1
|
Dube E. Antimicrobial Photodynamic Therapy: Self-Disinfecting Surfaces for Controlling Microbial Infections. Microorganisms 2024; 12:1573. [PMID: 39203415 PMCID: PMC11356738 DOI: 10.3390/microorganisms12081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Microbial infections caused by bacteria, viruses, and fungi pose significant global health threats in diverse environments. While conventional disinfection methods are effective, their reliance on frequent chemical applications raises concerns about resistance and environmental impact. Photodynamic self-disinfecting surfaces have emerged as a promising alternative. These surfaces incorporate photosensitizers that, when exposed to light, produce reactive oxygen species to target and eliminate microbial pathogens. This review explores the concept and mechanism of photodynamic self-disinfecting surfaces, highlighting the variety and characteristics of photosensitizers integrated into surfaces and the range of light sources used across different applications. It also highlights the effectiveness of these surfaces against a broad spectrum of pathogens, including bacteria, viruses, and fungi, while also discussing their potential for providing continuous antimicrobial protection without frequent reapplication. Additionally, the review addresses both the advantages and limitations associated with photodynamic self-disinfecting surfaces and concludes with future perspectives on advancing this technology to meet ongoing challenges in infection control.
Collapse
Affiliation(s)
- Edith Dube
- Department of Biological & Environmental Sciences, Walter Sisulu University, P/B X1, Mthatha 5117, South Africa
| |
Collapse
|
2
|
de Souza Grilo MM, Schaffner DW, Tavares da Silva R, Saraiva KLA, Carvalho RDSF, Bovo F, de Souza Pedrosa GT, Magnani M. Ozone and photodynamic inactivation of norovirus surrogate bacteriophage MS2 in fresh Brazilian berries and surfaces. Food Microbiol 2024; 119:104453. [PMID: 38225042 DOI: 10.1016/j.fm.2023.104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
This study assessed the efficacy of ozone (bubble diffusion in water; 6.25 ppm) and photodynamic inactivation (PDT) using curcumin (75 μM) as photosensitizer (LED emission 430-470 nm; 33.6 mW/cm2 irradiance; 16.1, 20.2, and 24.2 J/cm2 light dose) against the Norovirus surrogate bacteriophage MS2 in Brazilian berries (black mulberry and pitanga) and surfaces (glass and stainless steel). Contaminated berries and surfaces were immersed in ozonized water or exposed to PDT-curcumin for different time intervals. Transmission electron microscopy was used to assess the effects of the treatments on MS2 viral particles. The MS2 inactivation by ozone and PDT-curcumin varied with the fruit and the surface tested. Ozone reduced the MS2 titer up to 3.6 log PFU/g in black mulberry and 4.1 log PFU/g in pitanga. On surfaces, the MS2 reduction by ozone reached 3.6 and 4.8 log PFU/cm2 on glass and stainless steel, respectively. PDT-curcumin reduced the MS2 3.2 and 4.8 log PFU/g in black mulberry and pitanga and 2.7 and 3.3 log PFU/cm2 on glass and stainless steel, respectively. MS2 particles were disintegrated by exposure of MS2 to ozone and PDT-curcumin on pitanga. Results can contribute to establishing effective practices for controlling NoV in fruits and surfaces, estimated based on MS2 bacteriophage behavior.
Collapse
Affiliation(s)
- Maria Mayara de Souza Grilo
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Ruthchelly Tavares da Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | | | | | - Fernanda Bovo
- Uniararas - Hermínio Ometto Foundation University Center, Av. Dr. Maximiliano Baruto, 500, 13607-339, Araras, São Paulo, Brazil
| | - Geany Targino de Souza Pedrosa
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil.
| |
Collapse
|
3
|
Liu KK, Shan CX. Viral inactivation by irradiation rays. LIGHT, SCIENCE & APPLICATIONS 2023; 12:72. [PMID: 36918547 PMCID: PMC10011759 DOI: 10.1038/s41377-023-01108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Viral infection can lead to serious illness and death around the world, as exemplified by the spread of COVID-19. Using irradiation rays can inactive virions through ionizing and non-ionizing effect. The application of light in viral inactivation and the underlying mechanisms are reviewed by the research group of Dayong Jin from University of Technology Sydney.
Collapse
Affiliation(s)
- Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China.
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn K. The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev 2023; 52:1697-1722. [PMID: 36779328 DOI: 10.1039/d0cs01051k] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising approach to fight the growing problem of antimicrobial resistance that threatens health care, food security and agriculture. APDT uses light to excite a light-activated chemical (photosensitiser), leading to the generation of reactive oxygen species (ROS). Many APDT studies confirm its efficacy in vitro and in vivo against bacteria, fungi, viruses and parasites. However, the development of the field is focused on exploring potential targets and developing new photosensitisers. The role of light, a crucial element for ROS production, has been neglected. What are the main parameters essential for effective photosensitiser activation? Does an optimal light radiant exposure exist? And finally, which light source is best? Many reports have described the promising antibacterial effects of APDT in vitro, however, its application in vivo, especially in clinical settings remains very limited. The restricted availability may partially be due to a lack of standard conditions or protocols, arising from the diversity of selected photosensitising agents (PS), variable testing conditions including light sources used for PS activation and methods of measuring anti-bacterial activity and their effectiveness in treating bacterial infections. We thus sought to systematically review and examine the evidence from existing studies on APDT associated with the light source used. We show how the reduction of pathogens depends on the light source applied, radiant exposure and irradiance of light used, and type of pathogen, and so critically appraise the current state of development of APDT and areas to be addressed in future studies. We anticipate that further standardisation of the experimental conditions will help the field advance, and suggest key optical and biological parameters that should be reported in all APDT studies. More in vivo and clinical studies are needed and are expected to be facilitated by advances in light sources, leading to APDT becoming a sustainable, alternative therapeutic option for bacterial and other microbial infections in the future.
Collapse
Affiliation(s)
- Marta Piksa
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Cheng Lian
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Imogen C Samuel
- School of Medicine, University of Manchester, Manchester, M13 9PL, UK
| | - Krzysztof J Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
5
|
Sadraeian M, Zhang L, Aavani F, Biazar E, Jin D. Viral inactivation by light. ELIGHT 2022; 2:18. [PMID: 36187558 PMCID: PMC9510523 DOI: 10.1186/s43593-022-00029-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
Nowadays, viral infections are one of the greatest challenges for medical sciences and human society. While antiviral compounds and chemical inactivation remain inadequate, physical approaches based on irradiation provide new potentials for prevention and treatment of viral infections, without the risk of drug resistance and other unwanted side effects. Light across the electromagnetic spectrum can inactivate the virions using ionizing and non-ionizing radiations. This review highlights the anti-viral utility of radiant methods from the aspects of ionizing radiation, including high energy ultraviolet, gamma ray, X-ray, and neutron, and non-ionizing photo-inactivation, including lasers and blue light.
Collapse
Affiliation(s)
- Mohammad Sadraeian
- Present Address: Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Le Zhang
- Present Address: Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Esmaeil Biazar
- Department of Biomedical Engineering, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Dayong Jin
- Present Address: Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong China
| |
Collapse
|
6
|
Kunstek H, Vreken F, Keita A, Hamblin MR, Dumarçay F, Varbanov M. Aspects of Antiviral Strategies Based on Different Phototherapy Approaches: Hit by the Light. Pharmaceuticals (Basel) 2022; 15:858. [PMID: 35890156 PMCID: PMC9316526 DOI: 10.3390/ph15070858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 12/30/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which caused the COVID-19 pandemic spreading around the world from late 2019, served as a ruthless reminder of the threat viruses pose to global public health. The synthesis of new antiviral drugs, as well as repurposing existing products, is a long-term ongoing process which has challenged the scientific community. One solution could be an effective, accessible, and rapidly available antiviral treatment based on phototherapy (PT). PT has been used to treat several diseases, and relies on the absorption of light by endogenous molecules or exogenous photosensitizers (PS). PT has often been used in cancer treatment and prophylaxis, and as a complement to established chemotherapy and immunotherapy in combined therapeutic strategy. Besides significant applications in anticancer treatment, studies have demonstrated the beneficial impact of PT on respiratory, systemic, emerging, and oncogenic viral infections. The aim of this review was to highlight the potential of PT to combat viral infections by summarizing current progress in photodynamic, photothermal, and photoacoustic approaches. Attention is drawn to the virucidal effect of PT on systemic viruses such as the human immunodeficiency virus and human herpes viruses, including the causative agent of Kaposi sarcoma, human herpes virus (HHV8). PT has good potential for disinfection in anti-norovirus research and against pandemic viruses like SARS-CoV-2.
Collapse
Affiliation(s)
- Hannah Kunstek
- L2CM, Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), 54000 Nancy, France; (H.K.); (F.V.); (A.K.); (F.D.)
- Graz University of Technology, 8010 Graz, Austria
| | - Fanny Vreken
- L2CM, Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), 54000 Nancy, France; (H.K.); (F.V.); (A.K.); (F.D.)
| | - Aminata Keita
- L2CM, Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), 54000 Nancy, France; (H.K.); (F.V.); (A.K.); (F.D.)
- Faculté de Pharmacie, Université de Tours, 37000 Tours, France
| | - Michael R. Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein 2028, South Africa;
| | - Florence Dumarçay
- L2CM, Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), 54000 Nancy, France; (H.K.); (F.V.); (A.K.); (F.D.)
| | - Mihayl Varbanov
- L2CM, Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), 54000 Nancy, France; (H.K.); (F.V.); (A.K.); (F.D.)
- Laboratoire de Virologie, Centres Hospitaliers Régionaux Universitaires (CHRU) de Nancy Brabois, 54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
7
|
Sheng L, Li X, Wang L. Photodynamic inactivation in food systems: A review of its application, mechanisms, and future perspective. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Keum H, Yoo D, Jon S. Photomedicine based on heme-derived compounds. Adv Drug Deliv Rev 2022; 182:114134. [PMID: 35122881 DOI: 10.1016/j.addr.2022.114134] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Photoimaging and phototherapy have become major platforms for the diagnosis and treatment of various health complications. These applications require a photosensitizer (PS) that is capable of absorbing light from a source and converting it into other energy forms for detection and therapy. While synthetic inorganic materials such as quantum dots and gold nanorods have been widely explored for their medical diagnosis and photodynamic (PDT) and photothermal (PTT) therapy capabilities, translation of these technologies has lagged, primarily owing to potential cytotoxicity and immunogenicity issues. Of the various photoreactive molecules, the naturally occurring endogenous compound heme, a constituent of red blood cells, and its derivatives, porphyrin, biliverdin and bilirubin, have shown immense potential as noteworthy candidates for clinically translatable photoreactive agents, as evidenced by previous reports. While porphyrin-based photomedicines have attracted significant attention and are well documented, research on photomedicines based on two other heme-derived compounds, biliverdin and bilirubin, has been relatively lacking. In this review, we summarize the unique photoproperties of heme-derived compounds and outline recent efforts to use them in biomedical imaging and phototherapy applications.
Collapse
|
9
|
do Prado-Silva L, Brancini GT, Braga GÚ, Liao X, Ding T, Sant’Ana AS. Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Delcanale P, Abbruzzetti S, Viappiani C. Photodynamic treatment of pathogens. LA RIVISTA DEL NUOVO CIMENTO 2022; 45:407-459. [PMCID: PMC8921710 DOI: 10.1007/s40766-022-00031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
The current viral pandemic has highlighted the compelling need for effective and versatile treatments, that can be quickly tuned to tackle new threats, and are robust against mutations. Development of such treatments is made even more urgent in view of the decreasing effectiveness of current antibiotics, that makes microbial infections the next emerging global threat. Photodynamic effect is one such method. It relies on physical processes proceeding from excited states of particular organic molecules, called photosensitizers, generated upon absorption of visible or near infrared light. The excited states of these molecules, tailored to undergo efficient intersystem crossing, interact with molecular oxygen and generate short lived reactive oxygen species (ROS), mostly singlet oxygen. These species are highly cytotoxic through non-specific oxidation reactions and constitute the basis of the treatment. In spite of the apparent simplicity of the principle, the method still has to face important challenges. For instance, the short lifetime of ROS means that the photosensitizer must reach the target within a few tens nanometers, which requires proper molecular engineering at the nanoscale level. Photoactive nanostructures thus engineered should ideally comprise a functionality that turns the system into a theranostic means, for instance, through introduction of fluorophores suitable for nanoscopy. We discuss the principles of the method and the current molecular strategies that have been and still are being explored in antimicrobial and antiviral photodynamic treatment.
Collapse
Affiliation(s)
- Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| |
Collapse
|
11
|
Galstyan A, Majiya H, Dobrindt U. Regulation of photo triggered cytotoxicity in electrospun nanomaterials: role of photosensitizer binding mode and polymer identity. NANOSCALE ADVANCES 2021; 4:200-210. [PMID: 36132947 PMCID: PMC9418932 DOI: 10.1039/d1na00717c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 06/16/2023]
Abstract
Although electrospun nanomaterials containing photoactive dyes currently compete with the present state of art antimicrobial materials, relatively few structure-activity relationships have been established to identify the role of carrier polymer and photosensitizer binding mode on the performance of the materials. In this study scaffolds composed of poly(vinyl alcohol), polyacrylonitrile, poly(caprolactone), and tailor-made phthalocyanine-based photosensitizers are developed utilizing electrospinning as a simple, time and cost-effective method. The photoinduced activity of nanofibrous materials was characterized in vitro against E. coli and B. subtilis as models for Gram-negative and Gram-positive bacteria respectively, as well as against bacteriophages phi6 and MS2 as models for enveloped and non-enveloped viruses respectively. For the first time, we show how polymer-specific properties affect antifouling and antimicrobial activity of the nanofibrous material, indicating that the most promising way to increase efficiency is likely via methods that focus on increasing the number of short, but strong and reversible bacteria-surface interactions.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Center for Soft Nanoscience Westfälische Wilhelms-Universität Münster Busso-Peus-Strasse 10 48149 Münster Germany
| | - Hussaini Majiya
- Department of Microbiology, Ibrahim Badamasi Babangida University KM3 Lapai-Minna Road, P.M.B 11 Lapai Nigeria
| | - Urlich Dobrindt
- Institut of Hygiene, Westfälische Wilhelms-Universität Münster Mendelstrasse 7 48149 Münster Germany
| |
Collapse
|
12
|
Wang N, Ferhan AR, Yoon BK, Jackman JA, Cho NJ, Majima T. Chemical design principles of next-generation antiviral surface coatings. Chem Soc Rev 2021; 50:9741-9765. [PMID: 34259262 DOI: 10.1039/d1cs00317h] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has accelerated efforts to develop high-performance antiviral surface coatings while highlighting the need to build a strong mechanistic understanding of the chemical design principles that underpin antiviral surface coatings. Herein, we critically summarize the latest efforts to develop antiviral surface coatings that exhibit virus-inactivating functions through disrupting lipid envelopes or protein capsids. Particular attention is focused on how cutting-edge advances in material science are being applied to engineer antiviral surface coatings with tailored molecular-level properties to inhibit membrane-enveloped and non-enveloped viruses. Key topics covered include surfaces functionalized with organic and inorganic compounds and nanoparticles to inhibit viruses, and self-cleaning surfaces that incorporate photocatalysts and triplet photosensitizers. Application examples to stop COVID-19 are also introduced and demonstrate how the integration of chemical design principles and advanced material fabrication strategies are leading to next-generation surface coatings that can help thwart viral pandemics and other infectious disease threats.
Collapse
Affiliation(s)
- Nan Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | |
Collapse
|
13
|
Heffron J, Bork M, Mayer BK, Skwor T. A Comparison of Porphyrin Photosensitizers in Photodynamic Inactivation of RNA and DNA Bacteriophages. Viruses 2021; 13:v13030530. [PMID: 33807067 PMCID: PMC8005208 DOI: 10.3390/v13030530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
Effective broad-spectrum antiviral treatments are in dire need as disinfectants and therapeutic alternatives. One such method of disinfection is photodynamic inactivation, which involves the production of reactive oxygen species from dissolved oxygen in response to light-stimulated photosensitizers. This study evaluated the efficacy of functionalized porphyrin compounds for photodynamic inactivation of bacteriophages as human virus surrogates. A blue-light light emitting diode (LED) lamp was used to activate porphyrin compounds in aqueous solution (phosphate buffer). The DNA bacteriophages ΦX174 and P22 were more resistant to porphyrin TMPyP photodynamic inactivation than RNA bacteriophage fr, with increasing rates of inactivation in the order: ΦX174 << P22 << fr. Bacteriophage ΦX174 was therefore considered a resistant virus suitable for the evaluation of three additional porphyrins. These porphyrins were synthesized from TMPyP by inclusion of a central palladium ion (PdT4) and/or the addition of a hydrophobic C14 chain (PdC14 or C14). While the inactivation rate of bacteriophage ΦX174 via TMPyP was similar to previous reports of resistant viruses, ΦX174 inactivation increased by a factor of approximately 2.5 using the metalloporphyrins PdT4 and PdC14. The order of porphyrin effectiveness was TMPyP < C14 < PdT4 < PdC14, indicating that both Pd2+ ligation and C14 functionalization aided virus inactivation.
Collapse
Affiliation(s)
- Joe Heffron
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA; (J.H.); (B.K.M.)
| | - Matthew Bork
- Department of Chemical and Biological Sciences, Rockford University, 5050 E. State St., Rockford, IL 61108, USA;
| | - Brooke K. Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA; (J.H.); (B.K.M.)
| | - Troy Skwor
- Department of Biomedical Sciences, University of Wisconsin–Milwaukee, 2400 E. Hartford Ave., Milwaukee, WI 53211, USA
- Correspondence:
| |
Collapse
|
14
|
Lebedeva NS, Gubarev YA, Koifman MO, Koifman OI. The Application of Porphyrins and Their Analogues for Inactivation of Viruses. Molecules 2020; 25:molecules25194368. [PMID: 32977525 PMCID: PMC7583985 DOI: 10.3390/molecules25194368] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023] Open
Abstract
The problem of treating viral infections is extremely relevant due to both the emergence of new viral diseases and to the low effectiveness of existing approaches to the treatment of known viral infections. This review focuses on the application of porphyrin, chlorin, and phthalocyanine series for combating viral infections by chemical and photochemical inactivation methods. The purpose of this review paper is to summarize the main approaches developed to date in the chemical and photodynamic inactivation of human and animal viruses using porphyrins and their analogues and to analyze and discuss the information on viral targets and antiviral activity of porphyrins, chlorins, of their conjugates with organic/inorganic compounds obtained in the last 10–15 years in order to identify the most promising areas.
Collapse
Affiliation(s)
- Natalya Sh. Lebedeva
- Laboratory 1-7. Physical Chemistry of Solutions of Macrocyclic Compounds, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia;
- Correspondence: ; Tel.: +7-4932-33-62-72
| | - Yury A. Gubarev
- Laboratory 1-7. Physical Chemistry of Solutions of Macrocyclic Compounds, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia;
| | - Mikhail O. Koifman
- Department of Chemistry and Technology of Macromolecular Compounds, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; (M.O.K.); (O.I.K.)
| | - Oskar I. Koifman
- Department of Chemistry and Technology of Macromolecular Compounds, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; (M.O.K.); (O.I.K.)
- Laboratory 2-2. New Materials on the Basis of Macrocyclic Compounds, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia
| |
Collapse
|
15
|
Kipshidze N, Yeo N, Kipshidze N. Photodynamic and sonodynamic therapy of acute hypoxemic respiratory failure in patients with COVID-19. Photodiagnosis Photodyn Ther 2020; 31:101961. [PMID: 32818638 PMCID: PMC7430283 DOI: 10.1016/j.pdpdt.2020.101961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
•COVID-19 is largely localized in lungs. •SARS-CoV-2 binds to the heme groups in hemoglobin that leads to severe hypoxia. •Porphyrin-based photosensitizers (PS) act as a ‘decoy’ in which the SARS-CoV-2 virions would attach to PS molecules. •Photoactivation capable of destroying the bonded SARS-CoV-2 virions.
Collapse
|
16
|
Pförringer D, Braun KF, Mühlhofer H, Schneider J, Stemberger A, Seifried E, Pohlscheidt E, Seidel M, Edenharter G, Duscher D, Burgkart R, Obermeier A. Novel method for reduction of virus load in blood plasma by sonication. Eur J Med Res 2020; 25:12. [PMID: 32264953 PMCID: PMC7137245 DOI: 10.1186/s40001-020-00410-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 03/25/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Aim of the present study is the evaluation of ultrasound as a physical method for virus inactivation in human plasma products prior to transfusion. Our study is focused on achieving a high level of virus inactivation simultaneously leaving blood products unaltered, measured by the level of degradation of coagulation factors, especially in third world countries where virus contamination of blood products poses a major problem. Virus inactivation plays an important role, especially in the light of newly discovered or unknown viruses, which cannot be safely excluded via prior testing. METHODS Taking into account the necessary protection of the relevant coagulation activity for plasma, the basis for a sterile virus inactivation under shielding gas insufflation was developed for future practical use. Influence of frequency and power density in the range of soft and hard cavitation on the inactivation of transfusion-relevant model viruses for Hepatitis-(BVDV = bovine diarrhea virus), for Herpes-(SFV = Semliki Forest virus, PRV = pseudorabies virus) and Parvovirus B19 (PPV = porcine parvovirus) were examined. Coagulation activity was examined via standard time parameters to minimize reduction of functionality of coagulation proteins. A fragmentation of coagulation proteins via ultrasound was ruled out via gel electrophoresis. The resulting virus titer was examined using end point titration. RESULTS Through CO2 shielding gas insufflation-to avoid radical emergence effects-the coagulation activity was less affected and the time window for virus inactivation substantially widened. In case of the non-lipidated model virus (AdV-luc = luciferase expressing adenoviral vector), the complete destruction of the virus capsid through hard cavitation was proven via scanning electron microscopy (SEM). This can be traced back to microjets and shockwaves occurring in hard cavitation. The degree of inactivation seems to depend on size and compactness of the type of viruses. Using our pre-tested and subsequently chosen process parameters with the exception of the small PPV, all model viruses were successfully inactivated and reduced by up to log 3 factor. For a broad clinical usage, protection of the coagulation activities may require further optimization. CONCLUSIONS Building upon the information gained, an optimum inactivation can be reached via raising of power density up to 1200 W and simultaneous lowering of frequency down to 27 kHz. In addition, the combination of the two physical methods UV treatment and ultrasound may yield optimum results without the need of substance removal after the procedure.
Collapse
Affiliation(s)
- D Pförringer
- Klinikum rechts der Isar der Technischen Universität München, Klinik und Poliklinik für Unfallchirurgie, Ismaninger Str. 22, 81675, Munich, Germany.
| | - K F Braun
- Klinikum rechts der Isar der Technischen Universität München, Klinik und Poliklinik für Unfallchirurgie, Ismaninger Str. 22, 81675, Munich, Germany.,Charite, Universitätsmedizin Berlin, Unfallchirurgie, Zentrum für Muskuloskeletale Chirurgie, Berlin, Germany
| | - H Mühlhofer
- Klinikum rechts der Isar der Technischen Universität München, Klinik für Orthopädie und Sportorthopädie, Ismaninger Str. 22, 81675, Munich, Germany
| | - J Schneider
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - A Stemberger
- Klinikum rechts der Isar der Technischen Universität München, Klinik für Orthopädie und Sportorthopädie, Ismaninger Str. 22, 81675, Munich, Germany
| | - E Seifried
- DRK-Blutspendedienst, Institut für Transfusionsmedizin und Immunhämatologie, Sandhofstrasse 1, 60528, Frankfurt, Germany
| | - E Pohlscheidt
- Klinikum rechts der Isar der Technischen Universität München, Klinik für Orthopädie und Sportorthopädie, Ismaninger Str. 22, 81675, Munich, Germany
| | - M Seidel
- Institut für Wasserchemie & Chemische Balneologie, Lehrstuhl für Analytische Chemie und Wasserchemie, Technische Universität München, Marchioninistr. 17, 81377, Munich, Germany
| | - G Edenharter
- Klinikum rechts der Isar der Technischen Universität München, Klinik für Anästhesie, Munich, Germany
| | - D Duscher
- Klinikum rechts der Isar der Technischen Universität München, Klinik für Plastische Chirurgie, Ismaninger Str. 22, 81675, Munich, Germany
| | - R Burgkart
- Klinikum rechts der Isar der Technischen Universität München, Klinik für Orthopädie und Sportorthopädie, Ismaninger Str. 22, 81675, Munich, Germany
| | - A Obermeier
- Klinikum rechts der Isar der Technischen Universität München, Klinik für Orthopädie und Sportorthopädie, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
17
|
Kossakowska-Zwierucho M, Szewczyk G, Sarna T, Nakonieczna J. Farnesol potentiates photodynamic inactivation of Staphylococcus aureus with the use of red light-activated porphyrin TMPyP. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 206:111863. [PMID: 32224392 DOI: 10.1016/j.jphotobiol.2020.111863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Photodynamic inactivation (PDI) or antibacterial photodynamic therapy (aPDT) is a method based on the use of a photosensitizer, light of a proper wavelength and oxygen, which combined together leads to an oxidative stress and killing of target cells. PDI can be applied towards various pathogenic bacteria independently on their antibiotic resistance profile. Optimization of photodynamic treatment to eradicate the widest range of human pathogens remains challenging despite the availability of numerous photosensitizing compounds. Therefore, a search for molecules that could act as adjuvants potentiating antibacterial photoinactivation is of high scientific and clinical importance. Here we propose farnesol (FRN), a well described sesquiterpene, as a potent adjuvant of PDI, which specifically sensitizes Staphylococcus aureus to 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetratosylate (TMPyP) upon red light irradiation. Interestingly, the observed potentiation strongly depends on the presence of light. Analysis of this combined action of FRN and TMPyP, however, showed no influence of farnesol on TMPyP photochemical properties, i.e. the amount of reactive oxygen species that were produced by TMPyP in the presence of FRN. The accumulation rate of TMPyP in Staphylococcus aureus cells did not change, as well as the influence of staphyloxanthin inhibition. The precise mechanism of observed sensitization is unclear and probably involves specific molecular targets.
Collapse
Affiliation(s)
- Monika Kossakowska-Zwierucho
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
18
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|