1
|
Dongare PR, Nille OS, Bhavsar PS, Devre PV, Kolekar GB, Prajapat AL, Gore AH. Analytical applications of graphene oxide-based hydrogels. COMPREHENSIVE ANALYTICAL CHEMISTRY 2024:391-434. [DOI: 10.1016/bs.coac.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Karimi F, Elhouda Tiri RN, Aygun A, Gulbagca F, Özdemir S, Gonca S, Gur T, Sen F. One-step synthesized biogenic nanoparticles using Linum usitatissimum: Application of sun-light photocatalytic, biological activity and electrochemical H 2O 2 sensor. ENVIRONMENTAL RESEARCH 2023; 218:114757. [PMID: 36511326 DOI: 10.1016/j.envres.2022.114757] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/29/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to synthesize Ag NPs as a green catalyst for photocatalytic activity and to examine their biological activities. It was determined that they have high activity in catalytic and biological activities. The green synthesis which is an environmentally friendly and inexpensive method was used to synthesize Ag-NPs using Linum usitatissimum as a reducing agent. Transmission electron microscopy (TEM), infrared to Fourier transform infrared (FTIR) spectroscopy, UV-Visible (UV-Vis) spectroscopy, and X-ray diffraction (XRD) were used to characterize the Ag NPs. In UV-Vis examination, Ag-NPs had intense peaks in the 435 nm region. The antibacterial activity of Ag NPs was investigated, and Ag NPs showed a high lethal effect against S. aureus, E. coli, B. subtilis, and MRSA. In addition, Ag NPs were tested for anticancer activity against the HT-29 colon cancer cell line, MDA-MB-231 breast cancer cell line, healthy cell line L929-Murine Fibroblast cell Lines, and MIA PaCa-2 human pancreatic cancer cell line at various concentrations (1-160 μg/mL) and showed a high anticancerogenic properties against MDA-MB-231 cells. Ag NPs showed the ability of DNA cleavage activity. Also, the antioxidant activity of Ag NPs against DPPH was found to be 80% approximately. Furthermore, the photocatalytic activity of Ag NPs against methylene blue (MB) was determined to be 67.13% at the 180th min. In addition, it was observed that biogenic Ag NPs have high electrocatalytic activity for hydrogen peroxide (H2O2) detection. In the sensor based on Ag NPs, linearity from 1 μM to 5 μM was observed with a detection limit (LOD) of 1.323 μM for H2O2. According to these results, we conclude that the biogenic Ag NPs synthesized using Linum usitatissimum extract can be developed as an efficient biological agent as an antibacterial and anticancer also can be used as a photocatalyst for industrial wastewater treatment to prevent wastewater pollution.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkıye
| | - Aysenur Aygun
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkıye
| | - Fulya Gulbagca
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkıye
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, 33343, Yenisehir, Mersin, Turkıye
| | - Serpil Gonca
- Food Processing Programme, Technical Science Vocational School, Mersin University, 33343, Yenisehir, Mersin, Turkıye
| | - Tugba Gur
- Vocational School of Health Services, Van Yuzuncu Yil University, Van, Turkıye
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkıye.
| |
Collapse
|
3
|
Ullah K, Khan S, Khan M, Rahman ZU, Al-Ghamdi YO, Mahmood A, Hussain S, Khan SB, Khan SA. A bioresource catalyst system of alginate-starch-activated carbon microsphere templated Cu nanoparticles: Potentials in nitroarenes hydrogenation and dyes discoloration. Int J Biol Macromol 2022; 222:887-901. [PMID: 36179868 DOI: 10.1016/j.ijbiomac.2022.09.226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 11/18/2022]
Abstract
The evolution and development of solid-matrix are considered a backbone for supporting and stabilizing of metal nanoparticles (NPs) and are the soul of the catalytic system. In the current study, the alginate-starch microsphere (Alg-St) was cross-linked using CaCl2 as a cross-linker. In addition, the Alg-St microsphere was blended with different percentages of activated carbon (AC). The microspheres adsorbed Cu+2 was reduced to zero-valent copper NPs through NaBH4 and used as a dip-catalyst. The supported Cu NPs cum NaBH4 system was used as dip-catalyst for the hydrogenation of 4-nitrophenol (4NP), 2-nitroanilline (2NA), and degradation of methylene blue (MB) and Congo red (CR) dyes. Among the different kinetics models, the experimental data were well-fitted in the zero-order kinetic model. Moreover pH, and recyclability were studied for 4NP, where the best activity was achieved at pH 7.0 for 4NP. No leaching was observed after 3rd cycle in the catalyst.
Collapse
Affiliation(s)
- Kaleem Ullah
- Department of Chemistry, University of Swabi, Anbar, Swabi 23561, Pakistan
| | - Salman Khan
- Department of Chemistry, University of Swabi, Anbar, Swabi 23561, Pakistan
| | - Musa Khan
- Department of Chemistry, University of Swabi, Anbar, Swabi 23561, Pakistan
| | - Zia Ur Rahman
- Department of Chemistry, University of Swabi, Anbar, Swabi 23561, Pakistan
| | - Youssef O Al-Ghamdi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Azhar Mahmood
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Shah Hussain
- Department of Chemistry, Government Postgraduate College, Nowshera 24100, Khyber-Pakhtunkhwa, Pakistan
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan.
| |
Collapse
|
4
|
Biological Applications of Ball-Milled Synthesized Biochar-Zinc Oxide Nanocomposite Using Zea mays L. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165333. [PMID: 36014570 PMCID: PMC9412314 DOI: 10.3390/molecules27165333] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Nanotechnology is one of the vital and quickly developing areas and has several uses in various commercial zones. Among the various types of metal oxide-based nanoparticles, zinc oxide nanoparticles (ZnO NPs) are frequently used because of their effective properties. The ZnO nanocomposites are risk-free and biodegradable biopolymers, and they are widely being applied in the biomedical and therapeutics fields. In the current study, the biochar-zinc oxide (MB-ZnO) nanocomposites were prepared using a solvent-free ball-milling technique. The prepared MB-ZnO nanocomposites were characterized through scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray powder diffraction (XRD), and thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and ultraviolet–visible (UV) spectroscopy. The MB-ZnO particles were measured as 43 nm via the X-ray line broadening technique by applying the Scherrer equation at the highest peak of 36.36°. The FTIR spectroscope results confirmed MB-ZnO’s formation. The band gap energy gap values of the MB-ZnO nanocomposites were calculated as 2.77 eV by using UV–Vis spectra. The MB-ZnO nanocomposites were tested in various in vitro biological assays, including biocompatibility assays against the macrophages and RBCs and the enzymes’ inhibition potential assay against the protein kinase, alpha-amylase, cytotoxicity assays of the leishmanial parasites, anti-inflammatory activity, antifungal activity, and antioxidant activities. The maximum TAC (30.09%), TRP (36.29%), and DPPH radicals’ scavenging potential (49.19%) were determined at the maximum dose of 200 µg/mL. Similarly, the maximum activity at the highest dose for the anti-inflammatory (76%), at 1000 μg/mL, alpha-amylase inhibition potential (45%), at 1000 μg/mL, antileishmanial activity (68%), at 100 μg/mL, and antifungal activity (73 ± 2.1%), at 19 mg/mL, was perceived, respectively. It did not cause any potential harm during the biocompatibility and cytotoxic assay and performed better during the anti-inflammatory and antioxidant assay. MB-ZnO caused moderate enzyme inhibition and was more effective against pathogenic fungus. The results of the current study indicated that MB-ZnO nanocomposites could be applied as effective catalysts in various processes. Moreover, this research provides valuable and the latest information to the readers and researchers working on biopolymers and nanocomposites.
Collapse
|
5
|
Enhanced catalytic reduction/degradation of organic pollutants and antimicrobial activity with metallic nanoparticles immobilized on copolymer modified with NaY zeolite films. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Ali HSHM, Anwar Y, Khan SA. Vigna radiata Impregnated Zero-Valent CuAg NPs: Applications in Nitrophenols Reduction, Dyes Discoloration and Antibacterial Activity. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02067-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Ahmad Z, Salman S, Khan SA, Amin A, Rahman ZU, Al-Ghamdi YO, Akhtar K, Bakhsh EM, Khan SB. Versatility of Hydrogels: From Synthetic Strategies, Classification, and Properties to Biomedical Applications. Gels 2022; 8:167. [PMID: 35323280 PMCID: PMC8950628 DOI: 10.3390/gels8030167] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Hydrogels are three-dimensional, cross-linked, and supramolecular networks that can absorb significant volumes of water. Hydrogels are one of the most promising biomaterials in the biological and biomedical fields, thanks to their hydrophilic properties, biocompatibility, and wide therapeutic potential. Owing to their nontoxic nature and safe use, they are widely accepted for various biomedical applications such as wound dressing, controlled drug delivery, bone regeneration, tissue engineering, biosensors, and artificial contact lenses. Herein, this review comprises different synthetic strategies for hydrogels and their chemical/physical characteristics, and various analytical, optical, and spectroscopic tools for their characterization are discussed. A range of synthetic approaches is also covered for the synthesis and design of hydrogels. It will also cover biomedical applications such as bone regeneration, tissue engineering, and drug delivery. This review addressed the fundamental, general, and applied features of hydrogels in order to facilitate undergraduates, graduates, biomedical students, and researchers in a variety of domains.
Collapse
Affiliation(s)
- Zubair Ahmad
- Department of Chemistry, University of Swabi, Swabi 23561, Pakistan; (Z.A.); (A.A.); (Z.U.R.)
| | - Saad Salman
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad 44000, Pakistan;
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Abdul Amin
- Department of Chemistry, University of Swabi, Swabi 23561, Pakistan; (Z.A.); (A.A.); (Z.U.R.)
| | - Zia Ur Rahman
- Department of Chemistry, University of Swabi, Swabi 23561, Pakistan; (Z.A.); (A.A.); (Z.U.R.)
| | - Youssef O. Al-Ghamdi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| | - Kalsoom Akhtar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.A.); (E.M.B.)
| | - Esraa M. Bakhsh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.A.); (E.M.B.)
| | - Sher Bahadar Khan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.A.); (E.M.B.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Revealing the Effect of MnO2, Activated Carbon and MnO2/Activated Carbon on Chitosan Polymer Host Fabricated Co NPs: Antibacterial Performance and Degradation of Organic Compounds. Polymers (Basel) 2022; 14:polym14030627. [PMID: 35160616 PMCID: PMC8840480 DOI: 10.3390/polym14030627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 11/25/2022] Open
Abstract
MnO2 and MnO2 blended with 1 and 2 weight percent of activated carbon (AC), MnO2/AC1 and MnO2/AC2 were synthesized through the sol–gel method. The pure chitosan (CS) films were cast in the form of films. Similarly, 5 weight% of each MnO2, AC, MnO2/AC1 and MnO2/AC2 was intermingled with the CS to produce different films, such as CS-AC, CS-MnO2, CS-MnO2/AC1 and CS-MnO2/AC2. Zero-valent Co NPs were then supported on these films through the chemical reduction method and expressed as CS@Co, CS-AC@Co, CS-MnO2@Co, CS-MnO2/AC1@Co and CS-MnO2/AC2@Co NPs. All the catalysts were characterized by field emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The synthesized catalysts were used as a dip catalyst against the hydrogenation of 4-nitrophenol (4NP), and for the degradation of methyl orange (MO) and Congo red (CR) dyes. The kapp and R2 values were deduced from pseudo-first-order kinetics for 4NP and MO and zero-order kinetics for CR dye. The kapp values of CS-AC@Co and CS-MnO2/AC1@Co NPs for 4NP hydrogenation were higher than those for any other member of the series, at 1.14 × 10−1 and 1.56 × 10−1 min−1 respectively. Similarly, the rate of CR degradation was highest with CS-AC@Co. The R2 values for 4NP, MO and CR dyes were above 0.9, which indicated that the application of pseudo-first- and zero-order models were appropriate for this study. Furthermore, the antibacterial activity of all the catalysts was evaluated against Pseudomonas aeruginosa and Escherichia coli. The CS-AC@Co NPs exhibited the highest zone of inhibition compared to other catalysts against P. aeruginosa, while all the catalysts were inactive against E. coli. This study reveals that the catalyst can be used for the degradation of other pollutants and for microbial inhibition.
Collapse
|
9
|
Anwar Y, Ullah I, Al Johny BO, Al-Shehri AMG, Bakhsh EM, Ul-Islam M, Asiri AM, Kamal T. Nigella sativa L. seeds extract assisted synthesis of silver nanoparticles and their antibacterial and catalytic performance. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02048-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Burlacu E, Tanase C. Anticancer Potential of Natural Bark Products-A Review. PLANTS 2021; 10:plants10091895. [PMID: 34579427 PMCID: PMC8467168 DOI: 10.3390/plants10091895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022]
Abstract
Cell biology, plant-based extracts, structural chemistry, and laboratory in vitro or in vivo experiments are the principal aspects or interfaces that can contribute to discovering new possibilities in cancer therapy and to developing improved chemotherapeutics. Forestry residues can be used for their wealthy resource in polyphenols and other phytoconstituents known for anticancer properties. This review is designed to bring together information on the in vitro or in vivo anticancer potential of woody vascular plants especially the bark extracts (BE) and biosynthesized metallic nanoparticles (BMN) using bark extracts. Type of extracts, main phytoconstituents found in extracts responsible for the anticancer activity, and targeted cancerous cell lines were followed. The literature data were collected via Clarivate Analytics, Science Direct, PubMed, and Google Academic (2011-2021). The search terms were: bark extracts, metallic nanoparticles, silver nanoparticles, gold nanoparticles, anticancer, cytotoxic activity, antiproliferative effect, and antimetastatic potential in vitro and in vivo. All of the search terms listed above were used in different combinations. The literature data highlight the efficaciousness of the BE and BMN as anticancer agents in in vitro experiments and showed the mechanism of action and their advantage of nontoxicity on normal cells. In vitro testing has shown promising results of the BE and BMN effect on different cancer cell lines. In vivo testing is lacking and more data is necessary for drug development on animal models.
Collapse
Affiliation(s)
- Ema Burlacu
- Residency Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania;
| | - Corneliu Tanase
- Department of Pharmaceutical Botany, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania
- Correspondence: ; Tel.:+40-744-215-543
| |
Collapse
|
11
|
Biomass impregnated zero-valent Ag and Cu supported-catalyst: Evaluation in the reduction of nitrophenol and discoloration of dyes in aqueous medium. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Preethi S, Abarna K, Nithyasri M, Kishore P, Deepika K, Ranjithkumar R, Bhuvaneshwari V, Bharathi D. Synthesis and characterization of chitosan/zinc oxide nanocomposite for antibacterial activity onto cotton fabrics and dye degradation applications. Int J Biol Macromol 2020; 164:2779-2787. [DOI: 10.1016/j.ijbiomac.2020.08.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 01/11/2023]
|
13
|
Khan SA, Bakhsh EM, Akhtar K, Khan SB. A template of cellulose acetate polymer-ZnAl/C layered double hydroxide composite fabricated with Ni NPs: Applications in the hydrogenation of nitrophenols and dyes degradation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118671. [PMID: 32650247 DOI: 10.1016/j.saa.2020.118671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/07/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
In this work, cellulose acetate polymer (CA) sheet and 2% ZnAl grafted on activated carbon grown in the form of layered double hydroxide (ZnAl/C-LDH) incorporated into CA polymer (CA-ZA2) 5 wt% (CA-ZA5) and 10 wt% of ZnAl/C-LDH (CA-ZA10) sheets were synthesized by simple casting method. All the stated sheets were fabricated with zero-valent Ni nanoparticles by adsorption of Ni+2 ions followed by subsequent reduction with NaBH4 and named as CA@Ni, CA-ZA2@Ni, CA-ZA5@Ni, and CA-ZA10@Ni NPs. The synthesized Ni NPs were investigated through FESEM, FTIR, XRD and EDS techniques. These supported and stabilized Ni NPs were largely used for the reduction of 4-nitrophenol (PNP), and 2-nitrophenol (ONP) in the presence of NaBH4 which act as a reducing agent. Similarly, the catalytic efficiency was also assessed against the removal of dyes. The linear relationship and Kapp were obtained from pseudo-first-order kinetics. The rate constant Kapp of CA@Ni NPs for the reduction of PNP is 1.5 × 10-1 and CA-ZA2@Ni (Kapp = 2.6 × 10-1), CA-ZA5@Ni (Kapp = 3.2 × 10-1), and CA-ZA10@Ni is 5.7 × 10-1 min-1. The highest rate constant for PNP reduction was observed with CA-ZA10@Ni NPs. The rate of CR removal with ZA10@Ni NPs is 2.05 × 10-1 while the adjacent R2 is 0.9013. Similarly, the rate constant and adjacent R2 values were calculated for the degradation of other dyes and nitrophenols.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Department of Chemistry, University of Swabi, Swabi Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
14
|
Ali S, Ali H, Siddique M, Gulab H, Haleem MA, Ali J. Exploring the biosynthesized gold nanoparticles for their antibacterial potential and photocatalytic degradation of the toxic water wastes under solar light illumination. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Kalia A, Singh S. Myco-decontamination of azo dyes: nano-augmentation technologies. 3 Biotech 2020; 10:384. [PMID: 32802726 PMCID: PMC7415790 DOI: 10.1007/s13205-020-02378-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/03/2020] [Indexed: 01/21/2023] Open
Abstract
Effluents of textile, paper, and related industries contain significant amounts of synthetic dyes which has serious environmental and health implications. Remediation of dyes through physical and chemical techniques has specific limitations. Augmented biological decontamination strategies 'microbial remediation' may involve ring-opening of dye molecules besides the reduction of constituent metal ions. Both bacterial and fungal genera are known to exhibit metabolic versatility which can be harnessed for effective bio-removal of the toxic dye contaminants. Ascomycetous/basidiomycetes fungi can effectively decontaminate azo dyes through laccase/peroxidase enzyme-mediated catalysis. The extent, efficacy, and range of fungal dye decontamination can be enhanced by the conjugated application of nanomaterials, including nanoparticles (NPs) and their composites. Fungal cell-enabled NP synthesis- 'myco-farmed NPs', is a low-cost strategy for scaled-up fabrication of a variety of metal, metal oxide, non-metal oxide NPs through oxidation/reduction of dissolved ions/molecules by extracellular biomolecules. Augmented and rapid decontamination of azo dyes at high concentrations can be achieved by the use of myco-farmed NPs, NPs adsorbed fungal biomass, and nano-immobilized fungi-derived bio-catalytical agents. This manuscript will explore the opportunities and benefits of mycoremediation and application of fungus-NP bionanoconjugate to remediate dye pollutants in wastewaters and land contaminated with the effluent of textile industries.
Collapse
Affiliation(s)
- Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Swarnjeet Singh
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
16
|
Jamila N, Khan N, Bibi A, Haider A, Noor Khan S, Atlas A, Nishan U, Minhaz A, Javed F, Bibi A. Piper longum catkin extract mediated synthesis of Ag, Cu, and Ni nanoparticles and their applications as biological and environmental remediation agents. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
17
|
Ali HSM, Khan SA. Stabilization of Various Zero-Valent Metal Nanoparticles on a Superabsorbent Polymer for the Removal of Dyes, Nitrophenol, and Pathogenic Bacteria. ACS OMEGA 2020; 5:7379-7391. [PMID: 32280879 PMCID: PMC7144176 DOI: 10.1021/acsomega.9b04410] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/11/2020] [Indexed: 05/04/2023]
Abstract
In this work, a superabsorbent polymer, sodium polyacrylate, also known as water ball (WB), loaded with Ni, Cu, and Ag zero-valent metal nanoparticles (MNPs) was applied for environmental remediation. WBs loaded with Ni, Cu, and Ag NPs were evaluated for their catalytic performance against the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and decolorization of methyl orange (MO), Congo red (CR), and methylene blue (MB) dyes. The apparent rate constants (K app) for the reduction of 4-NP to 4-AP in the presence of Ni, Cu, and Ag NPs were 2.1 × 10-1, 2.9 × 10-1, and 4.6 × 10-1 min-1, respectively, indicating the strongest activity of WB loaded with Ag NPs as compared to the other two catalysts. Similarly, WB loaded with Ag NPs showed the highest K app values compared to the other two catalysts. Among all of the bacteria studied, except Providencia stuartii and Streptococcus mutans, the zone of inhibition of Ag was higher as compared to that of the Ni and Cu NPs, however, slightly low from that of the reference standard tetracycline TE30. Furthermore, the synthesized catalysts were extensively characterized through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS) analyses.
Collapse
Affiliation(s)
- Hani S.
H. Mohammed Ali
- Department
of Biological Sciences, Faculty of Science, King Abdulaziz University, KSA, Jeddah 21589, Saudi Arabia
| | - Shahid Ali Khan
- Department
of Chemistry, University of Swabi, Swabi Anbar23561, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
18
|
Shah Z, Hassan S, Shaheen K, Khan SA, Gul T, Anwar Y, Al-Shaeri MA, Khan M, Khan R, Haleem MA, Suo H. Synthesis of AgNPs coated with secondary metabolites of Acacia nilotica: An efficient antimicrobial and detoxification agent for environmental toxic organic pollutants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110829. [PMID: 32279826 DOI: 10.1016/j.msec.2020.110829] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022]
Abstract
This study concentrates on biosynthesis of Silver Nanoparticles (AgNPs) from stem extract of Acacia nilotica (A. nilotica). The reaction was completed at a temperature ~40-45 °C and time duration of 5 h. AgNPs were thoroughly investigated via advanced characterization techniques such as UV-Vis spectrophotometry (UV-Vis), Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffractometry (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), X-ray Photoelectron Spectroscopy (XPS), Thermo Gravimetric Analysis (TGA), Diffuse Reflectance Spectroscopy (DRS), Brunner-Emmett-Teller (BET), Dynamic Light Scattering (DLS), and Zeta potential analysis. AgNPs with average size below 50 nm were revealed by all the measuring techniques. Maximum surface area ~5.69 m2/g was reported for the as synthesized NPs with total pore volume ~0.0191 mL/g and average pore size ~1.13 nm. Physical properties such as size and shape have changed the surface plasmon resonance peak in UV-visible spectrum. Antimicrobial activity was reported due to denaturation of microbial ribosome's sulphur and phosphorus bond by silver ions against bacterium Methicillin Resistant Staphylococcus aureus (MRSA) and fungus Candida Albican (CA). Furthermore, AgNPs degraded toxic pollutants such as 4-nitrophenol (4-NP), 2-nitrophenol (2-NP) and various hazardous dyes such as Congo Red (CR), Methylene Blue (MB) and Methyl Orange (MO) up to 95%. The present work provided low cost, green and an effective way for synthesis of AgNPs which were utilized as potential antimicrobial agents as well as effective catalyst for detoxification of various pollutants and dyes.
Collapse
Affiliation(s)
- Zarbad Shah
- Department of Chemistry, Bacha Khan University Charsadda, Charsadda-24420, Khyber Pakhtunkhwa, Pakistan.
| | - Sara Hassan
- Department of Chemistry, Bacha Khan University Charsadda, Charsadda-24420, Khyber Pakhtunkhwa, Pakistan
| | - Kausar Shaheen
- The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing, University of Technology, Beijing-100124, China.
| | - Shahid Ali Khan
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan
| | - Taj Gul
- Department of Chemistry, Bacha Khan University Charsadda, Charsadda-24420, Khyber Pakhtunkhwa, Pakistan
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed A Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar-25120, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Abdul Haleem
- Department of Chemistry, Bacha Khan University Charsadda, Charsadda-24420, Khyber Pakhtunkhwa, Pakistan
| | - Hongli Suo
- The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing, University of Technology, Beijing-100124, China.
| |
Collapse
|
19
|
Khan SA, Khan N, Irum U, Farooq A, Asiri AM, Bakhsh EM, Khan SB. Cellulose acetate-Ce/Zr@Cu 0 catalyst for the degradation of organic pollutant. Int J Biol Macromol 2020; 153:806-816. [PMID: 32145236 DOI: 10.1016/j.ijbiomac.2020.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 01/29/2023]
Abstract
In the present work, Cu nanoparticles were stabilized on ceria/zirconia (Ce/Zr@Cu0), cellulose acetate (CA@Cu0), and a thin film of cellulose acetate embedded ceria/zirconia (CA-Ce/Zr) designated as CA-Ce/Zr@Cu0. In the presence of a reducing agent, all the catalysts revealed excellent catalytic efficiency in aqueous media for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and degradation of cationic dyes methylene blue (MB) and rhodamine B (RB). Different order of equations were applied to determine the adjacent R2 value and rate constant. Adjacent R2 values for MB are 9.470, 9.422 and 9.050 and its kapp values per minutes are 1.7 × 10-1, 8.3 × 10-2, and 6. 7 × 10-1 with Ce/Zr@Cu0, CA@Cu0, and CA-Ce/Zr@Cu0 derived from the pseudo 1st order kinetics, while in the absence of catalyst the R2 and kapp for MB degradation in the presence of NaBH4 is 0.8643 and 3.4 × 10-3 respectively. Furthermore, regression models, ANOVA and correlation coefficients suggested that all the data are highly significant. The synthesized catalysts were applied for the simultaneous reduction/degradation of mixture of 4-NP-MB, 4-NP-RB and 4-NP-MB-RB mixture to check the practical applicability. Catalytic recyclability of CA-Ce/Zr@Cu0 catalyst dropped till 5th cycle which is due to the leaching of Cu0 NPs.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Noureen Khan
- Department of Chemistry, Sardar Bahadur Khan University, Quetta, Balochistan, Pakistan
| | - Uzma Irum
- Department of Chemistry, Sardar Bahadur Khan University, Quetta, Balochistan, Pakistan
| | - Aliya Farooq
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Pakistan
| | - Abdullah M Asiri
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
20
|
David L, Moldovan B. Green Synthesis of Biogenic Silver Nanoparticles for Efficient Catalytic Removal of Harmful Organic Dyes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E202. [PMID: 31991548 PMCID: PMC7074911 DOI: 10.3390/nano10020202] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/20/2022]
Abstract
The present article reports an environmentally benign method for synthesizing silver nanoparticles using the fruit extract of Viburnum opulus L. as a source of bioactive compounds, which can act as reducing agents of the silver ions and also as stabilizing agents of the obtained nanoparticles. The catalytic ability of the synthesized silver nanoparticles (AgNPs) to remove toxic organic dyes was also evaluated. The biosynthesis of silver nanoparticles was firstly confirmed by UV-Vis spectral analysis, which revealed the presence of the characteristic absorption peak at 415 nm corresponding to the surface plasmon vibration of colloidal silver. Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) studies were conducted to confirm the presence of bioactive phytocompounds, especially phenolics, as capping and stabilizing agents of the AgNPs. The size, morphology and crystalline nature of the synthesized AgNPs were investigated by transmission electron microscopy and X-ray diffraction techniques revealing that the obtained nanoparticles were spherical shaped, with an average diameter of 16 nm, monodispersed, face centered cubic nanoparticles. Further, the catalytic ability in the degradation of tartrazine, carmoisine and brilliant blue FCF dyes by NaBH4 was evaluated. The results demonstrated an efficient activity against all the investigated dyes being an outstanding catalyst for the degradation of brilliant blue FCF. This eco-friendly synthetic approach can generate new tools useful in environmental pollution control.
Collapse
Affiliation(s)
| | - Bianca Moldovan
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics (ANALYTICA), Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028 Cluj-Napoca, Romania;
| |
Collapse
|
21
|
A Review of Bark-Extract-Mediated Green Synthesis of Metallic Nanoparticles and Their Applications. Molecules 2019; 24:molecules24234354. [PMID: 31795265 PMCID: PMC6930476 DOI: 10.3390/molecules24234354] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Nanoparticles are intensely studied because of their importance in diverse fields of biotechnology, especially in medicine. This paper highlights that waste bark can be a cheap source of biocompounds, with high recovery and functionalization potential in nanoparticle synthesis. Due to their biocompatibility and activity as antioxidant, antimicrobial, and anticancer agents, the green synthesis of metallic nanoparticles is of great importance. This review aims to bring together the diversity of synthesized metallic nanoparticles mediated by bark extracts obtained from different woody vascular plants, the phytoconstituents responsible for the reduction of metal salts, and the activity of metallic nanoparticles as diverse agents in combating the microbial, oxidant, and cancer activity. The literature data highlight the fact that metallic nanoparticles obtained from natural compounds are proven reducing agents with multiple activities. Thus, the activity of natural components in environmental protection and human health is confirmed.
Collapse
|
22
|
Khan SA, Rasool S, Rahman KU, Hussain S, Khan I, Ismail M, Farooq A, Khan S, Raza MA, Asiri AM, Khan SB. A Simple but Efficient Catalytic Approach for the Degradation of Pollutants in Aqueous Media through Cicer arietinum Supported Ni Nanoparticles. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2018-1297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Plant based materials are considered to have broad applications in the remediation of toxic materials. In this report, we present an environmental friendly and economic Cicer arietinum, named as (CP) supported for the synthesis of Ni nanoparticles (NPs) designated as Ni@CP. The in situ Ni@CP NPs were obtained using aqueous medium in the presence of sodium borohydride (NaBH4) as a reducing agent. The prepared catalysts were applied for the hydrogenation/degradation of p-nitrophenol (PNP), o-nitrophenol (ONP), and 2,4-dinitrophenol (DNP), as well as congo red (CR), methyl orange (MO), methylene blue (MB) and rhodamine B (RB) dyes. The amount of total metal ions adsorbed onto the CP was evaluated by flame atomic absorption spectroscopy. The Ni@CP catalyst was characterized through PXRD, FTIR, FESEM and EDX analyses.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Department of Chemistry , University of Swabi , Anbar-23561, Khyber Pakhtunkhwa , Pakistan
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Department of Chemistry , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Shagufta Rasool
- Department of Chemistry , Sarhad University of Science and Technology , Peshawar , Pakistan
| | - Khaliq Ur Rahman
- Department of Chemistry , University of Swabi , Anbar-23561, Khyber Pakhtunkhwa , Pakistan
| | - Shah Hussain
- Department of Chemistry , Govt. Postgraduate College , Nowshera-24100, Khyber-Pakhtunkhwa , Pakistan
- Department of Chemistry , Abdul Wali Khan University , Mardan 23200 , Pakistan
| | - Inamullah Khan
- Department of Chemistry , University of Swabi , Anbar-23561, Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Ismail
- Department of Chemistry , Kohat University of Science and Technology , Kohat , Pakistan
| | - Aliya Farooq
- Department of Chemistry , Shaheed Benazir Bhutto Women University , Peshawar , Pakistan
| | - Sarzamin Khan
- Department of Chemistry , University of Swabi , Anbar-23561, Khyber Pakhtunkhwa , Pakistan
| | - Mian Ahmad Raza
- Department of Agriculture (Plant Breeding and Genetics) , University of Swabi , Swabi , Khyber Pakhtunkhwa
| | - Abdullah Muhammad Asiri
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Department of Chemistry , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Department of Chemistry , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| |
Collapse
|
23
|
Khan SA, Khan SB, Farooq A, Asiri AM. A facile synthesis of CuAg nanoparticles on highly porous ZnO/carbon black-cellulose acetate sheets for nitroarene and azo dyes reduction/degradation. Int J Biol Macromol 2019; 130:288-299. [DOI: 10.1016/j.ijbiomac.2019.02.114] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/19/2019] [Indexed: 11/16/2022]
|
24
|
Denrah S, Sarkar M. Design of experiment for optimization of nitrophenol reduction by green synthesized silver nanocatalyst. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|