1
|
Abdel Gaber SA, Aly MA, Mokhtar A, Abdel Kader MH. Photodynamic therapy mediated by silver-chlorophyllin nanoparticles induced an apoptotic anti-breast cancer activity and sunlight-mediated Musca domestica pesticide and larvicide activities. Photochem Photobiol 2025. [PMID: 40254792 DOI: 10.1111/php.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/22/2025]
Abstract
Photodynamic therapy (PDT) is an attractive therapeutic and pest-controlling modality. This study aims to synthesize silver nanoparticles capped with copper chlorophyllin (AgNPs-CHL) and examine their anti-breast cancer, Musca domestica pesticide, and larvicidal activities. Silver nitrate was the precursor, and CHL was the capping agent. Nanoparticles were characterized using UV-VIS, TEM, XRD, and zeta sizer. The anticancer activity against MDA-MB-231 cells was examined by MTT assay, and flow cytometry was applied to study the mode of cell death. Nanoparticle cellular internalization was investigated by confocal laser scanning microscope. The same nanoparticles were fed to adult Musca domestica followed by sunlight exposure, and the lethality was quantified. Furthermore, the nanoparticles were fed to Musca domestica larvae followed by sunlight illumination, and the number of dead larvae was counted over 24 h. Results revealed success in synthesizing spherical AgNPs with an average diameter of 25 nm. AgNPs-CHL-induced apoptotic cell death in MDA-MB-231 and were sufficiently internalized within the cytoplasm. Sunlight exposure following 24 h of feeding resulted in 60% death of the adult Musca domestica and 75% death of the larvae. This is the first study to demonstrate the multi-activities of the synthesized AgNPs-CHL and encourages further studies.
Collapse
Affiliation(s)
- Sara A Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed A Aly
- Pharmaceutical Biology Department, Pharmacy Faculty, German University in Cairo, New Cairo City, Egypt
| | - Amany Mokhtar
- Public Health Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Biomedical Research Department, Armed Forces College of Medicine, Cairo, Egypt
| | | |
Collapse
|
2
|
Sadeghi S, Mousavi-Sabet H, Hedayati A, Zargari A, Multisanti CR, Faggio C. Copper-oxide nanoparticles effects on goldfish (Carassius auratus): Lethal toxicity, haematological, and biochemical effects. Vet Res Commun 2024; 48:1611-1620. [PMID: 38413536 DOI: 10.1007/s11259-024-10338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
The advancement of nanotechnology and the widespread use of nanoparticles (NPs) in various industries have highlighted the importance of studying the potential harmful effects of nanomaterials on organisms. This study aimed to evaluate the lethal toxicity thresholds of Copper Oxide Nanoparticles (CuO-NPs). The investigation focused on examining the sub-lethal toxicity effects of CuO-NPs on blood parameters, as well as their influence on the gill tissue and liver of goldfish (Carassius auratus). Goldfish were exposed to varying concentrations of CuO-NPs (10, 20, 30, 40, 60, 80, and 100 mg/L) for 96 h. The Probit software was employed to determine the LC50 (lethal concentration causing 50% fish mortality) by monitoring and documenting fish deaths at 24, 48, 72, and 96-hour intervals. Subsequently, sub-lethal concentrations of 5% LC50 (T1), 10% LC50 (T2), and 15% LC50 (T3) of CuO-NPs were administered based on the LC50 level to investigate their effects on haematological parameters, encompassing the number of red blood cells and white blood cells, hematocrit and haemoglobin levels, mean corpuscular volume, mean corpuscular haemoglobin and mean corpuscular haemoglobin concentration. Additionally, histopathological examinations were conducted on the gill and liver tissues of the studied fish. Results indicated concentration-response of fish mortalities. In general, changes in the blood biochemical parameters of fish exposed to sub-lethal concentrations of CuO-NPs included a significant decrease in leukocyte count and glucose level and an increase in protein and triglyceride levels. Furthermore, an escalation in tissue damage such as gill apical and basal hyperplasia, lamellae attachment, squamous cell swelling, blood cell infiltration, and cellular oedema in gills tissue. and bleeding, increased sinusoidal space, necrosis, lateralization of the nucleus, cell swelling, and water retention in the liver. The findings showed dose-dependent increasing toxicity in goldfish specimens exposed to CuO-NPs.
Collapse
Affiliation(s)
- Saeed Sadeghi
- Faculty of Natural Resources, Guilan University, Rasht, Iran
| | | | - Aliakbar Hedayati
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ashkan Zargari
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
- Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
3
|
Onen H, Luzala MM, Kigozi S, Sikumbili RM, Muanga CJK, Zola EN, Wendji SN, Buya AB, Balciunaitiene A, Viškelis J, Kaddumukasa MA, Memvanga PB. Mosquito-Borne Diseases and Their Control Strategies: An Overview Focused on Green Synthesized Plant-Based Metallic Nanoparticles. INSECTS 2023; 14:221. [PMID: 36975906 PMCID: PMC10059804 DOI: 10.3390/insects14030221] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Mosquitoes act as vectors of pathogens that cause most life-threatening diseases, such as malaria, Dengue, Chikungunya, Yellow fever, Zika, West Nile, Lymphatic filariasis, etc. To reduce the transmission of these mosquito-borne diseases in humans, several chemical, biological, mechanical, and pharmaceutical methods of control are used. However, these different strategies are facing important and timely challenges that include the rapid spread of highly invasive mosquitoes worldwide, the development of resistance in several mosquito species, and the recent outbreaks of novel arthropod-borne viruses (e.g., Dengue, Rift Valley fever, tick-borne encephalitis, West Nile, yellow fever, etc.). Therefore, the development of novel and effective methods of control is urgently needed to manage mosquito vectors. Adapting the principles of nanobiotechnology to mosquito vector control is one of the current approaches. As a single-step, eco-friendly, and biodegradable method that does not require the use of toxic chemicals, the green synthesis of nanoparticles using active toxic agents from plant extracts available since ancient times exhibits antagonistic responses and broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on the different mosquito control strategies in general, and on repellent and mosquitocidal plant-mediated synthesis of nanoparticles in particular, has been reviewed. By doing so, this review may open new doors for research on mosquito-borne diseases.
Collapse
Affiliation(s)
- Hudson Onen
- Department of Entomology, Uganda Virus Research Institute, Plot 51/59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda
| | - Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Stephen Kigozi
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Rebecca M. Sikumbili
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Department of Chemistry, Faculty of Science, University of Kinshasa, Kinshasa B.P. 190, Democratic Republic of the Congo
| | - Claude-Josué K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Sébastien N. Wendji
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aristote B. Buya
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aiste Balciunaitiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Jonas Viškelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Martha A. Kaddumukasa
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
4
|
Meghana Navada K, Nagaraja GK, Neetha D'Souza J, Kouser S, Ranjitha R, Ganesha A, Manasa DJ. Synthesis of Phyto-functionalized nano hematite for lung cancer suppressive activity and Paracetamol sensing by electrochemical studies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Lima AR, da Silva CM, Caires CSA, Chaves H, Pancrácio AS, de Arruda EJ, Caires ARL, Oliveira SL. Photoinactivation of Aedes aegypti larvae using riboflavin as photosensitizer. Photodiagnosis Photodyn Ther 2022; 39:103030. [PMID: 35872352 DOI: 10.1016/j.pdpdt.2022.103030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 10/17/2022]
Abstract
More than half of the global population lives in areas where the Aedes aegypti mosquito is present. Efforts have been made to deal with the population of this mosquito in the larval and adult stages to prevent outbreaks of diseases (Dengue, Zika, Chikungunya, and Yellow Fever). In this scenario, photodynamic inactivation may be an effective alternative method to control this vector population. To evaluate the efficacy of the riboflavin - B2 vitamin - as photosensitizer (PS) in the photodynamic inactivation of Ae. aegypti larvae, different concentrations (0; 0.005; 0.010; 0.025; 0.050; 0.075 and 0.100 mg mL-1) were evaluated under white light from RGB LEDs at a light dose of 495.2 J cm-2. The results reveal that riboflavin can be successfully applied as a PS agent to photoinactivate Ae. aegypti larvae, showing its potential to deal with the larvae population.
Collapse
Affiliation(s)
- A R Lima
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, Campo Grande, MS 79070-900, Brazil; São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil.
| | - C M da Silva
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, Campo Grande, MS 79070-900, Brazil
| | - C S A Caires
- Grupo de Espectroscopia e Bioinformática Aplicados a Biodiversidade e a Saúde, Faculdade de Medicina, CP 549, Campo Grande, MS 79070-900, Brazil
| | - H Chaves
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, Campo Grande, MS 79070-900, Brazil
| | - A S Pancrácio
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, Campo Grande, MS 79070-900, Brazil
| | - E J de Arruda
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, CP 533, Dourados, MS 79804-970, Brazil
| | - A R L Caires
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, Campo Grande, MS 79070-900, Brazil
| | - S L Oliveira
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, Campo Grande, MS 79070-900, Brazil.
| |
Collapse
|
6
|
Biomimetic green approach on the synthesis of silver nanoparticles using Calotropis gigantea leaf extract and its biological applications. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Rogerio CB, Carvalho Abrantes D, de Oliveira JL, Ribeiro de Araújo D, Germano da Costa T, de Lima R, Fernandes Fraceto L. Cellulose Hydrogels Containing Geraniol and Icaridin Encapsulated in Zein Nanoparticles for Arbovirus Control. ACS APPLIED BIO MATERIALS 2022; 5:1273-1283. [PMID: 35167254 DOI: 10.1021/acsabm.1c01286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The most important arboviruses are those that cause dengue, yellow fever, chikungunya, and Zika, for which the main vector is the Aedes aegypti mosquito. The use of repellents is an important way to combat mosquito-borne pathogens. In this work, a safe method of protection employing a repellent was developed based on a slow release system composed of zein nanoparticles containing the active agents icaridin and geraniol incorporated in a cellulose gel matrix. Analyses were performed to characterize the nanoparticles and the gel formulation. The nanoparticles containing the repellents presented a hydrodynamic diameter of 229 ± 9 nm, polydispersity index of 0.38 ± 0.10, and zeta potential of +29.4 ± 0.8 mV. The efficiencies of encapsulation in the zein nanoparticles exceeded 85% for icaridin and 98% for geraniol. Rheological characterization of the gels containing nanoparticles and repellents showed that the viscoelastic characteristic of hydroxypropylmethylcellulose gel was preserved. Release tests demonstrated that the use of nanoparticles in combination with the gel matrix led to improved performance of the formulations. Atomic force microscopy analyses enabled visualization of the gel network containing the nanoparticles. Cytotoxicity assays using 3T3 and HaCaT cell cultures showed low toxicity profiles for the active agents and the nanoparticles. The results demonstrated the potential of these repellent systems to provide prolonged protection while decreasing toxicity.
Collapse
Affiliation(s)
- Carolina B Rogerio
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| | - Daniele Carvalho Abrantes
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| | - Jhones L de Oliveira
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | | | - Tais Germano da Costa
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo 18023-000, Brazil
| | - Renata de Lima
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo 18023-000, Brazil
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| |
Collapse
|
8
|
Sundararajan B, Sathishkumar G, Seetharaman PK, Moola AK, Duraisamy SM, Mutayran AASB, Seshadri VD, Thomas A, Ranjitha Kumari BD, Sivaramakrishnan S, Kweka EJ, Zhou Z. Biosynthesized Gold Nanoparticles Integrated Ointment Base for Repellent Activity Against Aedes aegypti L. NEOTROPICAL ENTOMOLOGY 2022; 51:151-159. [PMID: 34822111 DOI: 10.1007/s13744-021-00920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The present study focused on preparing a nano-ointment base integrated with biogenic gold nanoparticles from Artemisia vulgaris L. leaf extract. As prepared, nano-ointment was characterized by using Fourier-transform infrared spectroscopy, and the morphology of the nano-ointment was confirmed through a scanning electron microscope. Initially, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide results showed nano-ointment cytocompatibility at different concentrations (20-200 μg/mL) against L929 cells. The in vitro hemolysis assay also revealed that the nano-ointment is biocompatible. Further studies confirmed that nano-ointment has repellent activity with various concentrations (12.5, 25, 50, 75, and 100 ppm). At 100 ppm concentration, the highest repellent activity was observed at 60-min protection time against the Aedes aegypti L. female mosquitoes. The results indicated that the increasing concentration of nano-ointment prolongs the protection time. Moreover, the outcome of this study provides an alternative nano-ointment to synthetic repellent and insecticides after successful clinical trials. It could be an eco-friendly, safer nano-bio repellent, which can protect from dengue fever mosquitoes.
Collapse
Affiliation(s)
- Balasubramani Sundararajan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, People's Republic of China.
| | | | | | - Anil Kumar Moola
- Dept of Biotechnology, Aditya Degree and PG College, Kakinada, Andhra Pradesh, India
| | | | | | | | - Adelina Thomas
- School of Pharmacy, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | | | | | - Eliningaya J Kweka
- Division of Livestock and Human Diseases Vector Control, Mosquito Section, Tropical Pesticides Research Institute, Arusha, Tanzania
- Dept of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, People's Republic of China.
| |
Collapse
|
9
|
Simple and cost-effective approach to synthesis of iron magnesium oxide nanoparticles using Alstonia scholaris and Polyalthia longifolia leaves extracts and their antimicrobial, antioxidant and larvicidal activities. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02051-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Venturini FP, de Souza LM, Garbuio M, Inada NM, de Souza JP, Kurachi C, de Oliveira KT, Bagnato VS. Environmental safety and mode of action of a novel curcumin-based photolarvicide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29204-29217. [PMID: 32430723 DOI: 10.1007/s11356-020-09210-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Aedes aegypti is the vector of important diseases like dengue, zika, chikungunya, and yellow fever. Vector control is pivotal in combating the spread of these mosquito-borne illnesses. Photoactivable larvicide curcumin obtained from Curcuma longa Linnaeus has shown high potential for Ae. aegypti larvae control. However, the toxicity of this photosensitizer (PS) might jeopardize non-target aquatic organisms. The aim of this study was to evaluate the toxicity of this PS to Daphnia magna and Danio rerio, besides assessing its mode of action through larvae biochemical and histological studies. Three PS formulations were tested: PS in ethanol+DMSO, PS in sucrose, and PS in D-mannitol. The LC50 of PS in ethanol+DMSO to D. rerio was 5.9 mg L-1, while in D. magna the solvents were extremely toxic, and LC50 was not estimated. The PS formulations in sugars were not toxic to neither of the organisms. Reactive oxygen species (ROS) were generated in D. magna exposed to 50 mg L-1 of PS in D-mannitol, and D. rerio did not elicit this kind of response. D. magna feeding rates were not affected by the PS in D-mannitol. Concerning Ae. aegypti larvae, there were changes in reduced glutathione and protein levels, while catalase activity remained stable after exposure to PS in D-mannitol and sunlight. Histological changes were observed in larvae exposed to PS in sucrose and D-mannitol, most of them irreversible and deleterious. Our results show the feasibility of this photolarvicide use in Ae. aegypti larvae control and its safety to non-target organisms. These data are crucial to this original vector control approach implementation in public health policies.
Collapse
Affiliation(s)
- Francine Perri Venturini
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, Sao Carlos, São Paulo, 13560-970, Brazil.
- Optical Group, São Carlos Institute of Physics, University of São Paulo, Sao Carlos, São Paulo, 13560-970, Brazil.
| | - Larissa Marila de Souza
- Optical Group, São Carlos Institute of Physics, University of São Paulo, Sao Carlos, São Paulo, 13560-970, Brazil
- PPG Biotec, Federal University of São Carlos, Sao Carlos, São Paulo, 13565-905, Brazil
| | - Matheus Garbuio
- Optical Group, São Carlos Institute of Physics, University of São Paulo, Sao Carlos, São Paulo, 13560-970, Brazil
- PPG Biotec, Federal University of São Carlos, Sao Carlos, São Paulo, 13565-905, Brazil
| | - Natalia Mayumi Inada
- Optical Group, São Carlos Institute of Physics, University of São Paulo, Sao Carlos, São Paulo, 13560-970, Brazil
| | - Jaqueline Pérola de Souza
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, Sao Carlos, São Paulo, 13560-970, Brazil
| | - Cristina Kurachi
- Optical Group, São Carlos Institute of Physics, University of São Paulo, Sao Carlos, São Paulo, 13560-970, Brazil
| | | | - Vanderlei Salvador Bagnato
- Optical Group, São Carlos Institute of Physics, University of São Paulo, Sao Carlos, São Paulo, 13560-970, Brazil
| |
Collapse
|
11
|
de Souza LM, Venturini FP, Inada NM, Iermak I, Garbuio M, Mezzacappo NF, de Oliveira KT, Bagnato VS. Curcumin in formulations against Aedes aegypti: Mode of action, photolarvicidal and ovicidal activity. Photodiagnosis Photodyn Ther 2020; 31:101840. [PMID: 32485405 DOI: 10.1016/j.pdpdt.2020.101840] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Combating the Aedes aegypti vector is still the key to control the transmission of many arboviruses, such as Dengue, Zika, and Chikungunya. As few products are efficient for Aedes aegypti control, the search for new strategies have become pivotal., t Substances with photodynamic activity, such as curcumin and their formulations, are strongly encouraged, due to their multi-target mechanism of action. In this study, we evaluated the photolarvicidal and ovicidal activity of curcumin in the presence of sucrose (named SC) and d-mannitol (named DMC). To support the understanding of the larvicidal action of these formulations, Raman micro-spectroscopy was employed. We also studied the morphological changes in Danio rerio (Zebrafish) gills, a non-target organism, and demonstrate that this is an environmentally friendly approach. Both SC and DMC presented a high photo-larvicidal potential. DMC showed the highest larval mortality, with LC50-24h values between 0.01 and 0.02 mg.L-1. DMC also significantly decreased egg hatchability, reaching a hatching rate of 10 % at 100 mg.L-1. The analysis of molecular mechanisms via Raman micro-spectroscopy showed that DMC is highly permeable to the peritrophic membrane of the larva, causing irreversible damage to the simple columnar epithelium of the digestive tube. Histological changes found in the D. rerio gills were of minimal or moderate pathological importance, indicating an adaptive trait rather than detrimental characteristics. These findings indicate that curcumin in sugar formulations is highly efficient, especially DMC, proving it to be a promising and safe alternative to control Aedes mosquitoes. Moreover, Raman micro-spectroscopy demonstrated high potential as an analytical technique to understand the mechanism of action of larvicides.
Collapse
Affiliation(s)
- Larissa Marila de Souza
- Federal University of São Carlos, PPG Biotec, São Carlos 13565-905, São Paulo, Brazil; São Carlos Institute of Physics, University of São Paulo, São Carlos 13560-970, São Paulo, Brazil.
| | - Francine Perri Venturini
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13560-970, São Paulo, Brazil
| | - Natalia Mayumi Inada
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13560-970, São Paulo, Brazil
| | - Ievgeniia Iermak
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13560-970, São Paulo, Brazil
| | - Matheus Garbuio
- Federal University of São Carlos, PPG Biotec, São Carlos 13565-905, São Paulo, Brazil; São Carlos Institute of Physics, University of São Paulo, São Carlos 13560-970, São Paulo, Brazil
| | | | | | | |
Collapse
|
12
|
Bortoletti M, Molinari S, Fasolato L, Ugolotti J, Tolosi R, Venerando A, Radaelli G, Bertotto D, De Liguoro M, Salviulo G, Zboril R, Vianello F, Magro M. Nano-immobilized flumequine with preserved antibacterial efficacy. Colloids Surf B Biointerfaces 2020; 191:111019. [PMID: 32305623 DOI: 10.1016/j.colsurfb.2020.111019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/26/2022]
Abstract
Flumequine was nano-immobilized by self-assembly on iron oxide nanoparticles, called surface active maghemite nanoparticles (SAMNs). The binding process was studied and the resulting core-shell nanocarrier (SAMN@FLU) was structurally characterized evidencing a firmly immobilized organic canopy on which the fluorine atom of the antibiotic was exposed to the solvent. The antibiotic efficacy of the SAMN@FLU nanocarrier was tested on a fish pathogenic bacterium (Aeromonas veronii), a flumequine sensitive strain, in comparison to soluble flumequine and the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were assessed. Noteworthy, the MIC and MBC of soluble and nanoparticle bound drug were superimposable. Moreover, the interactions between SAMN@FLU nanocarrrier and microorganism were studied by transmission electron microscopy evidencing the ability of the complex to disrupt the bacterial wall. Finally, a preliminary in vivo test was provided using Daphnia magna as animal model. SAMN@FLU was able to protect the crustacean from the fatal consequences of a bacterial infection and showed no sign of toxicity. Thus, in contrast with the strength of the interaction, nano-immobilized FLU displayed a fully preserved antimicrobial activity suggesting the crucial role of fluorine in the drug mechanism of action. Besides the importance for potential applications in aquaculture, the present study contributes to the nascent field of nanoantibiotics.
Collapse
Affiliation(s)
- Martina Bortoletti
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Simone Molinari
- Department of Geosciences, University of Padua, via Gradenigo 6, 35131 Padova, Italy.
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Juri Ugolotti
- Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 78371 Olomouc, Czech Republic.
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Andrea Venerando
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Giuseppe Radaelli
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Marco De Liguoro
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Gabriella Salviulo
- Department of Geosciences, University of Padua, via Gradenigo 6, 35131 Padova, Italy.
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 78371 Olomouc, Czech Republic.
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| |
Collapse
|
13
|
Campos EVR, de Oliveira JL, Abrantes DC, Rogério CB, Bueno C, Miranda VR, Monteiro RA, Fraceto LF. Recent Developments in Nanotechnology for Detection and Control of Aedes aegypti-Borne Diseases. Front Bioeng Biotechnol 2020; 8:102. [PMID: 32154233 PMCID: PMC7047929 DOI: 10.3389/fbioe.2020.00102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/03/2020] [Indexed: 11/24/2022] Open
Abstract
Arboviruses such as yellow fever, dengue, chikungunya and zika are transmitted mainly by the mosquito vector Aedes aegypti. Especially in the tropics, inefficacy of mosquito control causes arboviruses outbreaks every year, affecting the general population with debilitating effects in infected individuals. Several strategies have been tried to control the proliferation of A. aegypti using physical, biological, and chemical control measures. Other methods are currently under research and development, amongst which the use of nanotechnology has attracted a lot of attention of the researchers in relation to the production of more effective repellents and larvicides with less toxicity, and development of rapid sensors for the detection of virus infections. In this review, the utilization of nano-based formulations on control and diagnosis of mosquito-borne diseases were discussed. We also emphasizes the need for future research for broad commercialization of nano-based formulations in world market aiming a positive impact on public health.
Collapse
Affiliation(s)
| | | | | | | | - Carolina Bueno
- São Paulo State University—UNESP, Institute of Science and Technology, Sorocaba, Brazil
| | | | | | | |
Collapse
|
14
|
Bare Iron Oxide Nanoparticles: Surface Tunability for Biomedical, Sensing and Environmental Applications. NANOMATERIALS 2019; 9:nano9111608. [PMID: 31726776 PMCID: PMC6915624 DOI: 10.3390/nano9111608] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022]
Abstract
Surface modification is widely assumed as a mandatory prerequisite for the real applicability of iron oxide nanoparticles. This is aimed to endow prolonged stability, electrolyte and pH tolerance as well as a desired specific surface chemistry for further functionalization to these materials. Nevertheless, coating processes have negative consequences on the sustainability of nanomaterial production contributing to high costs, heavy environmental impact and difficult scalability. In this view, bare iron oxide nanoparticles (BIONs) are arousing an increasing interest and the properties and advantages of pristine surface chemistry of iron oxide are becoming popular among the scientific community. In the authors’ knowledge, rare efforts were dedicated to the use of BIONs in biomedicine, biotechnology, food industry and environmental remediation. Furthermore, literature lacks examples highlighting the potential of BIONs as platforms for the creation of more complex nanostructured architectures, and emerging properties achievable by the direct manipulation of pristine iron oxide surfaces have been little studied. Based on authors’ background on BIONs, the present review is aimed at providing hints on the future expansion of these nanomaterials emphasizing the opportunities achievable by tuning their pristine surfaces.
Collapse
|
15
|
Aksakal FI, Ciltas A. Impact of copper oxide nanoparticles (CuO NPs) exposure on embryo development and expression of genes related to the innate immune system of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:78-87. [PMID: 31158555 DOI: 10.1016/j.cbpc.2019.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 11/22/2022]
Abstract
CuO NPs are nanomaterials with catalytic activity and unique thermo-physical properties used in different fields such as sensors, catalysts, surfactants, batteries, antimicrobials and solar energy transformations. Because of its wide field of use, these nanoparticles accumulate in the aquatic environment and thus lead to toxic effects on aquatic organisms. The toxicological findings about CuO NPs are controversial and these effects of CuO NPs on aquatic organisms have not been elucidated in detail. Therefore, the aim of this study was to investigate the toxic effect of CuO NPs on zebrafish embryos using different parameters including molecular and morphologic. For this purpose, zebrafish embryos at 4 h after post fertilization (hpf) were exposed to different concentrations of CuO NPs (0.5, 1, 1.5 mg/L) until 96 hpf. Mortality, hatching, heartbeat, malformation rates were examined during the exposure period. In addition, Raman spectroscopy was used to determine whether CuO NPs entered into the tissues of zebrafish larvae or not. Moreover, the alterations in the expression of genes related to the antioxidant system and innate immune system were examined in the embryos exposed to CuO NPs during 96 h. The results showed that CuO NPs was not able to enter into the zebrafish embryos/larvae tissues but caused an increased the mortality rate, a delayed hatching, and a decreased heartbeat rate. Moreover, CuO NPs caused several types of abnormalities such as head and tail malformations, vertebral deformities, yolk sac edema, and pericardial edema. RT-PCR results showed that the transcription of mtf-1, hsp70, nfkb and il-1β, tlr-4, tlr-22, trf, cebp was changed by the application of CuO NPs. In conclusion, short-term exposure to CuO NPs has toxic effects on the development of zebrafish embryos.
Collapse
Affiliation(s)
- Feyza Icoglu Aksakal
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey.
| | - Abdulkadir Ciltas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|