1
|
The OCT angular sign of Henle fiber layer (HFL) hyperreflectivity (ASHH) and the pathoanatomy of the HFL in macular disease. Prog Retin Eye Res 2022:101135. [DOI: 10.1016/j.preteyeres.2022.101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
|
2
|
Swelling and membrane potential dynamics of glial Müller cells. Biosystems 2022; 221:104772. [PMID: 36113739 DOI: 10.1016/j.biosystems.2022.104772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022]
Abstract
Presently a detailed biophysical model describing reversible and irreversible swelling dynamics of Müller cells (MC) is reported. The model includes a biophysical block of ionic and neutral species transport via MC membrane, water transport induced by osmotic pressure and pressure generated by membrane deformations, MC membrane potential and membrane mechanical properties. The model describes reversible and irreversible MC swelling (MCS) using the same set of parameters. The model was used in fitting available experimental data, and produced numerical values of previously unknown model parameters, including those describing mechanical properties of Müller cell membrane (MCM) with respect to bending and stretching. Numerical experiments simulating MC swelling showed complex oscillation dynamics of the relevant parameters in physiological initial conditions. In particular, MC membrane potential (ΔΨMC) demonstrated complex oscillation dynamics, which may be described by a superposition of several oscillations with their periods in the milliseconds, 100-ms and seconds time ranges. Dynamics of reversible and irreversible MCS, and the transition criteria from reversible to irreversible MCS modes were determined in model simulations.
Collapse
|
3
|
Khmelinskii I, Makarov V. Intermediate filaments are natural energy conductors in live cells. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Khmelinskii I, Makarov VI. Temperature dependence of Müller cell intermediate filament IR exciton emission spectra. Biosystems 2022; 215-216:104651. [DOI: 10.1016/j.biosystems.2022.104651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/28/2022]
|
5
|
Khmelinskii I, Makarov VI. Effects of pulsed electric fields on exciton propagation efficiency along Müller cell intermediate filaments. Possible separation mechanism of high- and low-contrast images by the eye-brain system. Biochem Biophys Res Commun 2022; 593:1-4. [DOI: 10.1016/j.bbrc.2022.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/08/2022] [Indexed: 11/02/2022]
|
6
|
Energy transfer along Müller cell intermediate filaments isolated from porcine retina: II. Excitons at 2500 cm−1 produced by ADH1A upon hydrolysis of one ATP molecule. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Khmelinskii I, Makarov VI. Energy transfer along Müller cell intermediate filaments isolated from porcine retina: I. Excitons produced by ADH1A dimers upon simultaneous hydrolysis of two ATP molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119361. [PMID: 33418473 DOI: 10.1016/j.saa.2020.119361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
IR exciton propagation was explored in Müller cell (MC) intermediate filaments (IFs) filling a capillary matrix. These IFs have been isolated from porcine retina using different methods, while their properties were almost identical. Therefore, IFs isolated from the whole retinas were used presently. IR excitons were generated by IR radiation at 2 μm wavelength, or by enzymatic ATP hydrolysis, with the energy transferred to IFs. Excitons produced by ATP hydrolysis required simultaneous energy contribution of two ATP molecules, indicating simultaneous hydrolysis of two ATP molecules in the naturally dimeric human alcohol dehydrogenase enzyme (ADH1A). ATP hydrolysis was thus catalyzed by ADH1A…NAD+ enzymatic complexes absorbed at the IF extremities protruding out of the capillary matrix. The IR emission spectra of excitons were dependent on the exciton generation method. We believe this resulted from the exciton energy distribution varying in function of the generation method used. The latter seems reasonable, given the very long excited-state lifetimes, implying low nonradiative relaxation rates. The energy liberated by ATP hydrolysis has been measured directly in these experiments, for the first time. The results demonstrate that contrary to the predictions of equilibrium thermodynamics, the liberated energy is independent on the ATP/ADP concentration ratio, indicating that non-equilibrium reactions take place. Time-resolved experiments with excitons produced by pulsed IR radiation evaluated characteristic exciton propagation and emission times. For the first time, biexcitonic processes were observed in biological objects, whereby simultaneous hydrolysis of two ATP molecules bound to the same dimeric ADH1A molecule generated excitons carrying twice the energy liberated by hydrolysis of a single ATP molecule. The results reported indicate that ATP-liberated energy may be transmitted along natural polypeptide nanofibers in vivo, within and between live cells. These ideas could promote new understanding of the biophysics of life.
Collapse
Affiliation(s)
- Igor Khmelinskii
- Universidade do Algarve, FCT-DQB and CEOT, 8005-139 Faro, Portugal
| | | |
Collapse
|
8
|
Khmelinskii I, Makarov V. Electric field modulation of light energy transmission along intermediate filaments isolated from porcine retina. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Zueva L, Golubeva T, Korneeva E, Resto O, Inyushin M, Khmelinskii I, Makarov V. Electron microscopy study of the central retinal fovea in Pied flycatcher: evidence of a mechanism of light energy transmission through the retina. Heliyon 2020; 6:e04146. [PMID: 32566783 PMCID: PMC7298408 DOI: 10.1016/j.heliyon.2020.e04146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 11/29/2022] Open
Abstract
We present unique ultrastructural data on avian retinal cells. Presently and earlier (Zueva et al., 2016) we explored distribution of intermediate filaments (IFs) in retinal cells of the Pied flycatcher (Ficedula hypoleuca, Passeriformes, Aves) in the central foveolar zone. This retinal zone only contains single and double cone photoreceptors. Previously we found that continuous IFs span Müller cells (MC) lengthwise from the retinal inner limiting membrane (ILM) layer up to the outer limiting membrane (OLM) layer. Here we describe long cylindrical bundles of IFs (IFBs) inside the cone inner segments (CIS) adjoining the cone plasma membrane, with these IFBs following along the cone lengthwise, and surrounding the cone at equal spacing one from the other. Double cones form a combined unit, wherein they are separated by their respective plasma membranes. Double cones thus have a common external ring of IFBs, surrounding both cone components. In the layer of cilia, the IFBs that continue into the cone outer segment (COS) follow on to the cone apical tip along the direction of incident light, with single IFs separating from the IFB, touching, and sometimes passing in-between the light-sensitive lamellae of the COS. These new data support our previous hypothesis on the quantum mechanism of light energy propagation through the vertebrate retina (Zueva et al., 2016, 2019).
Collapse
Affiliation(s)
- Lidia Zueva
- University of Puerto Rico, Rio Piedras Campus, PO Box 23343, San Juan, PR 00931-3343, USA
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, 194223, St-Petersburg, Russia
- Universidad Central del Caribe, Bayamón, PR 00960-6032, USA
| | - Tatiana Golubeva
- Department of Vertebrate Zoology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Elena Korneeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova str., 5a, 117485, Moscow, Russia
| | - Oscar Resto
- University of Puerto Rico, Rio Piedras Campus, PO Box 23343, San Juan, PR 00931-3343, USA
| | | | - Igor Khmelinskii
- University of the Algarve, FCT, DQF and CEOT, 8005-139, Faro, Portugal
| | - Vladimir Makarov
- University of Puerto Rico, Rio Piedras Campus, PO Box 23343, San Juan, PR 00931-3343, USA
| |
Collapse
|