1
|
Hlapisi N, Songca SP, Ajibade PA. Capped Plasmonic Gold and Silver Nanoparticles with Porphyrins for Potential Use as Anticancer Agents-A Review. Pharmaceutics 2024; 16:1268. [PMID: 39458600 PMCID: PMC11510308 DOI: 10.3390/pharmaceutics16101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are potential cancer treatment methods that are minimally invasive with high specificity for malignant cells. Emerging research has concentrated on the application of metal nanoparticles encapsulated in porphyrin and their derivatives to improve the efficacy of these treatments. Gold and silver nanoparticles have distinct optical properties and biocompatibility, which makes them efficient materials for PDT and PTT. Conjugation of these nanoparticles with porphyrin derivatives increases their light absorption and singlet oxygen generation that create a synergistic effect that increases phototoxicity against cancer cells. Porphyrin encapsulation with gold or silver nanoparticles improves their solubility, stability, and targeted tumor delivery. This paper provides comprehensive review on the design, functionalization, and uses of plasmonic silver and gold nanoparticles in biomedicine and how they can be conjugated with porphyrins for synergistic therapeutic effects. Furthermore, it investigates this dual-modal therapy's potential advantages and disadvantages and offers perspectives for future prospects. The possibility of developing gold, silver, and porphyrin nanotechnology-enabled biomedicine for combination therapy is also examined.
Collapse
Affiliation(s)
| | | | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (N.H.); (S.P.S.)
| |
Collapse
|
2
|
Ferrario N, Marras E, Vivona V, Randisi F, Fallica AN, Marrazzo A, Perletti G, Gariboldi MB. Mechanisms of the Antineoplastic Effects of New Fluoroquinolones in 2D and 3D Human Breast and Bladder Cancer Cell Lines. Cancers (Basel) 2024; 16:2227. [PMID: 38927932 PMCID: PMC11201967 DOI: 10.3390/cancers16122227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Antibacterial fluoroquinolones have emerged as potential anticancer drugs, thus prompting the synthesis of novel molecules with improved cytotoxic characteristics. Ciprofloxacin and norfloxacin derivatives, previously synthesized by our group, showed higher anticancer potency than their progenitors. However, no information about their mechanisms of action was reported. In this study, we selected the most active among these promising molecules and evaluated, on a panel of breast (including those triple-negative) and bladder cancer cell lines, their ability to induce cell cycle alterations and apoptotic and necrotic cell death through cytofluorimetric studies. Furthermore, inhibitory effects on cellular migration, metalloproteinase, and/or acetylated histone protein levels were also evaluated by the scratch/wound healing assay and Western blot analyses, respectively. Finally, the DNA relaxation assay was performed to confirm topoisomerase inhibition. Our results indicate that the highest potency previously observed for the derivatives could be related to their ability to induce G2/M cell cycle arrest and apoptotic and/or necrotic cell death. Moreover, they inhibited cellular migration, probably by reducing metalloproteinase levels and histone deacetylases. Finally, topoisomerase inhibition, previously observed in silico, was confirmed. In conclusion, structural modifications of progenitor fluoroquinolones resulted in potent anticancer derivatives possessing multiple mechanisms of action, potentially exploitable for the treatment of aggressive/resistant cancers.
Collapse
Affiliation(s)
- Nicole Ferrario
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (N.F.); (E.M.); (V.V.); (F.R.); (G.P.)
| | - Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (N.F.); (E.M.); (V.V.); (F.R.); (G.P.)
| | - Veronica Vivona
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (N.F.); (E.M.); (V.V.); (F.R.); (G.P.)
| | - Federica Randisi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (N.F.); (E.M.); (V.V.); (F.R.); (G.P.)
| | - Antonino Nicolò Fallica
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.N.F.); (A.M.)
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.N.F.); (A.M.)
| | - Gianpaolo Perletti
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (N.F.); (E.M.); (V.V.); (F.R.); (G.P.)
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (N.F.); (E.M.); (V.V.); (F.R.); (G.P.)
| |
Collapse
|
3
|
Marras E, Balacchi CJ, Orlandi V, Caruso E, Brivio MF, Bolognese F, Mastore M, Malacarne MC, Rossi M, Caruso F, Vivona V, Ferrario N, Gariboldi MB. Ruthenium(II)-Arene Curcuminoid Complexes as Photosensitizer Agents for Antineoplastic and Antimicrobial Photodynamic Therapy: In Vitro and In Vivo Insights. Molecules 2023; 28:7537. [PMID: 38005258 PMCID: PMC10673066 DOI: 10.3390/molecules28227537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Photodynamic therapy (PDT) is an anticancer/antibacterial strategy in which photosensitizers (PSs), light, and molecular oxygen generate reactive oxygen species and induce cell death. PDT presents greater selectivity towards tumor cells than conventional chemotherapy; however, PSs have limitations that have prompted the search for new molecules featuring more favorable chemical-physical characteristics. Curcumin and its derivatives have been used in PDT. However, low water solubility, rapid metabolism, interference with other drugs, and low stability limit curcumin use. Chemical modifications have been proposed to improve curcumin activity, and metal-based PSs, especially ruthenium(II) complexes, have attracted considerable attention. This study aimed to characterize six Ru(II)-arene curcuminoids for anticancer and/or antibacterial PDT. The hydrophilicity, photodegradation rates, and singlet oxygen generation of the compounds were evaluated. The photodynamic effects on human colorectal cancer cell lines were also assessed, along with the ability of the compounds to induce ROS production, apoptotic, necrotic, and/or autophagic cell death. Overall, our encouraging results indicate that the Ru(II)-arene curcuminoid derivatives are worthy of further investigation and could represent an interesting option for cancer PDT. Additionally, the lack of significant in vivo toxicity on the larvae of Galleria mellonella is an important finding. Finally, the photoantimicrobial activity of HCurc I against Gram-positive bacteria is indeed promising.
Collapse
Affiliation(s)
- Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Camilla J. Balacchi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Viviana Orlandi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Maurizio F. Brivio
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (M.F.B.); (M.M.)
| | - Fabrizio Bolognese
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Maristella Mastore
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (M.F.B.); (M.M.)
| | - Miryam C. Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Miriam Rossi
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA; (M.R.)
| | - Francesco Caruso
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA; (M.R.)
| | - Veronica Vivona
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Nicole Ferrario
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Marzia B. Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| |
Collapse
|
4
|
Kim TE, Chang JE. Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials. Pharmaceutics 2023; 15:2257. [PMID: 37765226 PMCID: PMC10535460 DOI: 10.3390/pharmaceutics15092257] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Photodynamic therapy (PDT) is an emerging and less invasive treatment modality for various types of cancer. This review provides an overview of recent trends in PDT research, ranging from basic research to ongoing clinical trials, focusing on different cancer types. Lung cancer, head and neck cancer, non-melanoma skin cancer, prostate cancer, and breast cancer are discussed in this context. In lung cancer, porfimer sodium, chlorin e6, and verteporfin have shown promising results in preclinical studies and clinical trials. For head and neck cancer, PDT has demonstrated effectiveness as an adjuvant treatment after surgery. PDT with temoporfin, redaporfin, photochlor, and IR700 shows potential in early stage larynx cancer and recurrent head and neck carcinoma. Non-melanoma skin cancer has been effectively treated with PDT using methyl aminolevulinate and 5-aminolevulinic acid. In prostate cancer and breast cancer, PDT research is focused on developing targeted photosensitizers to improve tumor-specific uptake and treatment response. In conclusion, PDT continues to evolve as a promising cancer treatment strategy, with ongoing research spanning from fundamental investigations to clinical trials, exploring various photosensitizers and treatment combinations. This review sheds light on the recent advancements in PDT for cancer therapy and highlights its potential for personalized and targeted treatments.
Collapse
Affiliation(s)
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
5
|
Malacarne MC, Mastore M, Gariboldi MB, Brivio MF, Caruso E. Preliminary Toxicity Evaluation of a Porphyrin Photosensitizer in an Alternative Preclinical Model. Int J Mol Sci 2023; 24:ijms24043131. [PMID: 36834543 PMCID: PMC9966276 DOI: 10.3390/ijms24043131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
In photodynamic therapy (PDT), a photosensitizer (PS) excited with a specific wavelength, and in the presence of oxygen, gives rise to photochemical reactions that lead to cell damage. Over the past few years, larval stages of the G. mellonella moth have proven to be an excellent alternative animal model for in vivo toxicity testing of novel compounds and virulence testing. In this article, we report a series of preliminary studies on G. mellonella larvae to evaluate the photoinduced stress response by a porphyrin (PS) (TPPOH). The tests performed evaluated PS toxicity on larvae and cytotoxicity on hemocytes, both in dark conditions and following PDT. Cellular uptake was also evaluated by fluorescence and flow cytometry. The results obtained demonstrate how the administration of PS and subsequent irradiation of larvae affects not only larvae survival rate, but also immune system cells. It was also possible to verify PS's uptake and uptake kinetics in hemocytes, observing a maximum peak at 8 h. Given the results obtained in these preliminary tests, G. mellonella appears to be a promising model for preclinical PS tests.
Collapse
Affiliation(s)
- Miryam Chiara Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Maristella Mastore
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, 21100 Varese, Italy
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | | | - Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
- Correspondence: ; Tel.: +39-0332421541
| |
Collapse
|
6
|
Orlandi VT, Martegani E, Trivellin N, Bolognese F, Caruso E. Photo-Inactivation of Staphylococcus aureus by Diaryl-Porphyrins. Antibiotics (Basel) 2023; 12:antibiotics12020228. [PMID: 36830139 PMCID: PMC9951968 DOI: 10.3390/antibiotics12020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Photodynamic Antimicrobial Chemotherapy (PACT) has received great attention in recent years since it is an effective and promising modality for the treatment of human oral and skin infections with the advantage of bypassing pathogens' resistance to antimicrobials. Moreover, PACT applications demonstrated a certain activity in the inhibition and eradication of biofilms, overcoming the well-known tolerance of sessile communities to antimicrobial agents. In this study, 13 diaryl-porphyrins (mono-, di-cationic, and non-ionic) P1-P13 were investigated for their potential as photosensitizer anti-Staphylococcus aureus. The efficacy of the diaryl-porphyrins was evaluated through photo-inactivation tests. Crystal-violet staining combined with viable count techniques were aimed at assaying their anti-biofilm activity. Among the tested compounds, the neutral photosensitizer P4 was better than the cationic ones, irrespective of their corresponding binding rates. In particular, P4 was active in inhibiting the biofilm formation and in impairing the viability of the adherent and planktonic populations of a 24 h old biofilm. The inhibitory activity was also efficient against a methicillin resistant S. aureus strain. In conclusion, the diaryl-porphyrin family represents a reservoir of promising compounds for photodynamic applications against the pathogen S. aureus and in preventing the formation of biofilms that cause many infections to become chronic.
Collapse
Affiliation(s)
- Viviana Teresa Orlandi
- Department of Biotechnologies and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
- Correspondence:
| | - Eleonora Martegani
- Department of Biotechnologies and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Nicola Trivellin
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6A, 35131 Padova, Italy
| | - Fabrizio Bolognese
- Department of Biotechnologies and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Enrico Caruso
- Department of Biotechnologies and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| |
Collapse
|
7
|
Coupling of cationic porphyrins on manganese ferrite nanoparticles: a potential multifunctional nanostructure for theranostics applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Ballestri M, Marras E, Caruso E, Bolognese F, Malacarne MC, Martella E, Tubertini M, Gariboldi MB, Varchi G. Free and Poly-Methyl-Methacrylate-Bounded BODIPYs: Photodynamic and Antimigratory Effects in 2D and 3D Cancer Models. Cancers (Basel) 2022; 15:cancers15010092. [PMID: 36612089 PMCID: PMC9817850 DOI: 10.3390/cancers15010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Several limitations, including dark toxicity, reduced tumor tissue selectivity, low photostability and poor biocompatibility hamper the clinical use of Photodynamic therapy (PDT) in cancer treatment. To overcome these limitations, new PSs have been synthetized, and often combined with drug delivery systems, to improve selectivity and reduce toxicity. In this context, BODIPYs (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) have recently emerged as promising and easy-to-handle scaffolds for the preparation of effective PDT antitumor agents. In this study, the anticancer photodynamic effect of newly prepared negatively charged polymethyl methacrylate (nPMMA)-bounded BODIPYs (3@nPMMA and 6@nPMMA) was evaluated on a panel of 2D- and 3D-cultured cancer cell lines and compared with free BODIPYs. In particular, the effect on cell viability was evaluated, along with their ability to accumulate into the cells, induce apoptotic and/or necrotic cell death, and inhibit cellular migration. Our results indicated that 3@nPMMA and 6@nPMMA reduce cancer cell viability in 3D models of HC116 and MCF7 cells more effectively than the corresponding free compounds. Importantly, we demonstrated that MDA-MB231 and SKOV3 cell migration ability was significantly impaired by the PDT treatment mediated by 3@nPMMA and 6@nPMMA nanoparticles, likely indicating the capability of this approach to reduce metastatic tumor potential.
Collapse
Affiliation(s)
- Marco Ballestri
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy
| | - Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Fabrizio Bolognese
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Miryam Chiara Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Elisa Martella
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy
| | - Matilde Tubertini
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
- Correspondence: (M.B.G.); (G.V.); Tel.: +39-033-133-9418 (M.B.C.); +39-051-639-8283 (G.V.)
| | - Greta Varchi
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy
- Correspondence: (M.B.G.); (G.V.); Tel.: +39-033-133-9418 (M.B.C.); +39-051-639-8283 (G.V.)
| |
Collapse
|
9
|
Zhdanova KA, Savel’eva IO, Usanev AY, Usachev MN, Shmigol TA, Gradova MA, Bragina NA. Synthesis of trans-Substituted Cationic Zinc Porphynates and Study of their Photodynamic Antimicrobial Activity. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622601209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Phototoxicity of two positive-charged diaryl porphyrins in multicellular tumor spheroids. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 225:112353. [PMID: 34763227 DOI: 10.1016/j.jphotobiol.2021.112353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/26/2021] [Accepted: 10/30/2021] [Indexed: 11/20/2022]
Abstract
Photodynamic therapy (PDT) is a clinically approved cancer treatment in which reactive oxygen species are formed only when three harmless components, a photosensitizer (PS), light and molecular oxygen, are present at the same time, leading to cell death. Most of the PSs were tested on monolayer cells, but differences between 2D cells and solid tumors significantly limit the value of in vitro PDT studies, whereas the use of 3D spheroid might be more suitable for drug development and preclinical drug testing for PDT. In a previous work we have shown that two positive-charged diaryl porphyrins (2 and 4) were more potent than the corresponding neutral molecules (1 and 3) on a panel of 2D-cultured cancer cell lines. In the present study the photodynamic effects of these molecules have been evaluated on HCT116 and MCF7 spheroids. Induction of apoptotic and necrotic cell death, and generation of reactive oxygen species (ROS) have been also evaluated, along with accumulation and localization of PSs into spheroids. Our findings indicate that 2 and 4 retained their phototoxic effects also in 3D spheroids; furthermore, they were more potent than 1 and 3 and as potent as Foscan (m-THPC), the most successful PS approved for clinical PDT of cancer, used as reference. Although further aspects of their mechanisms of action need to be addressed, our results strongly suggest a potential in vivo photodynamic application of 2 and 4, considering that spheroids represent a more realistic indicator of in vivo therapeutic efficacy than 2D cell lines.
Collapse
|
11
|
Fallica A, Barbaraci C, Amata E, Pasquinucci L, Turnaturi R, Dichiara M, Intagliata S, Gariboldi MB, Marras E, Orlandi VT, Ferroni C, Martini C, Rescifina A, Gentile D, Varchi G, Marrazzo A. Nitric Oxide Photo-Donor Hybrids of Ciprofloxacin and Norfloxacin: A Shift in Activity from Antimicrobial to Anticancer Agents. J Med Chem 2021; 64:11597-11613. [PMID: 34319100 PMCID: PMC8389907 DOI: 10.1021/acs.jmedchem.1c00917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 12/11/2022]
Abstract
The potential anticancer effect of fluoroquinolone antibiotics has been recently unveiled and related to their ability to interfere with DNA topoisomerase II. We herein envisioned the design and synthesis of novel Ciprofloxacin and Norfloxacin nitric oxide (NO) photo-donor hybrids to explore the potential synergistic antitumor effect exerted by the fluoroquinolone scaffold and NO eventually produced upon light irradiation. Anticancer activity, evaluated on a panel of tumor cell lines, showed encouraging results with IC50 values in the low micromolar range. Some compounds displayed intense antiproliferative activity on triple-negative and doxorubicin-resistant breast cancer cell lines, paving the way for their potential use to treat aggressive, refractory and multidrug-resistant breast cancer. No significant additive effect was observed on PC3 and DU145 cells following NO release. Conversely, antimicrobial photodynamic experiments on both Gram-negative and Gram-positive microorganisms displayed a significant killing rate in Staphylococcus aureus, accounting for their potential effectiveness as selective antimicrobial photosensitizers.
Collapse
Affiliation(s)
- Antonino
Nicolò Fallica
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Carla Barbaraci
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Emanuele Amata
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Lorella Pasquinucci
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Rita Turnaturi
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Maria Dichiara
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Sebastiano Intagliata
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Marzia Bruna Gariboldi
- Department
of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Emanuela Marras
- Department
of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Viviana Teresa Orlandi
- Department
of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Claudia Ferroni
- Institute
for the Organic Synthesis and Photoreactivity − ISOF, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Cecilia Martini
- Institute
for the Organic Synthesis and Photoreactivity − ISOF, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Antonio Rescifina
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Davide Gentile
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Greta Varchi
- Institute
for the Organic Synthesis and Photoreactivity − ISOF, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Agostino Marrazzo
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| |
Collapse
|
12
|
Photoinactivation of Pseudomonas aeruginosa Biofilm by Dicationic Diaryl-Porphyrin. Int J Mol Sci 2021; 22:ijms22136808. [PMID: 34202773 PMCID: PMC8269057 DOI: 10.3390/ijms22136808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, antimicrobial photodynamic therapy (aPDT) has received increasing attention as a promising tool aimed at both treating microbial infections and sanitizing environments. Since biofilm formation on biological and inert surfaces makes difficult the eradication of bacterial communities, further studies are needed to investigate such tricky issue. In this work, a panel of 13 diaryl-porphyrins (neutral, mono- and di-cationic) was taken in consideration to photoinactivate Pseudomonas aeruginosa. Among cationic photosensitizers (PSs) able to efficiently bind cells, in this study two dicationic showed to be intrinsically toxic and were ruled out by further investigations. In particular, the dicationic porphyrin (P11) that was not toxic, showed a better photoinactivation rate than monocationic in suspended cells. Furthermore, it was very efficient in inhibiting the biofilms produced by the model microorganism Pseudomonas aeruginosa PAO1 and by clinical strains derived from urinary tract infection and cystic fibrosis patients. Since P. aeruginosa represents a target very difficult to inactivate, this study confirms the potential of dicationic diaryl-porphyrins as photo-activated antimicrobials in different applicative fields, from clinical to environmental ones.
Collapse
|
13
|
Caruso E, Malacarne MC, Marras E, Papa E, Bertato L, Banfi S, Gariboldi MB. New BODIPYs for photodynamic therapy (PDT): Synthesis and activity on human cancer cell lines. Bioorg Med Chem 2020; 28:115737. [PMID: 33065434 DOI: 10.1016/j.bmc.2020.115737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 01/10/2023]
Abstract
A new class of compounds based on the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene core, known as BODIPYs, has attracted significant attention as photosensitizers suitable for application in photodynamic therapy (PDT), which is a minimally invasive procedure to treat cancer. In PDT the combination of a photosensitizer (PS), light, and oxygen leads to a series of photochemical reactions generating reactive oxygen species (ROS) exerting cytotoxic action on tumor cells. Here we present the synthesis and the study of the in vitro photodynamic effects of two BODIPYs which differ in the structure of the substituent placed on the meso (or 8) position of the dipyrrolylmethenic nucleus. The two compounds were tested on three human cancer cell lines of different origin and degree of malignancy. Our results indicate that the BODIPYs are very effective in reducing the growth/viability of HCT116, SKOV3 and MCF7 cells when irradiated with a green LED source, whereas they are practically devoid of activity in the dark. Phototoxicity occurs mainly through apoptotic cell death, however necrotic cell death also seems to play a role. Furthermore, singlet oxygen generation and induction of the increase of reactive oxygen species also appear to be involved in the photodynamic effect of the BODIPYs. Finally, it is worth noting that the two BODIPYs are also able to exert anti-migratory activity.
Collapse
Affiliation(s)
- Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV). University of Insubria, Via J.H. Dunant 3, 21100 Varese (VA), Italy
| | - Miryam C Malacarne
- Department of Biotechnology and Life Sciences (DBSV). University of Insubria, Via J.H. Dunant 3, 21100 Varese (VA), Italy
| | - Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV). University of Insubria, Via J.H. Dunant 3, 21100 Varese (VA), Italy
| | - Ester Papa
- Department of Theoretical and Applied Sciences (DiSTA). University of Insubria, Via J.H. Dunant 3, 21100 Varese (VA), Italy
| | - Linda Bertato
- Department of Theoretical and Applied Sciences (DiSTA). University of Insubria, Via J.H. Dunant 3, 21100 Varese (VA), Italy
| | - Stefano Banfi
- Department of Biotechnology and Life Sciences (DBSV). University of Insubria, Via J.H. Dunant 3, 21100 Varese (VA), Italy
| | - Marzia B Gariboldi
- Department of Biotechnology and Life Sciences (DBSV). University of Insubria, Via J.H. Dunant 3, 21100 Varese (VA), Italy.
| |
Collapse
|
14
|
Abstract
Candida albicans is an opportunistic pathogen that often causes skin infections such as oral thrush, nail fungus, athlete’s foot, and diaper rash. Under particular conditions, C. albicans alters the natural balance of the host microbiota, and as a result, the skin or its accessory structures lose their function and appearance. Conventional antimycotic drugs are highly toxic to host tissues, and long-lasting drug administration induces the arising of resistant strains that make the antimycotic therapy ineffective. Among new antimicrobial approaches to combine with traditional drugs, light-based techniques are very promising. In this study, a panel of dyes was considered for photodynamic therapy (PDT) applications to control the growth of the model strain C. albicans ATCC 14053. The chosen photosensitizers (PSs) belong to the family of synthetic porphyrins, and in particular, they are diaryl-porphyrins. Among these, two monocationic PSs were shown to be particularly efficient in killing C. albicans upon irradiation with light at 410 nm, in a light-dose-dependent manner. The elicited photo-oxidative stress induced the loss of the internal cellular architecture and death. The photodynamic treatment was also successful in inhibiting the biofilm formation of clinical C. albicans strains. In conclusion, this study supports the great potential of diaryl-porphyrins in antimicrobial PDT to control the growth of yeasts on body tissues easily reachable by light sources, such as skin and oral cavity.
Collapse
|
15
|
Caruso E, Malacarne MC, Banfi S, Gariboldi MB, Orlandi VT. Cationic diarylporphyrins: In vitro versatile anticancer and antibacterial photosensitizers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111548. [PMID: 31288120 DOI: 10.1016/j.jphotobiol.2019.111548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/07/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
The visible light combined with photosensitizers (PSs) is exploited in both antitumoral and antimicrobial fields inducing a photo-oxidative stress within the target cells. Among the different PSs, porphyrins belong to the family of the most promising compounds to be used in clinical photodynamic applications. Although in the last years many porphyrins have been synthesised and tested, only a few reports concern the in vitro effects of the 5,15-diarylporphyrins. In this work, the activity of four 5,15-diarylporphyrins (compounds 7-10), bearing alkoxy-linked pyridinium appendixes, have been tested on cancer cell lines and against bacterial cultures. Among the synthetized PSs, compounds 7 and 9 are not symmetrically substituted porphyrins showing one cationic charge tethered at the end of one 4C or 8C carbon chains, respectively. On the other hand, compounds 8 and 10 are symmetrically substituted and show two chains of C4 and C8 carbons featuring a cationic charge at the end of both chains. The dicationic 8 and 10 were more hydrophilic than monocationic 7 and 9, outlining that the presence of two pyridinium salts have a higher impact on the solubility in the aqueous phase than the lipophilic effect exerted by the length of the alkyl chains. Furthermore, these four PSs showed a similar rate of photobleaching, irrespective of the length and number of chains and the number of positive charges. Among the eukaryotic cell lines, the SKOV3 cells were particularly sensitive to the photodynamic activity of all the tested diarylporphyrins, while the HCT116 cells were found more sensitive to PSs bearing C4 chain (7 and 8), regardless the number of cationic charges. The photo-induced killing effect of these porphyrins was also tested against two different bacterial cultures. As expected, the Gram positive Bacillus subtilis was more sensitive than the Gram negative Escherichia coli, and the dicationic porphyrin 8, bearing two C4 chains, was the most efficient on both microorganisms. In conclusion, the new compound 8 seems to be an optimal candidate to deepen as versatile anticancer and antibacterial photosensitizer.
Collapse
Affiliation(s)
- Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy..
| | - Miryam Chiara Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| | - Stefano Banfi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| | - Viviana Teresa Orlandi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| |
Collapse
|