1
|
Sivasubramanian PD, Unnikrishnan G, Kolanthai E, Muthuswamy S. Engineered nanoparticle systems: A review on emerging strategies for enhanced cancer therapeutics. NEXT MATERIALS 2025; 6:100405. [DOI: 10.1016/j.nxmate.2024.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Luo L, Zhou H, Wang S, Pang M, Zhang J, Hu Y, You J. The Application of Nanoparticle-Based Imaging and Phototherapy for Female Reproductive Organs Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207694. [PMID: 37154216 DOI: 10.1002/smll.202207694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/06/2023] [Indexed: 05/10/2023]
Abstract
Various female reproductive disorders affect millions of women worldwide and bring many troubles to women's daily life. Let alone, gynecological cancer (such as ovarian cancer and cervical cancer) is a severe threat to most women's lives. Endometriosis, pelvic inflammatory disease, and other chronic diseases-induced pain have significantly harmed women's physical and mental health. Despite recent advances in the female reproductive field, the existing challenges are still enormous such as personalization of disease, difficulty in diagnosing early cancers, antibiotic resistance in infectious diseases, etc. To confront such challenges, nanoparticle-based imaging tools and phototherapies that offer minimally invasive detection and treatment of reproductive tract-associated pathologies are indispensable and innovative. Of late, several clinical trials have also been conducted using nanoparticles for the early detection of female reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics. However, these nanoparticle trials are still nascent due to the body's delicate and complex female reproductive system. The present review comprehensively focuses on emerging nanoparticle-based imaging and phototherapies applications, which hold enormous promise for improved early diagnosis and effective treatments of various female reproductive organ diseases.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Mei Pang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
3
|
Marras E, Balacchi CJ, Orlandi V, Caruso E, Brivio MF, Bolognese F, Mastore M, Malacarne MC, Rossi M, Caruso F, Vivona V, Ferrario N, Gariboldi MB. Ruthenium(II)-Arene Curcuminoid Complexes as Photosensitizer Agents for Antineoplastic and Antimicrobial Photodynamic Therapy: In Vitro and In Vivo Insights. Molecules 2023; 28:7537. [PMID: 38005258 PMCID: PMC10673066 DOI: 10.3390/molecules28227537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Photodynamic therapy (PDT) is an anticancer/antibacterial strategy in which photosensitizers (PSs), light, and molecular oxygen generate reactive oxygen species and induce cell death. PDT presents greater selectivity towards tumor cells than conventional chemotherapy; however, PSs have limitations that have prompted the search for new molecules featuring more favorable chemical-physical characteristics. Curcumin and its derivatives have been used in PDT. However, low water solubility, rapid metabolism, interference with other drugs, and low stability limit curcumin use. Chemical modifications have been proposed to improve curcumin activity, and metal-based PSs, especially ruthenium(II) complexes, have attracted considerable attention. This study aimed to characterize six Ru(II)-arene curcuminoids for anticancer and/or antibacterial PDT. The hydrophilicity, photodegradation rates, and singlet oxygen generation of the compounds were evaluated. The photodynamic effects on human colorectal cancer cell lines were also assessed, along with the ability of the compounds to induce ROS production, apoptotic, necrotic, and/or autophagic cell death. Overall, our encouraging results indicate that the Ru(II)-arene curcuminoid derivatives are worthy of further investigation and could represent an interesting option for cancer PDT. Additionally, the lack of significant in vivo toxicity on the larvae of Galleria mellonella is an important finding. Finally, the photoantimicrobial activity of HCurc I against Gram-positive bacteria is indeed promising.
Collapse
Affiliation(s)
- Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Camilla J. Balacchi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Viviana Orlandi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Maurizio F. Brivio
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (M.F.B.); (M.M.)
| | - Fabrizio Bolognese
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Maristella Mastore
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (M.F.B.); (M.M.)
| | - Miryam C. Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Miriam Rossi
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA; (M.R.)
| | - Francesco Caruso
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA; (M.R.)
| | - Veronica Vivona
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Nicole Ferrario
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Marzia B. Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| |
Collapse
|
4
|
Rodrigues JA, Correia JH. Photodynamic Therapy for Colorectal Cancer: An Update and a Look to the Future. Int J Mol Sci 2023; 24:12204. [PMID: 37569580 PMCID: PMC10418644 DOI: 10.3390/ijms241512204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
This review provides an update on the current state of photodynamic therapy (PDT) for colorectal cancer (CRC) and explores potential future directions in this field. PDT has emerged as a promising minimally invasive treatment modality that utilizes photosensitizers and specific light wavelengths to induce cell death in targeted tumor tissues. In recent years, significant progress has been made in understanding the underlying mechanisms, optimizing treatment protocols, and improving the efficacy of PDT for CRC. This article highlights key advancements in PDT techniques, including novel photosensitizers, light sources, and delivery methods. Furthermore, it discusses ongoing research efforts and potential future directions, such as combination therapies and nanotechnology-based approaches. By elucidating the current landscape and providing insights into future directions, this review aims to guide researchers and clinicians in harnessing the full potential of PDT for the effective management of CRC.
Collapse
Affiliation(s)
- José A. Rodrigues
- CMEMS-UMinho, University of Minho, 4800-058 Guimarães, Portugal;
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal
| | - José H. Correia
- CMEMS-UMinho, University of Minho, 4800-058 Guimarães, Portugal;
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal
| |
Collapse
|
5
|
Current Update on Nanotechnology-Based Approaches in Ovarian Cancer Therapy. Reprod Sci 2023; 30:335-349. [PMID: 35585292 DOI: 10.1007/s43032-022-00968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Ovarian cancer is one of the leading causes of cancer-related deaths among women. The drawbacks of conventional therapeutic strategies encourage researchers to look for alternative strategies, including nanotechnology. Nanotechnology is one of the upcoming domains of science that is rechanneled towards targeted cancer therapy and diagnosis. Nanocarriers such as dendrimers, liposomes, polymer micelles, and polymer nanoparticles present distinct surface characteristics in morphology, surface chemistry, and mode of action that help differentiate normal and malignant cells, which paves the way for target-specific drug delivery. Similarly, nanoparticles have been strategically utilized as efficacious vehicles to deliver drugs that alter the epigenetic modifications in epigenetic therapy. Some studies suggest that the use of specialized target-modified nanoparticles in siRNA-based nanotherapy prevents internalization and improves the antitumor activity of siRNA by ensuring unrestrained entry of siRNA into the tumor vasculature and efficient intracellular delivery of siRNA. Moreover, research findings highlight the significance of utilizing nanoparticles as depots for photosensitive drugs in photodynamic therapy. The applicability of nanoparticles is further extended to medical imaging. They serve as contrast agents in combination with conventional imaging modalities such as MRI, CT, and fluorescence-based imaging to produce vivid and enhanced images of tumors. Therefore, this review aims to explore and delve deeper into the advent of various nanotechnology-based therapeutic and imaging techniques that provide non-invasive and effective means to tackle ovarian cancers.
Collapse
|
6
|
Heuer J, Kuckhoff T, Li R, Landfester K, Ferguson CTJ. Tunable Photocatalytic Selectivity by Altering the Active Center Microenvironment of an Organic Polymer Photocatalyst. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2891-2900. [PMID: 36594942 PMCID: PMC9869337 DOI: 10.1021/acsami.2c17607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The favored production of one product over another is a major challenge in synthetic chemistry, reducing the formation of byproducts and enhancing atom efficacy. The formation of catalytic species that have differing reactivities based on the substrate being converted, has been targeted to selectively control reactions. Here, we report the production of photocatalytic self-assembled amphiphilic polymers, with either hydrophilic or hydrophobic microenvironments at the reactive center. Benzothiadiazole-based photocatalysts were polymerized into either the hydrophilic or the hydrophobic compartment of a diblock copolymer by RAFT polymerization. The difference in the reactivity of each microenvironment was dictated by the physical properties of the substrate. Stark differences in reactivity were observed for polar substrates, where a hydrophilic microenvironment was favored. Conversely, both microenvironments performed similarly for very hydrophobic substrates, showing that reagent partitioning is not the only factor that drives photocatalytic conversion. Furthermore, the use of secondary swelling solvents allowed an additional reagent exchange between the continuous phase and the heterogeneous photocatalyst, resulting in a significant 5-fold increase in conversion for a radical carbon-carbon coupling.
Collapse
Affiliation(s)
- Julian Heuer
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz55128, Germany
| | - Thomas Kuckhoff
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz55128, Germany
| | - Rong Li
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz55128, Germany
| | | | - Calum T. J. Ferguson
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz55128, Germany
- School
of Chemistry, University of Birmingham, Edgbaston, BirminghamB15 2TT, United
Kingdom
| |
Collapse
|
7
|
Ballestri M, Marras E, Caruso E, Bolognese F, Malacarne MC, Martella E, Tubertini M, Gariboldi MB, Varchi G. Free and Poly-Methyl-Methacrylate-Bounded BODIPYs: Photodynamic and Antimigratory Effects in 2D and 3D Cancer Models. Cancers (Basel) 2022; 15:cancers15010092. [PMID: 36612089 PMCID: PMC9817850 DOI: 10.3390/cancers15010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Several limitations, including dark toxicity, reduced tumor tissue selectivity, low photostability and poor biocompatibility hamper the clinical use of Photodynamic therapy (PDT) in cancer treatment. To overcome these limitations, new PSs have been synthetized, and often combined with drug delivery systems, to improve selectivity and reduce toxicity. In this context, BODIPYs (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) have recently emerged as promising and easy-to-handle scaffolds for the preparation of effective PDT antitumor agents. In this study, the anticancer photodynamic effect of newly prepared negatively charged polymethyl methacrylate (nPMMA)-bounded BODIPYs (3@nPMMA and 6@nPMMA) was evaluated on a panel of 2D- and 3D-cultured cancer cell lines and compared with free BODIPYs. In particular, the effect on cell viability was evaluated, along with their ability to accumulate into the cells, induce apoptotic and/or necrotic cell death, and inhibit cellular migration. Our results indicated that 3@nPMMA and 6@nPMMA reduce cancer cell viability in 3D models of HC116 and MCF7 cells more effectively than the corresponding free compounds. Importantly, we demonstrated that MDA-MB231 and SKOV3 cell migration ability was significantly impaired by the PDT treatment mediated by 3@nPMMA and 6@nPMMA nanoparticles, likely indicating the capability of this approach to reduce metastatic tumor potential.
Collapse
Affiliation(s)
- Marco Ballestri
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy
| | - Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Fabrizio Bolognese
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Miryam Chiara Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Elisa Martella
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy
| | - Matilde Tubertini
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
- Correspondence: (M.B.G.); (G.V.); Tel.: +39-033-133-9418 (M.B.C.); +39-051-639-8283 (G.V.)
| | - Greta Varchi
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy
- Correspondence: (M.B.G.); (G.V.); Tel.: +39-033-133-9418 (M.B.C.); +39-051-639-8283 (G.V.)
| |
Collapse
|
8
|
Itoo AM, Paul M, Padaga SG, Ghosh B, Biswas S. Nanotherapeutic Intervention in Photodynamic Therapy for Cancer. ACS OMEGA 2022; 7:45882-45909. [PMID: 36570217 PMCID: PMC9773346 DOI: 10.1021/acsomega.2c05852] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The clinical need for photodynamic therapy (PDT) has been growing for several decades. Notably, PDT is often used in oncology to treat a variety of tumors since it is a low-risk therapy with excellent selectivity, does not conflict with other therapies, and may be repeated as necessary. The mechanism of action of PDT is the photoactivation of a particular photosensitizer (PS) in a tumor microenvironment in the presence of oxygen. During PDT, cancer cells produce singlet oxygen (1O2) and reactive oxygen species (ROS) upon activation of PSs by irradiation, which efficiently kills the tumor. However, PDT's effectiveness in curing a deep-seated malignancy is constrained by three key reasons: a tumor's inadequate PS accumulation in tumor tissues, a hypoxic core with low oxygen content in solid tumors, and limited depth of light penetration. PDTs are therefore restricted to the management of thin and superficial cancers. With the development of nanotechnology, PDT's ability to penetrate deep tumor tissues and exert desired therapeutic effects has become a reality. However, further advancement in this field of research is necessary to address the challenges with PDT and ameliorate the therapeutic outcome. This review presents an overview of PSs, the mechanism of loading of PSs, nanomedicine-based solutions for enhancing PDT, and their biological applications including chemodynamic therapy, chemo-photodynamic therapy, PDT-electroporation, photodynamic-photothermal (PDT-PTT) therapy, and PDT-immunotherapy. Furthermore, the review discusses the mechanism of ROS generation in PDT advantages and challenges of PSs in PDT.
Collapse
|
9
|
Malacarne MC, Gariboldi MB, Caruso E. BODIPYs in PDT: A Journey through the Most Interesting Molecules Produced in the Last 10 Years. Int J Mol Sci 2022; 23:ijms231710198. [PMID: 36077597 PMCID: PMC9456687 DOI: 10.3390/ijms231710198] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022] Open
Abstract
Over the past 30 years, photodynamic therapy (PDT) has shown great development. In the clinical setting the few approved molecules belong almost exclusively to the porphyrin family; but in the scientific field, in recent years many researchers have been interested in other families of photosensitizers, among which BODIPY has shown particular interest. BODIPY is the acronym for 4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene, and is a family of molecules well-known for their properties in the field of imaging. In order for these molecules to be used in PDT, a structural modification is necessary which involves the introduction of heavy atoms, such as bromine and iodine, in the beta positions of the pyrrole ring; this change favors the intersystem crossing, and increases the 1O2 yield. This mini review focused on a series of structural changes made to BODIPYs to further increase 1O2 production and bioavailability by improving cell targeting or photoactivity efficiency.
Collapse
|
10
|
Winifred Nompumelelo Simelane N, Abrahamse H. Nanoparticle-Mediated Delivery Systems in Photodynamic Therapy of Colorectal Cancer. Int J Mol Sci 2021; 22:12405. [PMID: 34830287 PMCID: PMC8622021 DOI: 10.3390/ijms222212405] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) involving a malignant tumour remains one of the greatest contributing causes of fatal mortality and has become the third globally ranked malignancy in terms of cancer-associated deaths. Conventional CRC treatment approaches such as surgery, radiation, and chemotherapy are the most utilized approaches to treat this disease. However, they are limited by low selectivity and systemic toxicity, so they cannot completely eradicate this disease. Photodynamic therapy (PDT) is an emerging therapeutic modality that exerts selective cytotoxicity to cancerous cells through the activation of photosensitizers (PSs) under light irradiation to produce cytotoxic reactive oxygen species (ROS), which then cause cancer cell death. Cumulative research findings have highlighted the significant role of traditional PDT in CRC treatment; however, the therapeutic efficacy of the classical PDT strategy is restricted due to skin photosensitivity, poor cancerous tissue specificity, and limited penetration of light. The application of nanoparticles in PDT can mitigate some of these shortcomings and enhance the targeting ability of PS in order to effectively use PDT against CRC as well as to reduce systemic side effects. Although 2D culture models are widely used in cancer research, they have some limitations. Therefore, 3D models in CRC PDT, particularly multicellular tumour spheroids (MCTS), have attracted researchers. This review summarizes several photosensitizers that are currently used in CRC PDT and gives an overview of recent advances in nanoparticle application for enhanced CRC PDT. In addition, the progress of 3D-model applications in CRC PDT is discussed.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa;
| |
Collapse
|
11
|
Phototoxicity of two positive-charged diaryl porphyrins in multicellular tumor spheroids. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 225:112353. [PMID: 34763227 DOI: 10.1016/j.jphotobiol.2021.112353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/26/2021] [Accepted: 10/30/2021] [Indexed: 11/20/2022]
Abstract
Photodynamic therapy (PDT) is a clinically approved cancer treatment in which reactive oxygen species are formed only when three harmless components, a photosensitizer (PS), light and molecular oxygen, are present at the same time, leading to cell death. Most of the PSs were tested on monolayer cells, but differences between 2D cells and solid tumors significantly limit the value of in vitro PDT studies, whereas the use of 3D spheroid might be more suitable for drug development and preclinical drug testing for PDT. In a previous work we have shown that two positive-charged diaryl porphyrins (2 and 4) were more potent than the corresponding neutral molecules (1 and 3) on a panel of 2D-cultured cancer cell lines. In the present study the photodynamic effects of these molecules have been evaluated on HCT116 and MCF7 spheroids. Induction of apoptotic and necrotic cell death, and generation of reactive oxygen species (ROS) have been also evaluated, along with accumulation and localization of PSs into spheroids. Our findings indicate that 2 and 4 retained their phototoxic effects also in 3D spheroids; furthermore, they were more potent than 1 and 3 and as potent as Foscan (m-THPC), the most successful PS approved for clinical PDT of cancer, used as reference. Although further aspects of their mechanisms of action need to be addressed, our results strongly suggest a potential in vivo photodynamic application of 2 and 4, considering that spheroids represent a more realistic indicator of in vivo therapeutic efficacy than 2D cell lines.
Collapse
|
12
|
Fallica A, Barbaraci C, Amata E, Pasquinucci L, Turnaturi R, Dichiara M, Intagliata S, Gariboldi MB, Marras E, Orlandi VT, Ferroni C, Martini C, Rescifina A, Gentile D, Varchi G, Marrazzo A. Nitric Oxide Photo-Donor Hybrids of Ciprofloxacin and Norfloxacin: A Shift in Activity from Antimicrobial to Anticancer Agents. J Med Chem 2021; 64:11597-11613. [PMID: 34319100 PMCID: PMC8389907 DOI: 10.1021/acs.jmedchem.1c00917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 12/11/2022]
Abstract
The potential anticancer effect of fluoroquinolone antibiotics has been recently unveiled and related to their ability to interfere with DNA topoisomerase II. We herein envisioned the design and synthesis of novel Ciprofloxacin and Norfloxacin nitric oxide (NO) photo-donor hybrids to explore the potential synergistic antitumor effect exerted by the fluoroquinolone scaffold and NO eventually produced upon light irradiation. Anticancer activity, evaluated on a panel of tumor cell lines, showed encouraging results with IC50 values in the low micromolar range. Some compounds displayed intense antiproliferative activity on triple-negative and doxorubicin-resistant breast cancer cell lines, paving the way for their potential use to treat aggressive, refractory and multidrug-resistant breast cancer. No significant additive effect was observed on PC3 and DU145 cells following NO release. Conversely, antimicrobial photodynamic experiments on both Gram-negative and Gram-positive microorganisms displayed a significant killing rate in Staphylococcus aureus, accounting for their potential effectiveness as selective antimicrobial photosensitizers.
Collapse
Affiliation(s)
- Antonino
Nicolò Fallica
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Carla Barbaraci
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Emanuele Amata
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Lorella Pasquinucci
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Rita Turnaturi
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Maria Dichiara
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Sebastiano Intagliata
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Marzia Bruna Gariboldi
- Department
of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Emanuela Marras
- Department
of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Viviana Teresa Orlandi
- Department
of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Claudia Ferroni
- Institute
for the Organic Synthesis and Photoreactivity − ISOF, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Cecilia Martini
- Institute
for the Organic Synthesis and Photoreactivity − ISOF, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Antonio Rescifina
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Davide Gentile
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Greta Varchi
- Institute
for the Organic Synthesis and Photoreactivity − ISOF, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Agostino Marrazzo
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| |
Collapse
|
13
|
Moret F, Menilli L, Battan M, Tedesco D, Columbaro M, Guerrini A, Avancini G, Ferroni C, Varchi G. Pheophorbide A and Paclitaxel Bioresponsive Nanoparticles as Double-Punch Platform for Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13081130. [PMID: 34452091 PMCID: PMC8399365 DOI: 10.3390/pharmaceutics13081130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer therapy is still a challenging issue. To address this, the combination of anticancer drugs with other therapeutic modalities, such as light-triggered therapies, has emerged as a promising approach, primarily when both active ingredients are provided within a single nanosystem. Herein, we describe the unprecedented preparation of tumor microenvironment (TME) responsive nanoparticles exclusively composed of a paclitaxel (PTX) prodrug and the photosensitizer pheophorbide A (PheoA), e.g., PheoA≅PTX2S. This system aimed to achieve both the TME-triggered and controlled release of PTX and the synergistic/additive effect by PheoA-mediated photodynamic therapy. PheoA≅PTX2S were produced in a simple one-pot process, exhibiting excellent reproducibility, stability, and the ability to load up to 100% PTX and 40% of PheoA. Exposure of PheoA≅PTX2S nanoparticles to TME-mimicked environment provided fast disassembly compared to normal conditions, leading to PTX and PheoA release and consequently elevated cytotoxicity. Our data indicate that PheoA incorporation into nanoparticles prevents its aggregation, thus providing a greater extent of ROS and singlet oxygen production. Importantly, in SK-OV-3 cells, PheoA≅PTX2S allowed a 30-fold PTX dose reduction and a 3-fold dose reduction of PheoA. Our data confirm that prodrug-based nanocarriers represent valuable and sustainable drug delivery systems, possibly reducing toxicity and expediting preclinical and clinical translation.
Collapse
Affiliation(s)
- Francesca Moret
- Department of Biology, University of Padova, 35100 Padova, Italy; (F.M.); (L.M.); (G.A.)
| | - Luca Menilli
- Department of Biology, University of Padova, 35100 Padova, Italy; (F.M.); (L.M.); (G.A.)
| | - Manuele Battan
- Institute for the Organic Synthesis and Photoreactivity—Italian National Research Council, 40121 Bologna, Italy; (M.B.); (D.T.); (A.G.)
| | - Daniele Tedesco
- Institute for the Organic Synthesis and Photoreactivity—Italian National Research Council, 40121 Bologna, Italy; (M.B.); (D.T.); (A.G.)
| | | | - Andrea Guerrini
- Institute for the Organic Synthesis and Photoreactivity—Italian National Research Council, 40121 Bologna, Italy; (M.B.); (D.T.); (A.G.)
| | - Greta Avancini
- Department of Biology, University of Padova, 35100 Padova, Italy; (F.M.); (L.M.); (G.A.)
| | - Claudia Ferroni
- Institute for the Organic Synthesis and Photoreactivity—Italian National Research Council, 40121 Bologna, Italy; (M.B.); (D.T.); (A.G.)
- Correspondence: (C.F.); (G.V.); Tel.: +39-0516398283 (G.V.)
| | - Greta Varchi
- Institute for the Organic Synthesis and Photoreactivity—Italian National Research Council, 40121 Bologna, Italy; (M.B.); (D.T.); (A.G.)
- Correspondence: (C.F.); (G.V.); Tel.: +39-0516398283 (G.V.)
| |
Collapse
|
14
|
Ferguson CTJ, Zhang KAI. Classical Polymers as Highly Tunable and Designable Heterogeneous Photocatalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Calum T. J. Ferguson
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kai A. I. Zhang
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| |
Collapse
|
15
|
Liu R, Gao Y, Liu N, Suo Y. Nanoparticles loading porphyrin sensitizers in improvement of photodynamic therapy for ovarian cancer. Photodiagnosis Photodyn Ther 2020; 33:102156. [PMID: 33352314 DOI: 10.1016/j.pdpdt.2020.102156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/15/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ovarian cancer, the malignant tumor with the highest mortality rate in gynecological tumors, leads to a poor prognosis due to tumor metastasis. At present, the main treatment for ovarian cancer is the combination of cytoreduction surgery and chemotherapy. But the surgery is insufficient to solve the extensive transfer of tumor in the abdominal cavity and a large proportion of ovarian cancer cases have shown resistance to chemotherapy. Photodynamic therapy (PDT) is a viable treatment option for a wide range of applications, especially in malignant tumors. Porphyrin sensitizers, as the most widely used photosensitive agents, have the following advantages: short photosensitive period and high singlet oxygen production. However, most studies have found that it is difficult to achieve high loading rates of photosensitive agents, thus effective concentration in target tissue is suboptimal and the lethal ability is greatly reduced. In this article, we review several studies that nanoparticles loading porphyrin sensitizers for photodynamic therapy of ovarian cancer. METHODS We collected relevant literature from PUBMED and reviewed their research content. RESULTS The application of nanotechnology to PDT in ovarian cancer can reduce the non-specific toxicity of photosensitive agents and increase stability and delivery efficiency. CONCLUSIONS The combination with nanotechnology can cover the shortcomings of photodynamic therapy, but the specific efficacy still needs a large number of experiments to prove.
Collapse
Affiliation(s)
- Rui Liu
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| | - Yanxia Gao
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| | - Nannan Liu
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| | - Yuping Suo
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| |
Collapse
|
16
|
Caruso E, Malacarne MC, Marras E, Papa E, Bertato L, Banfi S, Gariboldi MB. New BODIPYs for photodynamic therapy (PDT): Synthesis and activity on human cancer cell lines. Bioorg Med Chem 2020; 28:115737. [PMID: 33065434 DOI: 10.1016/j.bmc.2020.115737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 01/10/2023]
Abstract
A new class of compounds based on the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene core, known as BODIPYs, has attracted significant attention as photosensitizers suitable for application in photodynamic therapy (PDT), which is a minimally invasive procedure to treat cancer. In PDT the combination of a photosensitizer (PS), light, and oxygen leads to a series of photochemical reactions generating reactive oxygen species (ROS) exerting cytotoxic action on tumor cells. Here we present the synthesis and the study of the in vitro photodynamic effects of two BODIPYs which differ in the structure of the substituent placed on the meso (or 8) position of the dipyrrolylmethenic nucleus. The two compounds were tested on three human cancer cell lines of different origin and degree of malignancy. Our results indicate that the BODIPYs are very effective in reducing the growth/viability of HCT116, SKOV3 and MCF7 cells when irradiated with a green LED source, whereas they are practically devoid of activity in the dark. Phototoxicity occurs mainly through apoptotic cell death, however necrotic cell death also seems to play a role. Furthermore, singlet oxygen generation and induction of the increase of reactive oxygen species also appear to be involved in the photodynamic effect of the BODIPYs. Finally, it is worth noting that the two BODIPYs are also able to exert anti-migratory activity.
Collapse
Affiliation(s)
- Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV). University of Insubria, Via J.H. Dunant 3, 21100 Varese (VA), Italy
| | - Miryam C Malacarne
- Department of Biotechnology and Life Sciences (DBSV). University of Insubria, Via J.H. Dunant 3, 21100 Varese (VA), Italy
| | - Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV). University of Insubria, Via J.H. Dunant 3, 21100 Varese (VA), Italy
| | - Ester Papa
- Department of Theoretical and Applied Sciences (DiSTA). University of Insubria, Via J.H. Dunant 3, 21100 Varese (VA), Italy
| | - Linda Bertato
- Department of Theoretical and Applied Sciences (DiSTA). University of Insubria, Via J.H. Dunant 3, 21100 Varese (VA), Italy
| | - Stefano Banfi
- Department of Biotechnology and Life Sciences (DBSV). University of Insubria, Via J.H. Dunant 3, 21100 Varese (VA), Italy
| | - Marzia B Gariboldi
- Department of Biotechnology and Life Sciences (DBSV). University of Insubria, Via J.H. Dunant 3, 21100 Varese (VA), Italy.
| |
Collapse
|
17
|
Osorio M, Martinez E, Naranjo T, Castro C. Recent Advances in Polymer Nanomaterials for Drug Delivery of Adjuvants in Colorectal Cancer Treatment: A Scientific-Technological Analysis and Review. Molecules 2020; 25:E2270. [PMID: 32408538 PMCID: PMC7288015 DOI: 10.3390/molecules25102270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is the type with the second highest morbidity. Recently, a great number of bioactive compounds and encapsulation techniques have been developed. Thus, this paper aims to review the drug delivery strategies for chemotherapy adjuvant treatments for CRC, including an initial scientific-technological analysis of the papers and patents related to cancer, CRC, and adjuvant treatments. For 2018, a total of 167,366 cancer-related papers and 306,240 patents were found. Adjuvant treatments represented 39.3% of the total CRC patents, indicating the importance of adjuvants in the prognosis of patients. Chemotherapy adjuvants can be divided into two groups, natural and synthetic (5-fluorouracil and derivatives). Both groups can be encapsulated using polymers. Polymer-based drug delivery systems can be classified according to polymer nature. From those, anionic polymers have garnered the most attention, because they are pH responsive. The use of polymers tailors the desorption profile, improving drug bioavailability and enhancing the local treatment of CRC via oral administration. Finally, it can be concluded that antioxidants are emerging compounds that can complement today's chemotherapy treatments. In the long term, encapsulated antioxidants will replace synthetic drugs and will play an important role in curing CRC.
Collapse
Affiliation(s)
- Marlon Osorio
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Estefanía Martinez
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Tonny Naranjo
- School of Health Sciences, Universidad Pontificia Bolivariana, Calle 78 B # 72 A-109, Medellín 050034, Colombia;
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Carrera 72 A # 78 B-141, Medellín 050034, Colombia
| | - Cristina Castro
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| |
Collapse
|
18
|
Khan FA, Akhtar S, Almohazey D, Alomari M, Almofty SA, Badr I, Elaissari A. Targeted delivery of poly (methyl methacrylate) particles in colon cancer cells selectively attenuates cancer cell proliferation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1533-1542. [PMID: 31007071 DOI: 10.1080/21691401.2019.1577886] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Poly (methyl methacrylate) (PMMA) is basically biocompatible polyester with high resistance to chemical hydrolysis, and high drug permeability and the most important characteristics of PMMA is that it does not produce any toxicity. There is not much information about PMMA action on the colon cancer cells. In the present study, we have synthesized PMMA nanoparticles. The distribution pattern of PMMA particles was analysed by Zeta sizer and the size of the particles was calculated by using quasi elastic light scattering (QELS). The surface structure and the morphology of PMMA were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. We have also analysed their effects on cancerous cells (human colorectal carcinoma cells, HCT-116) and normal, healthy cells (human embryonic kidney cells, HEK-293) by using morphometric, MTT, DAPI and wound healing methods. We report that PMMA particles inhibited the cancer cell viability in a dose-dependent manner. The lower dose (1.0 μg/ml) showed a moderate decrease in cancer cell viability, whereas higher dosages (2.5 μg/ml, 5.0 μg/mL and 7.5 μg/mL) showed steadily decrease in the cancer cell viability. We also report that PMMA is highly selective to cancerous cells (HCT-116), as we did not find any action on the normal healthy cells (HEK-293). In conclusion, our results suggest PMMA particles are potential biomaterials to be used in the treatment of colon cancer.
Collapse
Affiliation(s)
- Firdos Alam Khan
- a Department of Stem Cell Biology, Institute for Research and Medical Consultations , Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Sultan Akhtar
- b Department of Biophysics, Institute for Research and Medical Consultations , Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Dana Almohazey
- a Department of Stem Cell Biology, Institute for Research and Medical Consultations , Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Munther Alomari
- a Department of Stem Cell Biology, Institute for Research and Medical Consultations , Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Sarah Ameen Almofty
- a Department of Stem Cell Biology, Institute for Research and Medical Consultations , Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Ibrahim Badr
- c Centre national de la recherche scientifique, LAGEP-UMR 5007, University Claude Bernard Lyon-1 , University of Lyon , Lyon , France
| | - Abdelhamid Elaissari
- c Centre national de la recherche scientifique, LAGEP-UMR 5007, University Claude Bernard Lyon-1 , University of Lyon , Lyon , France
| |
Collapse
|