1
|
Li L, Zhang X, Chang X, Meng X, Wang W, Zhang Y, Yang A, Yang J. A synchronous fluorescence biosensor mediated by hydrogen-bonding interaction for highly selective detection of dopamine. Mikrochim Acta 2025; 192:164. [PMID: 39954106 DOI: 10.1007/s00604-025-06993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/17/2025] [Indexed: 02/17/2025]
Abstract
A highly selective and sensitive silicon nanoparticles (Si NPs) biosensor was developed for dopamine (DA) detection utilizing synchronous fluorescence spectroscopy (SFS). Si NPs were synthesized via a one-step hydrothermal method, utilizing 3-aminopropyltriethoxysilane (APTES) as the silane precursor and polyethyleneimine (PEI) as the reducing agent. The Si NPs exhibited a spherical morphology, with an average diameter of 3.7 nm. Additionally, the Si NPs demonstrated remarkable fluorescent properties. When integrated into the DA detection process utilizing SFS, the synchronous fluorescence spectrum of the DA system exclusively exhibits a peak at 530 nm, whereas systems involving epinephrine and norepinephrine both display peaks at 484 nm and 530 nm. Consequently, this detection system exhibits a high capacity for effectively differentiating between DA and other catecholamines (epinephrine and norepinephrine), ensuring a high degree of specificity in the detection process. Additionally, this combined approach also presents a strong linear relationship between the enhancement of synchronous fluorescence intensity (F530/F484) and DA concentrations within the concentration ranges 1-10 μM and 10-50 μM, respectively. The limit of detection (LOD) was 0.22 μM (3σ/k). Finally, the biosensor was successfully employed for the detection of DA in the spiked serum samples. This work introduced a novel approach for DA detection and provided a valuable technical platform for rapid monitoring of DA levels in biological samples.
Collapse
Affiliation(s)
- Lingling Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xinru Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xianglei Chang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xianhua Meng
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Weifeng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Ying Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.
| | - Aimei Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China.
| | - Junli Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.
| |
Collapse
|
2
|
Bai R, Jin P, Liu Y, Fu N, Chen M, He J. Unlocking multi-mode sensing potential: Phosphorus-doped graphitic carbon nitride quantum dots for Ag +, ciprofloxacin, and riboflavin analysis in environment and food matrices. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125041. [PMID: 39216140 DOI: 10.1016/j.saa.2024.125041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/24/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The simultaneous detection of multiple analytes through a single fluorescence sensor is highly attractive. In this study, phosphorus-doped graphitic carbon nitride quantum dots (P-CNQDs) were developed, achieving multi-mode sensing through three distinct response mechanisms. The preparation involved using melamine as the carbon and nitrogen source and ammonium dihydrogen phosphate as the phosphorus source. Uniform and narrowly distributed P-CNQDs were successfully synthesized through chemical oxidation and hydrothermal methods, with an average size of 2.4 nm. These unique P-CNQDs exhibited fluorescence quenching through photo-induced electron transfer (PET) in response to Ag+. Additionally, the formation of hydrogen bonds and coordination interactions between P-CNQDs-Ag+ and ciprofloxacin (CIP) led to a pronounced fluorescence response to CIP by the chelation enhanced fluorescence (CHEF) mechanism. Furthermore, leveraging the principle of fluorescence resonance energy transfer (FRET), P-CNQDs-CIP served as a ratio fluorescence sensor for riboflavin (RF), enabling ultra-sensitive detection of RF. The combination of PET, CHEF, and FRET response mechanisms successfully facilitated multi-mode sensing for Ag+, CIP, and RF. The detection ranges were 0.05-100 μM, 0.002-2 μM, and 0.05-60 μM, with corresponding lowest detection limits of 17.1 nM, 1.1 nM, and 29.2 nM, respectively. This versatile sensor has been effectively applied to real samples, including the detection of river water and vitamin B2 tablets.
Collapse
Affiliation(s)
- Ruining Bai
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, Yunnan, PR China
| | - Peng Jin
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, Yunnan, PR China
| | - Yujiao Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, Yunnan, PR China
| | - Niao Fu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, Yunnan, PR China
| | - Mei Chen
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, Yunnan, PR China
| | - Jieli He
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, Yunnan, PR China.
| |
Collapse
|
3
|
Shen M, Hu X. A "signal-off" anodic photoelectrochemical sensor based on ZnIn 2S 4/TiO 2 heterojunction for dopamine detection. Talanta 2025; 281:126800. [PMID: 39241644 DOI: 10.1016/j.talanta.2024.126800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Dopamine (DA) is an important neurotransmitter. Abnormal levels of it in human body can increase the risk of many neurological diseases. Thus, developing a simple, sensitive detection method of DA is crucial. In this paper, we reported a "signal-off" anodic PEC sensor based on fluorine-doped tin oxide (FTO) glass modified ZnIn2S4/TiO2 heterojunction (ZnIn2S4/TiO2/FTO) for DA detection. The experimental results show that the ZnIn2S4/TiO2/FTO electrode prepared by two-step hydrothermal method has a good photocurrent response performance under visible light. After incubation with DA, the photocurrent response decreases significantly because DA can rapidly oxidizes to polydopamine (PDA) through the action of superoxide radical (·O2-) and hydroxyl radical (·OH) intermediate species, which are intermediates produced by the ZnIn2S4/TiO2/FTO electrode under visible light irradiation. The constructed PEC sensor has a good linear relationship in the concentration range from 0.5 to 1000.0 μM, and its detection limit is 0.253 μM. In addition, the results of the proposed PEC sensor in real serum samples are satisfactory. The PEC sensor provides a promising platform for DA detection, laying the foundation for future advances in disease diagnosis and prevention.
Collapse
Affiliation(s)
- Mao Shen
- College of Materials Science and Engineering, Nanjing Tech University, 211816, Nanjing, Jiangsu, China; School of Pharmaceutical and Chemical, Taizhou University, 318000, Taizhou, Zhejiang, China
| | - Xiulan Hu
- College of Materials Science and Engineering, Nanjing Tech University, 211816, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Qureshi ZA, Dabash H, Ponnamma D, Abbas M. Carbon dots as versatile nanomaterials in sensing and imaging: Efficiency and beyond. Heliyon 2024; 10:e31634. [PMID: 38832274 PMCID: PMC11145243 DOI: 10.1016/j.heliyon.2024.e31634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Carbon dots (CDs) have emerged as a versatile and promising carbon-based nanomaterial with exceptional optical properties, including tunable emission wavelengths, high quantum yield, and photostability. CDs are appropriate for various applications with many benefits, such as biocompatibility, low toxicity, and simplicity of surface modification. Thanks to their tunable optical properties and great sensitivity, CDs have been used in sensing as fluorescent probes for detecting pH, heavy metal ions, and other analytes. In addition, CDs have demonstrated potential as luminescence converters for white organic light-emitting diodes and light emitters in optoelectronic devices due to their superior optical qualities and exciton-independent emission. CDs have been used for drug administration and bioimaging in the biomedical field due to their biocompatibility, low cytotoxicity, and ease of functionalization. Additionally, due to their stability, efficient charge separation, and low recombination rate, CDs have shown interesting uses in energy systems, such as photocatalysis and energy conversion. This article highlights the growing possibilities and potential of CDs as adaptable nanomaterials in a variety of interdisciplinary areas related to sensing and imaging, at the same time addressing the major challenges involved in the current research and proposing scientific solutions to apply CDs in the development of a super smart society.
Collapse
Affiliation(s)
| | - Hanan Dabash
- Center for Advanced Materials, Qatar University, 2713, Doha, Qatar
| | - Deepalekshmi Ponnamma
- Materials Science and Technology Program, Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - M.K.G. Abbas
- Center for Advanced Materials, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
5
|
Prakash S, Patra B, Sahu S, Mishra AK. One-step synthesis of orange-red emissive carbon dots: photophysical insight into their excitation wavelength-independent and dependent luminescence. Phys Chem Chem Phys 2024; 26:16309-16319. [PMID: 38804891 DOI: 10.1039/d4cp00919c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
A low-temperature method was developed to synthesize orange-red luminescence phosphor-doped carbon dots (CDs) without complicated purification procedures. These CDs showed excitation wavelength-independent narrow emission (photo-luminescence quantum yield, Φf ∼ 12 to 22%) with single exponential time-resolved decay in weakly polar/non-polar solvents, indicating the presence of one kind of chromophore. In contrast, the same CDs showed excitation wavelength-dependent broad emission (Φf ∼ 1 to 8%) with multi-exponential fluorescence decay in polar solvents. These CDs exhibited poor solubility in polar solvents, resulting in CD aggregates contributed by excitation wavelength-dependent weak luminescence. The CDs embedded in polymethyl methacrylate (PMMA) polymer film displayed bright orange-red fluorescence under UV 365 nm illumination, indicating their potential application in solid-state luminescence. Further, an analytical method was developed for the naked-eye detection of trifluoracetic acid (red emission) and triethylamine (green emission) under UV 365 nm illumination with reversible two switch-mode luminescence. Additionally, this efficient orange-red luminescence of CDs was utilized for possible bioimaging applications with negligible cytotoxicity in 3T3 mouse fibroblast cells.
Collapse
Affiliation(s)
- Swayam Prakash
- Department of Chemistry, IIT Madras, Chennai-600036, India.
| | - Bamadeb Patra
- Department of Biotechnology, IIT Madras, Chennai-600036, India.
| | - Saugata Sahu
- Department of Chemistry, IIT Madras, Chennai-600036, India.
| | | |
Collapse
|
6
|
Sánchez-Pineda PA, López-Pacheco IY, Villalba-Rodríguez AM, Godínez-Alemán JA, González-González RB, Parra-Saldívar R, Iqbal HMN. Enhancing the production of PHA in Scenedesmus sp. by the addition of green synthesized nitrogen, phosphorus, and nitrogen-phosphorus-doped carbon dots. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:77. [PMID: 38835059 PMCID: PMC11149319 DOI: 10.1186/s13068-024-02522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Plastic consumption has increased globally, and environmental issues associated with it have only gotten more severe; as a result, the search for environmentally friendly alternatives has intensified. Polyhydroxyalkanoates (PHA), as biopolymers produced by microalgae, might be an excellent option; however, large-scale production is a relevant barrier that hinders their application. Recently, innovative materials such as carbon dots (CDs) have been explored to enhance PHA production sustainably. This study added green synthesized multi-doped CDs to Scenedesmus sp. microalgae cultures to improve PHA production. Prickly pear was selected as the carbon precursor for the hydrothermally synthesized CDs doped with nitrogen, phosphorous, and nitrogen-phosphorous elements. CDs were characterized by different techniques, such as FTIR, SEM, ζ potential, UV-Vis, and XRD. They exhibited a semi-crystalline structure with high concentrations of carboxylic groups on their surface and other elements, such as copper and phosphorus. A medium without nitrogen and phosphorous was used as a control to compare CDs-enriched mediums. Cultures regarding biomass growth, carbohydrates, lipids, proteins, and PHA content were analyzed. The obtained results demonstrated that CDs-enriched cultures produced higher content of biomass and PHA; CDs-enriched cultures presented an increase of 26.9% in PHA concentration and an increase of 32% in terms of cell growth compared to the standard cultures.
Collapse
Affiliation(s)
| | - Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| | | | | | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Monterrey, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Monterrey, Mexico.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Monterrey, Mexico.
| |
Collapse
|
7
|
Aygun A, Cobas I, Tiri RNE, Sen F. Hydrothermal synthesis of B, S, and N-doped carbon quantum dots for colorimetric sensing of heavy metal ions. RSC Adv 2024; 14:10814-10825. [PMID: 38577431 PMCID: PMC10993042 DOI: 10.1039/d4ra00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
In this study, glucose was used as the carbon source to synthesize carbon quantum dots (CQDs) and also aimed to synthesize CQDs doped with heteroatoms such as sulphur, nitrogen, and boron to enhance their functionality. The obtained material has been characterized by several techniques. According to FL analysis, the highest peaks for CQD, N-CQD, B-CQD, and S-CQD were determined as 432 nm (ex 350), 425 (ex 350), 430 nm (ex 340 nm), and 436 nm (ex 340 nm), respectively. FTIR spectra showed different characteristic peaks for CQD, and the FTIR results show that CQDs have a unique structure. According to TEM analysis, the morphology of all CQDs was found to be spherical and monodisperse with average sizes in the range of 5-7 nm. The characterization results of CQDs show that the addition of heteroatoms changes the properties of CQDs. The synthesized CQDs were also tested as colorimetric sensors for the detection of heavy metals. It was observed that CQDs detected Fe3+ metal ions, B-CQD and S-CQD detected Fe3+ and Ag+ metal ions, and N-CQDs detected Ca2+ metal ions. Sensor studies were performed for all CQDs and linear plots were obtained against metal concentrations in the range of 0.06-1.23 μM. LOD values for CQD, N-CQD, S-CQD, and B-CQD were calculated as 0.187 μM (Fe3+), 0.391 μM (Ca2+), 0.224 μM (Fe3+)-0.442 μM (Ag+), and 0.182 μM (Fe3+)-0.174 μM (Ag+), respectively. The results show that the addition of B, N, and S atoms to CQDs plays a role in the improvement and modification of colorimetric sensor properties and has the potential to be used in sensor applications for the detection of heavy metals in areas such as the environment and health.
Collapse
Affiliation(s)
- Aysenur Aygun
- Sen Research Group, Department of Biochemistry, Dumlupinar University 43000 Kutahya Turkey
| | - Ipek Cobas
- Sen Research Group, Department of Biochemistry, Dumlupinar University 43000 Kutahya Turkey
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Department of Biochemistry, Dumlupinar University 43000 Kutahya Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Dumlupinar University 43000 Kutahya Turkey
| |
Collapse
|
8
|
Fang K, Wu Y, Yang J, Wang N, Mo K, Zeng C, Deng B. Carbon quantum dot with co-doped nitrogen and phosphorus for tazettine ratiometric fluorescent sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123616. [PMID: 37939580 DOI: 10.1016/j.saa.2023.123616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
An overdose of tazettine (TZ) has toxic side effects, which makes it extremely important to rapidly and subtly determine the TZ. In this study, double-emitting, nitrogen-phosphorus co-doped carbon quantum dots (N,P-CQDs) were prepared using cis-butenedioic acid, phosphoric acid, and p-phenylenediamine. An effective inner filter effect (IFE) can occur between TZ and N,P-CQDs, resulting in their fluorescence quench. Therefore, a ratio fluorescent probe was constructed for detecting the TZ was constructed. After optimizing the experimental conditions, the quenching efficiency showed a strong linear connection with the TZ concentration in the range of 0.01-30 µmol/L, with the detection limit of 0.002 µmol/L. This method could be satisfactorily applied to detect TZ in mouse plasma samples.
Collapse
Affiliation(s)
- Kanjun Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Juan Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Na Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Keting Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chujie Zeng
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, School of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
9
|
Han L, Guo Y, Zhang H, Wang Z, Zhang F, Wang Y, Li X, Wang Y, Ye J. Preparation of carbon quantum dot fluorescent probe from waste fruit peel and its use for the detection of dopamine. RSC Adv 2024; 14:1813-1821. [PMID: 38192308 PMCID: PMC10772540 DOI: 10.1039/d3ra06799h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024] Open
Abstract
Carbon quantum dots (CQDs), as a new type of fluorescent nanomaterial, are widely used in the detection of small molecules. Abnormal dopamine secretion can lead to diseases such as Parkinson's disease and schizophrenia. Therefore, it is highly significant to detect dopamine levels in the human body. Using discarded fruit peels to prepare carbon quantum dots can achieve the reuse of kitchen waste, reduce pollution, and create value. Nitrogen-doped carbon quantum dots (N-CQDs) were prepared using the hydrothermal method, with orange peel as the raw material. The fluorescence quantum yield of N-CQDs reached a high value of 35.37% after optimizing the temperature, reaction time, and ethylenediamine dosage. N-CQDs were characterized using various techniques, including ultraviolet visible (UV-vis) spectroscopy, fluorescence spectrophotometer (PL), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). These analyses confirmed the successful doping of nitrogen in the CQDs. The DA concentration ranged from 0 to 300 μmol L-1, and the linear equation for fluorescence quenching of N-CQDs was F/F0 = -0.0056c + 0.98647, with an R2 value of 0.99071. The detection limit was 0.168 μmol L-1. The recovery and precision of dopamine in rabbit serum were 98% to 103% and 2% to 6%, respectively. The prepared N-CQDs could be used as a fluorescent probe to effectively detect DA.
Collapse
Affiliation(s)
- Li Han
- School of Biological and Chemical Engineering, Qilu Institute of Technology Jinan 250200 P. R. China
| | - Yingkai Guo
- Jinan Engineering Consulting Institute Jinan China
| | - Haohao Zhang
- School of Biological and Chemical Engineering, Qilu Institute of Technology Jinan 250200 P. R. China
| | - Zifan Wang
- School of Biological and Chemical Engineering, Qilu Institute of Technology Jinan 250200 P. R. China
| | - Fan Zhang
- School of Biological and Chemical Engineering, Qilu Institute of Technology Jinan 250200 P. R. China
| | - Yiran Wang
- School of Biological and Chemical Engineering, Qilu Institute of Technology Jinan 250200 P. R. China
| | - Xingqi Li
- School of Biological and Chemical Engineering, Qilu Institute of Technology Jinan 250200 P. R. China
| | - Ying Wang
- School of Biological and Chemical Engineering, Qilu Institute of Technology Jinan 250200 P. R. China
| | - Jiajia Ye
- School of Biological and Chemical Engineering, Qilu Institute of Technology Jinan 250200 P. R. China
| |
Collapse
|
10
|
Govindaraju R, Govindaraju S, Yun K, Kim J. Fluorescent-Based Neurotransmitter Sensors: Present and Future Perspectives. BIOSENSORS 2023; 13:1008. [PMID: 38131768 PMCID: PMC10742055 DOI: 10.3390/bios13121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Neurotransmitters (NTs) are endogenous low-molecular-weight chemical compounds that transmit synaptic signals in the central nervous system. These NTs play a crucial role in facilitating signal communication, motor control, and processes related to memory and learning. Abnormalities in the levels of NTs lead to chronic mental health disorders and heart diseases. Therefore, detecting imbalances in the levels of NTs is important for diagnosing early stages of diseases associated with NTs. Sensing technologies detect NTs rapidly, specifically, and selectively, overcoming the limitations of conventional diagnostic methods. In this review, we focus on the fluorescence-based biosensors that use nanomaterials such as metal clusters, carbon dots, and quantum dots. Additionally, we review biomaterial-based, including aptamer- and enzyme-based, and genetically encoded biosensors. Furthermore, we elaborate on the fluorescence mechanisms, including fluorescence resonance energy transfer, photon-induced electron transfer, intramolecular charge transfer, and excited-state intramolecular proton transfer, in the context of their applications for the detection of NTs. We also discuss the significance of NTs in human physiological functions, address the current challenges in designing fluorescence-based biosensors for the detection of NTs, and explore their future development.
Collapse
Affiliation(s)
- Rajapriya Govindaraju
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Saravanan Govindaraju
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Kyusik Yun
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
11
|
Liu P, Ga L, Wang Y, Ai J. Synthesis of Temperature Sensing Nitrogen-Doped Carbon Dots and Their Application in Fluorescent Ink. Molecules 2023; 28:6607. [PMID: 37764383 PMCID: PMC10536200 DOI: 10.3390/molecules28186607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
With the discovery of research, many properties of carbon dots are getting better and better. People have taken advantage of this and utilized them interspersed in various fields. In the present study, water-soluble nitrogen-doped carbon dots (N-CDs) with excellent optical and fluorescence thermal properties were prepared by the hydrothermal method using 4-dimethylaminopyridine and N,N'-methylenebisacrylamide as precursors. Co2+ has a selective bursting effect on the fluorescence of N-CDs. The fluorescence of N-CDs is selectively burst by Co2+, and the high sensitivity is good in the range of 0-12 μM with a detection limit of 74 nM. In addition, the good temperature response (reversible and recoverable fluorescence in the temperature range of 20~90 °C) and excellent optical properties of the N-CDs also make them new potentials in the field of fluorescent inks and temperature sensing.
Collapse
Affiliation(s)
- Pingping Liu
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China;
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, China;
| | - Yong Wang
- College of Geographical Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China
| | - Jun Ai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China;
| |
Collapse
|
12
|
John VL, Nayana AR, Keerthi TR, K A AK, Sasidharan BCP, T P V. Mulberry Leaves (Morus Rubra)-Derived Blue-Emissive Carbon Dots Fed to Silkworms to Produce Augmented Silk Applicable for the Ratiometric Detection of Dopamine. Macromol Biosci 2023; 23:e2300081. [PMID: 37097218 DOI: 10.1002/mabi.202300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Silk fibers (SF) reeled from silkworms are constituted by natural proteins, and their characteristic structural features render them applicable as materials for textiles and packaging. Modification of SF with functional materials can facilitate their applications in additional areas. In this work, the preparation of functional SF embedded with carbon dots (CD) is reported through the direct feeding of a CD-modified diet to silkworms. Fluorescent and mechanically robust SF are obtained from silkworms (Bombyx mori) that are fed on CDs synthesized from the Morus rubra variant of mulberry leaves (MB-CDs). MB-CDs are introduced to silkworms from the third instar by spraying them on the silkworm feed, the mulberry leaves. MB-CDs are synthesized hydrothermally without adding surface passivating agents and are observed to have a quantum yield of 22%. With sizes of ≈4 nm, MB-CDs exhibited blue fluorescence, and they can be used as efficient fluorophores to detect Dopamine (DA) up to the limit of 4.39 nM. The nanostructures and physical characteristics of SF weren't altered when the SF are infused with MB-CDs. Also, a novel DA sensing application based on fluorescence with the MB-CD incorporated SF is demonstrated.
Collapse
Affiliation(s)
- Varsha Lisa John
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, India
| | - A R Nayana
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686560, India
| | - T R Keerthi
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686560, India
| | - Athira Krishnan K A
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - B C P Sasidharan
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - Vinod T P
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, India
| |
Collapse
|
13
|
Prakash S, Sahu S, Patra B, Mishra AK. Understanding the aggregation of excitation wavelength independent emission of amphiphilic carbon dots for bioimaging and organic acid sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122257. [PMID: 36565504 DOI: 10.1016/j.saa.2022.122257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Herein, excitation wavelength-independent, tunable emissive and amphiphilic CDs with high quantum yield were synthesized by a low-temperature oxidation method employing banana peel waste as a carbon source. These CDs showed longer wavelength emissions (green to yellow) independent of the excitation wavelength when dispersed in different polar to non-polar solvents. The quantum yields of the same CDs were 9-32% in different solvent polarities for different emissions. On the other hand, a large stokes-shifted emission (∼9606 cm-1) was observed for CDs in the non-polar and weak polar solvents. The particle size of CDs increases from a hydrophobic to a hydrophilic environment with the change in emission colour from yellow to green. A polar and a non-polar host matrix were used to overcome the limitation of aggregation-caused quenching of CDs in the solid state to obtain bright emissions. These CDs were potentially used for naked-eye detection of trifluoroacetic acid (TFA) by changing the emission colour from yellow to orange under UV 365 nm. Sensing of TFA was also shown reversibly switch emission colour and average lifetime for multiple cycles. Additionally, the highly emissive CDs show negligible cytotoxicity in 3T3 fibroblast cells, indicating possible bioimaging applications in 3T3 cells.
Collapse
Affiliation(s)
- Swayam Prakash
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Saugata Sahu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Bamadeb Patra
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ashok Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
14
|
Das C, Sillanpää M, Zaidi SA, Khan MA, Biswas G. Current trends in carbon-based quantum dots development from solid wastes and their applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45528-45554. [PMID: 36809626 PMCID: PMC9942668 DOI: 10.1007/s11356-023-25822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Urbanization and a massive population boom have immensely increased the solid wastes (SWs) generation and are expected to reach 3.40 billion tons by 2050. In many developed and emerging nations, SWs are prevalent in both major and small cities. As a result, in the current context, the reusability of SWs through various applications has taken on added importance. Carbon-based quantum dots (Cb-QDs) and their many variants are synthesized from SWs in a straightforward and practical method. Cb-QDs are a new type of semiconductor that has attracted the interest of researchers due to their wide range of applications, which include everything from energy storage, chemical sensing, to drug delivery. This review is primarily focused on the conversion of SWs into useful materials, which is an essential aspect of waste management for pollution reduction. In this context, the goal of the current review is to investigate the sustainable synthesis routes of carbon quantum dots (CQDs), graphene quantum dots (GQDs), and graphene oxide quantum dots (GOQDs) from various types SWs. The applications of CQDs, GQDs, and GOQDs in the different areas are also been discussed. Finally, the challenges in implementing the existing synthesis methods and future research directions are highlighted.
Collapse
Affiliation(s)
- Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Moonis Ali Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| |
Collapse
|
15
|
Eco-Friendly Synthesis of Functionalized Carbon Nanodots from Cashew Nut Skin Waste for Bioimaging. Catalysts 2023. [DOI: 10.3390/catal13030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
In this study, Anacardium occidentale (A. occidentale) nut skin waste (cashew nut skin waste) was used as a raw material to synthesize functionalized carbon nanodots (F-CNDs). A. occidentale biomass-derived F-CNDs were synthesized at a low temperature (200 °C) using a facile, economical hydrothermal method and subjected to XRD, FESEM, TEM, HRTEM, XPS, Raman Spectroscopy, ATR-FTIR, and Ultraviolet-visible (UV–vis) absorption and fluorescence spectroscopy to determine their structures, chemical compositions, and optical properties. The analysis revealed that dispersed, hydrophilic F-CNDs had a mean diameter of 2.5 nm. XPS and ATR-FTIR showed F-CNDs had a crystalline core and an amorphous surface decorated with –NH2, –COOH, and C=O. In addition, F-CNDs had a quantum yield of 15.5% and exhibited fluorescence with maximum emission at 406 nm when excited at 340 nm. Human colon cancer (HCT-116) cell assays showed that F-CNDs readily penetrated into the cells, had outstanding biocompatibility, high photostability, and minimal toxicity. An MTT assay showed that the viability of HCT-116 cells incubated for 24 h in the presence of F-CNDs (200 μg mL–1) exceeded 95%. Furthermore, when stimulated by filters of three different wavelengths (405, 488, and 555 nm) under a laser scanning confocal microscope, HCT-116 cells containing F-CNDs emitted blue, red, and green, respectively, which suggests F-CNDs might be useful in the biomedical field. Thus, we describe the production of a fluorescent nanoprobe from cashew nut waste potentially suitable for bioimaging applications.
Collapse
|
16
|
Regulating Optoelectronics of Carbon Dots with Redox-active Dopamine. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
17
|
Verma S, Thakur D, Pandey CM, Kumar D. Recent Prospects of Carbonaceous Nanomaterials-Based Laccase Biosensor for Electrochemical Detection of Phenolic Compounds. BIOSENSORS 2023; 13:305. [PMID: 36979517 PMCID: PMC10046707 DOI: 10.3390/bios13030305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Phenolic compounds (PhCs) are ubiquitously distributed phytochemicals found in many plants, body fluids, food items, medicines, pesticides, dyes, etc. Many PhCs are priority pollutants that are highly toxic, teratogenic, and carcinogenic. Some of these are present in body fluids and affect metabolism, while others possess numerous bioactive properties such as retaining antioxidant and antimicrobial activity in plants and food products. Therefore, there is an urgency for developing an effective, rapid, sensitive, and reliable tool for the analysis of these PhCs to address their environmental and health concern. In this context, carbonaceous nanomaterials have emerged as a promising material for the fabrication of electrochemical biosensors as they provide remarkable characteristics such as lightweight, high surface: volume, excellent conductivity, extraordinary tensile strength, and biocompatibility. This review outlines the current status of the applications of carbonaceous nanomaterials (CNTs, graphene, etc.) based enzymatic electrochemical biosensors for the detection of PhCs. Efforts have also been made to discuss the mechanism of action of the laccase enzyme for the detection of PhCs. The limitations, advanced emerging carbon-based material, current state of artificial intelligence in PhCs detection, and future scopes have also been summarized.
Collapse
Affiliation(s)
- Sakshi Verma
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - Deeksha Thakur
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - Chandra Mouli Pandey
- Department of Chemistry, Faculty of Science, SGT University, Gurugram 122505, India
| | - Devendra Kumar
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| |
Collapse
|
18
|
Xing Y, Yang M, Chen X. Fabrication of P and N Co-Doped Carbon Dots for Fe 3+ Detection in Serum and Lysosomal Tracking in Living Cells. BIOSENSORS 2023; 13:230. [PMID: 36831996 PMCID: PMC9954533 DOI: 10.3390/bios13020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Doping with heteroatoms allows the retention of the general characteristics of carbon dots while allowing their physicochemical and photochemical properties to be effectively modulated. In this work, we report the preparation of ultrastable P and N co-doped carbon dots (PNCDs) that can be used for the highly selective detection of Fe3+ and the tracking of lysosomes in living cells. Fluorescent PNCDs were facilely prepared via a hydrothermal treatment of ethylenediamine and phytic acid, and they exhibited a high quantum yield of 22.0%. The strong coordination interaction between the phosphorus groups of PNCDs and Fe3+ rendered them efficient probes for use in selective Fe3+ detection, with a detection limit of 0.39 μM, and we demonstrated their practicability by accurately detecting the Fe3+ contents in bio-samples. At the same time, PNCDs exhibited high lysosomal location specificity in different cell lines due to surface lipophilic amino groups, and real-time tracking of the lysosome morphology in HeLa cells was achieved. The present work suggests that the fabrication of heteroatom-doped CDs might be an effective strategy to provide promising tools for cytology, such as organelle tracking.
Collapse
Affiliation(s)
- Yanzhi Xing
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Mei Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Xuwei Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
19
|
Mohandoss S, Ganesan S, Palanisamy S, You S, Velsankar K, Sudhahar S, Lo HM, Lee YR. Nitrogen, sulfur, and phosphorus Co-doped carbon dots-based ratiometric chemosensor for highly selective sequential detection of Al 3+ and Fe 3+ ions in logic gate, cell imaging, and real sample analysis. CHEMOSPHERE 2023; 313:137444. [PMID: 36462566 DOI: 10.1016/j.chemosphere.2022.137444] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Heteroatom-doped photoluminescent (PL) carbon dots (CDs) have recently gained attention as optical sensors due to their excellent tunable properties. In this work, we propose a one-pot hydrothermal synthesis of PL nitrogen (N), sulfur (S), and phosphorus (P) co-doped carbon dots (NSP-CDs) using glutathione and phosphoric acid (H3PO4) as precursors. The synthesized NSP-CDs were characterized using different spectroscopic and microscopic techniques, including ultraviolet-visible (UV-Vis) spectroscopy, fluorescence spectroscopy, Fourier-transform infrared (FTIR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. The NSP-CDs exhibited excellent PL properties with green emission at 492 nm upon excitation at 417 nm, a high quantum yield of 26.7%, and dependent emission behavior. The as-prepared NSP-CDs were spherical with a well-monodispersed average particle size of 5.2 nm. Moreover, NSP-CDs demonstrate high PL stability toward a wider pH, high salt ionic strength, and various solvents. Furthermore, the NSP-CDs showed a three-state "off-on-off" PL response upon the sequential addition of Al3+ and Fe3+ ions, with a low limit of detection (LOD) of 10.8 nM for Al3+ and 50.7 nM for Fe3+. The NSP-CD sensor can construct an INHIBIT logic gate with Al3+ and Fe3+ ions as the chemical inputs and emissions as the output mode. Owing to an excellent tunable PL property and biocompatibility, the NSP-CDs were applied for sensing Al3+ and Fe3+ ions as well as live cell imaging. Furthermore, NSP-CDs were designed as PL sensors for detecting Al3+ and Fe3+ ions in real water show their potential application.
Collapse
Affiliation(s)
- Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Sivarasan Ganesan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 41349, Taiwan
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon, 25457, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon, 25457, Republic of Korea
| | - K Velsankar
- Department of Physics, Alagappa University, Karaikudi, 630003, Tamilnadu, India
| | | | - Huang-Mu Lo
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 41349, Taiwan.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
20
|
Tammina SK, Khan A, Rhim JW. Advances and prospects of carbon dots for microplastic analysis. CHEMOSPHERE 2023; 313:137433. [PMID: 36460157 DOI: 10.1016/j.chemosphere.2022.137433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Microplastics have become the world's most emerging pollutants today due to the ubiquitous use of plastics in everyday life and their ability to migrate from micro to nanoscale to every corner of the natural world, leading to ecological imbalances and global catastrophes. However, a standardized method for separating and analyzing microplastics from actual food or environmental samples has not been established. Therefore, it is necessary to develop a simple, fast, cost-effective, and accurate method that can accurately measure the degree of contamination of microplastics. As one of these methods, fluorometry has been proposed as a cost-effective method to detect, quantify and differentiate individual plastic particles. Therefore, this review discussed the technique for analyzing microplastics using fluorescent carbon dots (CDs). This review provided an overview of the impact of microplastics and the feasibility of using CDs to detect and analyze microplastics. In particular, this review will discuss novel microplastic analysis methods using CD and future application studies. The method using CDs will overcome the limitations of current microplastic analysis technology and may become a new method for detecting and analyzing microplastics.
Collapse
Affiliation(s)
- Sai Kumar Tammina
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Ajahar Khan
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
21
|
Sangubotla R, Won S, Kim J. Boronic acid-modified fluorescent sensor using coffee biowaste-based carbon dots for the detection of dopamine. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Sahu Y, Hashmi A, Patel R, Singh AK, Susan MABH, Carabineiro SAC. Potential Development of N-Doped Carbon Dots and Metal-Oxide Carbon Dot Composites for Chemical and Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3434. [PMID: 36234561 PMCID: PMC9565249 DOI: 10.3390/nano12193434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 05/31/2023]
Abstract
Among carbon-based nanomaterials, carbon dots (CDs) have received a surge of interest in recent years due to their attractive features such as tunable photoluminescence, cost effectiveness, nontoxic renewable resources, quick and direct reactions, chemical and superior water solubility, good cell-membrane permeability, and simple operation. CDs and their composites have a large potential for sensing contaminants present in physical systems such as water resources as well as biological systems. Tuning the properties of CDs is a very important subject. This review discusses in detail heteroatom doping (N-doped CDs, N-CDs) and the formation of metal-based CD nanocomposites using a combination of matrices, such as metals and metal oxides. The properties of N-CDs and metal-based CDs nanocomposites, their syntheses, and applications in both chemical sensing and biosensing are reviewed.
Collapse
Affiliation(s)
- Yogita Sahu
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Ayesha Hashmi
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Rajmani Patel
- Hemchand Yadav University, Durg 491001, Chhattisgarh, India
| | - Ajaya K. Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | | | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
23
|
Zhu P, Zhao X, Zhang Y, Liu Y, Zhao Z, Yang Z, Liu X, Zhang W, Guo Z, Wang X, Niu Y, Xu M. Mn3+/Mn4+ ion-doped carbon dots as fenton-like catalysts for fluorescence dual-signal detection of dopamine. Front Bioeng Biotechnol 2022; 10:964814. [PMID: 36159685 PMCID: PMC9490222 DOI: 10.3389/fbioe.2022.964814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Carbon dots (CDs), a new zero-dimensional material, have ignited a revolution in the fields of sensing, bioimaging, and biomedicine. However, the difficulty of preparing CDs with Fenton-like catalytic properties has seriously hindered their application in the diagnosis of oxidation/reduction biomolecules or metal ions. Here, an innovative method was successfully established to synthesize Mn3+/Mn4+ ion-doped blue-green fluorescent CDs with Fenton-like catalytic properties using manganese acetate as the manganese source. Specifically, the CDs prepared here were equipped with functional groups of -COOH, NH2, C=O, and Mn-O, offering the possibility to function as a fluorescence sensor. More importantly, the introduction of manganese acetate resulted in the preparation of CDs with Fenton-like catalytic properties, and the dual-signal fluorescence detection of dopamine (DA) was realized with linear ranges of 100–275 nM and 325–525 nM, and the detection limits were 3 and 12 nM, respectively. In addition, due to the Fenton-like catalytic activity of Mn3+/Mn4+ ion-doped CDs, the material has broad application prospects in the detection of oxidation/reduction biomolecules or metal ions related to disease diagnosis and prevention.
Collapse
Affiliation(s)
- Peide Zhu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
| | - Xuelin Zhao
- Department of Musculoskeletal Tumor, Senior Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yuqi Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
| | - Yinping Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
| | - Ziyi Zhao
- Department of Musculoskeletal Tumor, Senior Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Ziji Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
| | - Xinzhu Liu
- Senior Department of Burns and Plastic Surgery, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Weiye Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
| | - Zixuan Guo
- Department of Musculoskeletal Tumor, Senior Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Xiao Wang
- Medical School of Chinese PLA, Beijing, China
| | - Yingchun Niu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
- *Correspondence: Yingchun Niu, ; Meng Xu,
| | - Meng Xu
- Department of Musculoskeletal Tumor, Senior Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Yingchun Niu, ; Meng Xu,
| |
Collapse
|
24
|
Hou X, Ren P, Dai Z, Chen H, Tang W, Chen Z, Ren F, Jin Y. Ultrahigh voltage window, preeminent energy density aqueous supercapacitor derived from honeycomb-like porous carbon decorated with carbon dots. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Joseph J, Anappara AA. Comparative photoluminescence study of nitrogen doped carbon dots co-doped with boron and sulphur. LUMINESCENCE 2022; 37:1475-1481. [PMID: 35797229 DOI: 10.1002/bio.4320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
Although different studies in carbon dots (CDs) were reported based on heteroatom doping, most of them have focussed on the enhancement of fluorescence properties. Herein we report a comparative study of both fluorescence and room-temperature phosphorescence (RTP) of nitrogen-sulphur doped CDs (N-S CDs) and N, B doped CDs (N-B CDs) with N doped CDs (N CDs). The CDs employed in the study were synthesized through microwave-assisted pyrolysis. Among the doped CDs, sulphur doped CDs showed high fluorescence quantum yield. Upon irradiation, the aqueous dispersion of the CDs demonstrated blue fluorescence; and further, by incorporating the CDs in potash alum matrix, blue fluorescence, as well as green phosphorescence was observed. The phosphorescence lifetime measurements indicated that the N-S CDs exhibit a longer emission lifetime and red-shifted emission in contrast to other samples, which might be attributed to the presence of a greater proportion of surface states on N-S CDs.
Collapse
Affiliation(s)
- Julin Joseph
- Photonic Materials and Devices Laboratory, Department of Physics, National Institute of Technology Calicut, Kera, India.,PG Department of Physics, St Joseph's College for Women, Alappuzha, Kera, India
| | - Aji A Anappara
- Photonic Materials and Devices Laboratory, Department of Physics, National Institute of Technology Calicut, Kera, India
| |
Collapse
|
26
|
Zirak Hassan Kiadeh S, Ghaee A, Pishbin F, Nourmohammadi J, Farokhi M. Nanocomposite pectin fibers incorporating folic acid-decorated carbon quantum dots. Int J Biol Macromol 2022; 216:605-617. [PMID: 35809673 DOI: 10.1016/j.ijbiomac.2022.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022]
Abstract
Pectin has recently attracted increasing attention as an alternative biomaterial commonly used in biomedical and pharmaceutical fields. It shows several promising properties, including good biocompatibility, health benefits, nontoxicity, and biodegradation. In this research, novel nanocomposite fibers composed of folic acid-decorated carbon dots (CDs) in pectin/PEO matrix were fabricated using the electrospinning technique, which was never reported previously. Nitrogen-doped and nitrogen, sulfur-doped CDs were synthesized with average diameters of 2.74 nm and 2.17 nm using the one-step hydrothermal method, studied regarding their physicochemical, optical, and biocompatibility properties. The relative Quantum yields of N-CDs and N, S doped CDs were measured to be 54.7 % and 30.2 %, respectively. Nanocomposite fibers containing CDs were prepared, and their morphology, physicochemical properties, conductivity, drug release behavior, and cell viability were characterized. The results indicated that CDs improve fibrous scaffolds' tensile strength from 13.74 to 35.22 MPa while maintaining comparable extensibility. Furthermore, by incorporation of CDs in the prepared fibers conductivity enhanced from 8.69 × 10-9 S·m-1 to 1.36 × 10-4 S·m-1. The nanocomposite fibrous scaffold was also biocompatible with controlled drug release over 212 h, potentially promising tissue regeneration.
Collapse
Affiliation(s)
- Shahrzad Zirak Hassan Kiadeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Fatemehsadat Pishbin
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
27
|
Sandwich Fluorescence Detection of Foodborne Pathogen Staphylococcus aureus with CD Fluorescence Signal Amplification in Food Samples. Foods 2022; 11:foods11070945. [PMID: 35407032 PMCID: PMC8997861 DOI: 10.3390/foods11070945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
Timely detection of Staphylococcus aureus (S. aureus) is critical because it can multiply to disease−causing levels in a matter of hours. Herein, a simple and sensitive DNA tetrahedral (Td) fluorescence signal amplifier with blue carbon quantum dots (bCDs) was prepared for sandwich detection of S. aureus. bCD was modified at the apex of Td, and an aptamer on Td was used to accurately identify and “adsorb” the amplifier to the surface of S. aureus. Atomic force microscopy (AFM) demonstrates the successful preparation of this signal amplifier. The fluorescence intensity emitted in this strategy increased 4.72 times. The strategy showed a stronger fluorescence intensity change, sensitivity (linear range of 7.22 × 100–1.44 × 109 CFU/mL with a LOD of 4 CFU/mL), and selectivity. The recovery rate in qualified pasteurized milk and drinking water samples was 96.54% to 104.72%. Compared with simple aptamer sandwich detection, these fluorescence signal amplifiers have improved fluorescence detection of S. aureus. Additionally, this fluorescent signal amplification strategy may be applied to the detection of other food pathogens or environmental microorganisms in the future.
Collapse
|
28
|
Xia Y, Zhao Y, Ai F, Yi Y, Liu T, Lin H, Zhu G. N and P co-doped MXenes nanoribbons for electrodeposition-free stripping analysis of Cu(II) and Hg(II). JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127974. [PMID: 34883378 DOI: 10.1016/j.jhazmat.2021.127974] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
The present electrochemical stripping analysis (ESA) for multiple heavy metal ions (HMI) generally requires an electrodeposition process at a very low potential below -1.0 V, which inevitably makes the sensing procedures more complex, inefficient and power-wasting. Meanwhile, the emerging MXenes rising-star materials have been studied in various fields recently. While there are only few reports focusing on the heteroatom doping of MXenes, especially no doping-MXenes for electroanalysis. Based on these issues, a novel multifunctional heteroatoms-doped MXenes nanomaterial, N and P co-doped Ti3C2Tx MXenes nanoribbons (N,P-Ti3C2TxR), was prepared herein for the first time, and then N,P-Ti3C2TxR was used as electrode material to propose an electrodeposition-free ESA strategy for multiple HMI (Cu2+, Hg2+). Owing to the unique spontaneous adsorption and reducing capacities of N,P-Ti3C2TxR towards Cu2+ and Hg2+ coupled with the excellent sensing performances, Cu2+ and Hg2+ can undergo self-reduction to be preconcentrated on N,P-Ti3C2TxR surface with the form of Cu0 and Hg0, thus a simple and ultrasensitive electrodeposition-free ESA platform was developed successfully for the simultaneous detection of Cu2+and Hg2+. This work opened a new pathway for the detection for multiple HMI and the preparation/application of heteroatoms doping MXenes.
Collapse
Affiliation(s)
- Yixuan Xia
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China
| | - Yong Zhao
- Guangzhou Baiyun Airport Customs Comprehensive Technical Service Center, Guangzhou Baiyun Airport Customs District People's Republic of China, Guangzhou 510470, PR China
| | - Fengxiang Ai
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China
| | - Yinhui Yi
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China
| | - Tingting Liu
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China
| | - Huiyu Lin
- Fujian Key Laboratory of Functional Marine Sensing Materials, Ocean College, Minjiang University, PR China
| | - Gangbing Zhu
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Ocean College, Minjiang University, PR China.
| |
Collapse
|
29
|
Atchudan R, Edison TNJI, Perumal S, Vinodh R, Sundramoorthy AK, Babu RS, Lee YR. Morus nigra-derived hydrophilic carbon dots for the highly selective and sensitive detection of ferric ion in aqueous media and human colon cancer cell imaging. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Ge G, Li L, Wang D, Chen M, Zeng Z, Xiong W, Wu X, Guo C. Carbon dots: synthesis, properties and biomedical applications. J Mater Chem B 2021; 9:6553-6575. [PMID: 34328147 DOI: 10.1039/d1tb01077h] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbon dots (CDs) are a new type of carbon nanomaterial that have unique physical and chemical properties, good biocompatibility, low toxicity, and easy surface functionalization, making them widely used in biological imaging, environmental monitoring, chemical analysis, targeted drug delivery, disease diagnosis, therapy, etc. In this review, our content is mainly divided into four parts. In the first part, we focused on the preparation methods of CDs, including arc discharge, laser ablation, electrochemical oxidation, chemical oxidation, combustion, hydrothermal/solvent thermal, microwave, template, method etc. Next, we summarized methods of CD modification, including heteroatom doping and surface functionalization. Then, we discussed the optical properties of CDs (ultraviolet absorption, photoluminescence, up-conversion fluorescence, etc.). Lastly, we reviewed the common applications of CDs in biomedicine from the aspects of in vivo and in vitro imaging, sensors, drug delivery, cancer theranostics, etc. Furthermore, we also discussed the existing problems and the future development direction of CDs.
Collapse
Affiliation(s)
- Guili Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410008, China.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lesani P, Lu Z, Singh G, Mursi M, Mirkhalaf M, New EJ, Zreiqat H. Influence of carbon dot synthetic parameters on photophysical and biological properties. NANOSCALE 2021; 13:11138-11149. [PMID: 34132711 DOI: 10.1039/d1nr01389k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, carbon dots (CDs) have been widely investigated for biological applications in imaging. One-step hydrothermal synthesis is considered to be one of the most promising methods for the synthesis of CDs, due to its simple and rapid manipulation, flexible selection of ingredients, environmentally friendly conditions, and low-cost. A number of synthetic and post-synthetic parameters, including solvent, heating time, dopant quantity, and particle size distribution, play a crucial role in controlling the size and surface structure of CDs, which ultimately have influence on their photophysical and biological behavior. Despite the crucial role of each of these parameters in defining the yield and nature of synthesized CDs, they have not previously been rigorously optimized, particularly with respect to desired biological applications. Herein, we report our comprehensive optimization of the parameters employed for the hydrothermal synthesis of CDs to gain a better understanding of the effect of these parameters on optical properties, cytotoxicity, and cellular uptake efficiency. Furthermore, this work will open up new pathways toward the design of CDs with physiochemical properties tailored for specific biomedical applications such as bioimaging.
Collapse
Affiliation(s)
- Pooria Lesani
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, the University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | |
Collapse
|
32
|
Biocompatible sulfur nitrogen co-doped carbon quantum dots for highly sensitive and selective detection of dopamine. Colloids Surf B Biointerfaces 2021; 205:111874. [PMID: 34044332 DOI: 10.1016/j.colsurfb.2021.111874] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022]
Abstract
In this work, sulfur and nitrogen co-doped carbon quantum dots (S,N-CQDs) were prepared via one-pot hydrothermal treatment of EDTA disodium and sodium sulfide. The prepared S,N-CQDs were characterized by TEM, XRD, FT-IR, XPS, UV-vis absorption and fluorescence spectra to characterize their morphology, crystal structure, functional groups, elemental composition, and optical properties. It was found that S and N elements were successfully doped into the CQDs and the morphology was approximately spherical with an average particle size of 2.16 nm, in which the excitation/emission wavelengths were 350 and 420 nm, respectively. Compared with single element doped CQDs, double element doped CQDs have a higher quantum yield and excellent optical stability. Cell experiments showed that S,N-CQDs had good biocompatibility because they had no obvious toxicity on both normal cell lines and cancer cell lines. More importantly, based on the synergy of static quenching and dynamic quenching, the S,N-CQDs were used as effective fluorescent probes for sensitive detection of DA, with high anti-interference and low limit of detection. Based on the good biocompatibility of S,N-CQDs, the detection of dopamine in actual serum samples were carried out and the results showed an excellent recovery rate. Therefore, this work provides a dopamine sensor with a practical application prospect.
Collapse
|
33
|
Mi G, Yang M, Wang C, Zhang B, Hu X, Hao H, Fan J. A simple "turn off-on" ratio fluorescent probe for sensitive detection of dopamine and lysine/arginine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119555. [PMID: 33607446 DOI: 10.1016/j.saa.2021.119555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Herein, a novel and unique "off-on" single-excited dual-emissive ratio fluorescence sensor for highly selective and sensitive detection of dopamine and lysine/arginine has been developed via covalently connecting the yellowish-green fluorescent carbon dots (CDs) with the orange-red fluorescent AgInSe2@ZnS quantum dots (AISe QDs). This ratiometric fluorescence sensor provided with two-emission peaks at 495 and 575 nm under a single-excitation wavelength of 395 nm. The fluorescence of AISe QDs (F575) is effective quenched by dopamine and only efficientlyrecovered by lysine/arginine; meanwhile, the light of CDs (F495) remains unchanged. The fluorescence intensity ratio (F495/F575) showed a linear relationship with the concentration of DA in the range of 0-100 μM, and the detection limit as low as 0.21 nM. lysine and arginine with the detection limit of 0.36 nM and 26 μM, respectively. Furthermore, the fluorescence probe is successfully used to detect DA in human serum. Therefore, the as-synthesized probe shows excellent potential application for the determination of DA in real samples.
Collapse
Affiliation(s)
- Guohua Mi
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Min Yang
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Cunjin Wang
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Bin Zhang
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Xiaoyun Hu
- School of Physics, Northwest University, Xi'an 710069, PR China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China.
| | - Jun Fan
- College of Food Science and Engineering, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
34
|
Yang B, Wu M, Pang S, Li D, Yang Y, Wang L, Li Z, Zhang J, Yang X. One-pot synthesis of folic acid modified carbonized polymer dots with red emittision for selective imaging of cancer cells. NANOTECHNOLOGY 2020; 31:475501. [PMID: 32886652 DOI: 10.1088/1361-6528/abadc5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbonized polymer dots (CPDs), as a novel fluorescent material, have broad application prospects in the fields of bio-imaging, bio-sensors, disease diagnosis and photovoltaic devices due to their low cost, low toxicity, easy modification and little environmental impact. In this paper, folic acid (FA) modified CPDs (FA-CPDs) are synthesized from p-Phenylenediamine (p-PD) and FA molecules using a traditional one pot hydrothermal reaction in order to detect cancer cells containing a folate receptor (FR). The synthesized FA-CPDs were characterized by transmission electron microscopy, Fourier transfrom infrared spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, UV-vis and fluorescence techniques. The red fluorescence emission is realized by doping phosphorus atoms into the carbonized polymer. Upon excitation at 513 nm, the maximum emission wavelength of FA-CPDs aqueous solution was obtained at 613 nm. Moreover, the as-prepared FA-CPDs exhibit excellent excitation-independent behavior and good stability with high quantum yield (QY) at about 30.6%. The binding of FA-CPDs with FRs on cancer cells produces target recognition and enters the cells through endocytosis. Additionally, it is worth noting that FA-CPDs have good biocompatibility and imaging in HeLa cells has been successfully achieved. Therefore, our FA-CPDs have potential applications as biocompatibility probes for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Boyu Yang
- School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Oliveira EGDL, de Oliveira HP, Gomes ASL. Metal nanoparticles/carbon dots nanocomposites for SERS devices: trends and perspectives. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03306-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
36
|
Development of dopamine biosensor based on polyaniline/carbon quantum dots composite. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02158-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Kou X, Jiang S, Park SJ, Meng LY. A review: recent advances in preparations and applications of heteroatom-doped carbon quantum dots. Dalton Trans 2020; 49:6915-6938. [PMID: 32400806 DOI: 10.1039/d0dt01004a] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carbon quantum dots (CQDs) are widely used in optoelectronic catalysis, biological imaging, and ion probes owing to their low toxicity, stable photoluminescence, and ease of chemical modification. However, the low fluorescence yield and monochromatic fluorescence of CQDs limit their practical applications. This review summarizes the commonly used approaches for improving the fluorescence efficiency of CQDs doped with non-metallic (heteroatom) elements. Herein, three types of heteroatom-doped CQDs have been investigated: (1) CQDs doped with a single heteroatom; (2) CQDs doped with two heteroatoms; and (3) CQDs doped with three heteroatoms. The limitations and future perspectives of doped CQDs from the viewpoint of producing CQDs for specific applications, especially for bioimaging and light emitting diodes, have also been discussed herein.
Collapse
Affiliation(s)
- Xiaoli Kou
- Department of Chemical Engineering, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | | | | | | |
Collapse
|
38
|
Vashisht D, Sharma E, Kaur M, Vashisht A, Mehta SK, Singh K. Solvothermal assisted phosphate functionalized graphitic carbon nitride quantum dots for optical sensing of Fe ions and its thermodynamic aspects. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117773. [PMID: 31740119 DOI: 10.1016/j.saa.2019.117773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
A facile method has been proposed for the determination of Ferrous (Fe(II)) and Ferric (Fe(III)) ions using phosphate functionalized graphitic carbon nitride quantum dots (Ph-g-CNQDs) in an aqueous medium. The easy solvothermal procedure using oleic acid as the solvent yielded the Ph-g-CNQDs in less than 30 min. The communication among the Fe(II) and Fe(III) with Ph-g-CNQDs caused quenching of the blue Ph-g-CNQDs fluorescence signals. The Ph-g-CNQDs have been successfully characterized using X-ray diffractometry (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), Fourier Transform Infrared (FT-IR) spectroscopy, UV-vis absorption and photoluminescence spectrophotometry. The temperature dependent behavior of the Ph-g-CNQDs was also observed and various thermodynamic parameters have also been evaluated. The Ph-g-CNQDs displayed an excellent quantum yield of 60.54% using quinine sulfate as the standard reference. The developed method has been applied to water samples collected from different sources and good recoveries were observed which entitles this method as apt for real time monitoring.
Collapse
Affiliation(s)
- Devika Vashisht
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ekta Sharma
- Department of Chemistry, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi 174103, India
| | - Manpreet Kaur
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Aseem Vashisht
- Department of Physics, Panjab University, Chandigarh 160014, India
| | - S K Mehta
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Kulvinder Singh
- Department of Chemistry, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi 174103, India.
| |
Collapse
|
39
|
Tammina SK, Yang Y. Highly sensitive and selective detection of 4-nitrophenol, and on-off-on fluorescence sensor for Cr (VI) and ascorbic acid detection by glucosamine derived n-doped carbon dots. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112134] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Tammina SK, Wan Y, Li Y, Yang Y. Synthesis of N, Zn-doped carbon dots for the detection of Fe3+ ions and bactericidal activity against Escherichia coli and Staphylococcus aureus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 202:111734. [DOI: 10.1016/j.jphotobiol.2019.111734] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/11/2019] [Accepted: 12/05/2019] [Indexed: 11/28/2022]
|