and having antipathogen properties.
Collapse
|
30
|
Alavi M, Rai M. Recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug-resistant (MDR) bacteria. Expert Rev Anti Infect Ther 2019; 17:419-428. [PMID: 31046483 DOI: 10.1080/14787210.2019.1614914] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: In recent years, multidrug resistance (MDR) in bacteria has drastically increased and has posed a great threat to the human health. This problem has generated an urgent need to search alternatives for the treatment of MDR bacteria. It has been proved that metal nanoparticles (MNPs) and metal nanocomposites (MNCs) possess remarkable antimicrobial potential, and hence can be used in alternative therapy. Areas covered: This review is aimed to discuss recent reports on antibacterial activities of MNPs and MNCs against MDR bacteria. Expert opinion: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, Streptococcus pneumoniae, and Staphylococcus epidermidis are important pathogenic bacteria which have shown MDR against a wide range of conventional antibiotics. In this context, effects of MNPs and MNCs on these pathogens have demonstrated considerable efficacy. Several mechanisms concerning activity of MNPs and MNCs against pathogenic bacteria which are mainly dependent on type of their precursors and treated bacterium have been investigated. In addition, many studies have been made on antibacterial activities of these nanomaterials with similar and different results.
Collapse
Affiliation(s)
- Mehran Alavi
- a Department of Nanobiotechnology , Razi University , Kermanshah , Iran
| | - Mahendra Rai
- b Basic Science Research Professor (UGC), Department of Biotechnology , SGB Amravati University , Amravati , India
| |
Collapse
|
31
|
Iron-nickel bimetallic nanoparticles: Surfactant assisted synthesis and their catalytic activities. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Nandhini N, Rajeshkumar S, Mythili S. The possible mechanism of eco-friendly synthesized nanoparticles on hazardous dyes degradation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101138] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Anbouhi TS, Esfidvajani EM, Nemati F, Haghighat S, Sari S, Attar F, Pakaghideh A, Sohrabi MJ, Mousavi SE, Falahati M. Albumin binding, anticancer and antibacterial properties of synthesized zero valent iron nanoparticles. Int J Nanomedicine 2018; 14:243-256. [PMID: 30643404 PMCID: PMC6314318 DOI: 10.2147/ijn.s188497] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Nanoparticles (NPs) have been emerging as potential players in modern medicine with clinical applications ranging from therapeutic purposes to antimicrobial agents. However, before applications in medical agents, some in vitro studies should be done to explore their biological responses. AIM In this study, protein binding, anticancer and antibacterial activates of zero valent iron (ZVFe) were explored. MATERIALS AND METHODS ZVFe nanoparticles were synthesized and fully characterized by X-ray diffraction, field-emission scanning electron microscope, and dynamic light scattering analyses. Afterward, the interaction of ZVFe NPs with human serum albumin (HSA) was examined using a range of techniques including intrinsic fluorescence, circular dichroism, and UV-visible spectroscopic methods. Molecular docking study was run to determine the kind of interaction between ZVFe NPs and HSA. The anticancer influence of ZVFe NPs on SH-SY5Y was examined by MTT and flow cytometry analysis, whereas human white blood cells were used as the control cell. Also, the antibacterial effect of ZVFe NPs was examined on Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922), and Staphylococcus aureus (ATCC 25923). RESULTS X-ray diffraction, transmission electron microscope, and dynamic light scattering analyses verified the synthesis of ZVFe NPs in a nanosized diameter. Fluorescence spectroscopy analysis showed that ZVFe NPs spontaneously formed a complex with HSA through hydrogen bonds and van der Waals interactions. Also, circular dichroism spectroscopy study revealed that ZVFe NPs did not change the secondary structure of HSA. Moreover, UV-visible data presented that melting temperature (Tm) of HSA in the absence and presence of ZVFe NPs was almost identical. Molecular dynamic study also showed that ZVFe NP came into contact with polar residues on the surface of HSA molecule. Cellular assays showed that ZVFe NPs can induce cell mortality in a dose-dependent manner against SH-SY5Y cells, whereas these NPs did not trigger significant cell mortality against normal white bloods in the concentration range studied (1-100 µg/mL). Antibacterial assays showed a noteworthy inhibition on both bacterial strains. CONCLUSION In conclusion, it was revealed that ZVFe NPs did not induce a substantial influence on the structure of protein and cytotoxicity against normal cell, whereas they derived significant anticancer and antibacterial effects.
Collapse
Affiliation(s)
- Tabassom Sedaghat Anbouhi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elnaz Mokhtari Esfidvajani
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fahimeh Nemati
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soyar Sari
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Arezoo Pakaghideh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Science Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Mohammad Javad Sohrabi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,
| | - Seyyedeh Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran,
| |
Collapse
|
34
|
Arshad M, Qayyum A, Shar GA, Soomro GA, Nazir A, Munir B, Iqbal M. Zn-doped SiO2 nanoparticles preparation and characterization under the effect of various solvents: Antibacterial, antifungal and photocatlytic performance evaluation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:176-183. [DOI: 10.1016/j.jphotobiol.2018.04.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
|