1
|
Yu W, Fu J, Chen Y, Mu Y, Jin Q, Wang Y, Ji J. Filling core-shell microneedles with pressurized oxygen-embedded particles (POPs) to improve photodynamic therapy. MATERIALS HORIZONS 2025. [PMID: 40289576 DOI: 10.1039/d5mh00253b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Photodynamic therapy (PDT) represents a spatiotemporal and minimally invasive treatment for superficial diseases. Enhancing the delivery efficiency of photosensitizers and elevating oxygen levels at the lesion site are two established strategies for improving its effectiveness. Here, we introduce a strategy involving the release of pressurized oxygen to drive photosensitizer diffusion, which is incorporated into a core-shell microneedle (MN) system to improve PDT. This MN system comprises a polyvinylpyrrolidone shell and methylene blue (MB) photosensitizer loaded core particles containing pressurized oxygen bubbles. Upon insertion, the aqueous tissue environment triggers the dissolution of particles within the MNs, enabling the rapid release of oxygen, thereby promoting the diffusion of MB. In vitro experiments demonstrate that these particles could effectively accelerate the release and diffusion of MB. The released oxygen could relieve hypoxia and increase the generation of reactive oxygen species (ROS) of PDT. In a mouse melanoma model, the MN system enhances tumor growth inhibition induced by PDT and mitigates tumor metastasis. This innovative system offers an autonomous, safe, and convenient approach for localized gas delivery and drug diffusion, potentially creating new avenues for efficiently combining gas and other therapies for superficial diseases.
Collapse
Affiliation(s)
- Weijiang Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Junzhe Fu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Yonghang Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Yixian Mu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, P. R. China
| |
Collapse
|
2
|
Lu ZM, Qiu ZW, Li YM, Zhang KY, Wu YY, Yan N, Cheng H. PD-L1-Targeting Autophagy Modulator to Upregulate MHC-I and Activate Photo-Immunotherapy for Metastatic Tumor Eradication. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20820-20832. [PMID: 40132080 DOI: 10.1021/acsami.5c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Breast cancer cells are characterized by heightened autophagy, which impairs tumor-associated antigen presentation and represents a significant barrier to the antitumor immunity. In this study, a PD-L1-targeting autophagy modulator (PFC@CQ) is fabricated to activate the photoimmunotherapy against breast cancer. Specifically, the hydrophobic photosensitizer protoporphyrin IX (PpIX) is covalently linked to the hydrophobic peptide FFVLK and a PD-L1-targeting peptide sequence CLQKTPKQC, resulting in the formation of an amphiphilic photosensitizer-peptide conjugate (PpIX-FFVLK-CLQKTPKQC, called PFC), which is capable of encapsulating the autophagy inhibitor chloroquine (CQ). PFC@CQ can not only facilitate the targeted drug codelivery to PD-L1-overexpressing breast cancer cells, but also effectively disrupt their immune evasion by blocking PD-1/PD-L1 pathway. Upon light irradiation, the photodynamic therapy (PDT) of PFC@CQ induces tumor cell destruction and immunogenic cell death (ICD), causing the release of damage-associated molecular patterns (DAMPs). Simultaneously, PFC@CQ can inhibit autophagy pathway to mediate the upregulation of MHC-I, thereby enhancing antigen presentation. This cascade immunomodulation promotes the dendritic cell maturation and CD8+ T cell activation, leading to a synergistic suppression of both primary and metastatic tumors. This work introduces an innovative autophagy modulation strategy with potent immunomodulatory capability, demonstrating a potential to trigger systemic antitumor immune responses through local treatment.
Collapse
Affiliation(s)
- Zhen-Ming Lu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Zi-Wen Qiu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yan-Mei Li
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ke-Yan Zhang
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ye-Yang Wu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ni Yan
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hong Cheng
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
3
|
Zhang C, Wang T, Lu W, Chang R, Zhang Y. Photodynamic therapy combined with curettage for actinic keratosis on the face and scalp: An efficient treatment for field cancerization of the skin. Photodiagnosis Photodyn Ther 2025; 53:104553. [PMID: 40089170 DOI: 10.1016/j.pdpdt.2025.104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Actinic keratosis (AK) frequently manifests as multiple regional lesions on the exposed areas of the face and scalp. The simultaneous treatment of extensive lesions with varying degrees poses a significant challenge. OBJECTIVE This study evaluated the efficacy and patient satisfaction of 5-aminolevulinic acid (5-ALA) photodynamic therapy (PDT) combined with curettage in managing extensive AK on the face and scalp. METHODS A retrospective analysis was conducted on patients with AK on the face and scalp treated at the dermatology department of a large hospital in a central Chinese city from 2020 to 2024. Each patient was histopathologically confirmed, exhibited a large lesion area exceeding 10 cm², and demonstrated evident field cancerization. All patients underwent curettage followed by 5-ALA PDT. During a 6-month follow-up, patient self-assessment and physician evaluations were conducted to systematically assess the treatment's efficacy, satisfaction, and adverse reactions. RESULTS Fifty-six patients (38 females, 18 males) with a mean age of 76.26±9.16 years were included. Significant improvement in skin was observed, with the lesion count decreasing from 12.33±9.09 pretreatment to 1.98±1.50 post-treatment. Pain scores (VAS) decreased from 2.89±2.20 to 0.75±1.03, pruritus scores (NAS) from 2.46±0.95 to 0.51±0.73, and dermatology life quality index (DLQI) scores from 9.12±4.46 to 2.59±2.17. The primary adverse effect was pain during PDT. CONCLUSION Curettage combined with 5-ALA PDT is an efficacious, safe, and efficient treatment for field cancerization of extensive AK on the face and scalp, warranting its promotion in clinical practice.
Collapse
Affiliation(s)
- Chi Zhang
- the Graduate School of Bengbu Medical University, PR China; Department of Dermatology, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, PR China.
| | - Tian Wang
- the Graduate School of Bengbu Medical University, PR China; Department of Dermatology, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, PR China.
| | - Wenna Lu
- the Graduate School of Bengbu Medical University, PR China; Department of Dermatology, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, PR China.
| | - Ruixue Chang
- the Graduate School of Bengbu Medical University, PR China.
| | - Yuanjing Zhang
- the Graduate School of Bengbu Medical University, PR China.
| |
Collapse
|
4
|
Zdubek A, Maliszewska I, Grabowiecka A, Kowalczyk R, Turek B. Enhancement of 5-Aminolevulinic Acid-Mediated Photodynamic Inactivation of Proteus mirabilis Using Phosphoric and Bisaminophosphinic Acids as Permeabilizing Agents. ACS OMEGA 2024; 9:48629-48641. [PMID: 39676993 PMCID: PMC11635689 DOI: 10.1021/acsomega.4c07696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 12/17/2024]
Abstract
The purpose of this work was to examine the effect of phosphoric and bisaminophosphinic acids on the effectiveness of photoinactivation of Proteus mirabilis with 5-aminolevulinic acid (5-ALA) as a precursor of protoporphyrin IX. Two diode lasers λ = 404 nm (radiation intensity 26 mW cm-2) and λ = 630 nm (radiation intensity 55 mW cm-2) were used as sources of light. The most effective agent was (R)-(-)-1,1'-binaphthyl-2,2'-diylhydrogen phosphate, and a significant improvement in bactericidal effect of 5-ALA-aPDI was achieved by pretreating P. mirabilis with this compound at nontoxic concentrations of 0.368 mM. It was found that 15 min of blue light illumination was enough to achieve bacterial cell mortality of 99.999%. Photoelimination of this pathogen using red light was less effective, and the required killing effect (at least 99.99%) was not achieved until 45 min of exposure. The mechanism of increased pathogen destruction by the examined acids is multifaceted and includes not only the destabilization of the outer bacterial cell membrane by organophosphates but also an increase in the level of protoporphyrin IX in cells due to chelation of iron ions. Furthermore, a synergistic effect of intracellular photosensitizers and (R)-(-)-1,1'-binaphthyl-2,2'-diylhydrogen phosphate acting as an additional blue/red light-induced photosensitizer cannot be excluded.
Collapse
Affiliation(s)
- Anna Zdubek
- Department
of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Irena Maliszewska
- Department
of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Agnieszka Grabowiecka
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Rafał Kowalczyk
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Bartosz Turek
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
5
|
Lee HY, Park JS, Kim TG, Kim T, Kim DH, Yun J, Jeong YI. Reactive Oxygen Species-Sensitive Nanophotosensitizers Composed of Buthionine Sulfoximine-Conjugated Chitosan Oligosaccharide for Enhanced Photodynamic Treatment of Cancer Cells. Int J Mol Sci 2024; 25:12609. [PMID: 39684320 DOI: 10.3390/ijms252312609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The efficacy of photodynamic therapy (PDT) based on traditional photosensitizers is generally limited by the cellular redox homeostasis system due to the reactive oxygen species (ROS) scavenging effect of glutathione (GSH). In this study, buthionine sulfoximine (BSO), a GSH inhibitor, was conjugated with the amine group of chitosan oligosaccharide (COS) using a thioketal linker (COSthBSO) to liberate BSO and chlorine e6 (Ce6) under oxidative stress, and then, Ce6-COSthBSO NP (Ce6-COSthBSO NP), fabricated by a dialysis procedure, showed an accelerated release rate of BSO and Ce6 by the addition of hydrogen peroxide, indicating that nanophotosensitizers have ROS sensitivity. In the in vitro cell culture study using HCT116 colon carcinoma cells, a combination of BSO and Ce6 efficiently suppressed the intracellular GSH and increased ROS production compared to the sole treatment of Ce6. In particular, Ce6-COSthBSO NP showed higher efficacy in the suppression of GSH levels and ROS production compared to the free Ce6 and Ce6/BSO combination. These results were due to the fact that Ce6-COSthBSO NP was efficiently delivered to the intracellular region, suppressed intracellular GSH levels, and elevated ROS levels. The in vivo animal tumor xenograft study demonstrated Ce6-COSthBSO NP being efficiently delivered to the tumor tissue, i.e., the fluorescence intensity in the tumor tissue was higher than those of other organs. The combination of Ce6 and BSO efficiently suppressed tumor growth compared to the sole treatment of Ce6, indicating that BSO might efficiently suppress GSH levels and increase ROS levels in the tumor microenvironment. Specifically, Ce6-COSthBSO NP showed the strongest performance in inhibition of tumor growth than those of Ce6 or the CE6/BSO combination, indicating that they were efficiently delivered to tumor tissue, increased ROS levels, and then efficiently inhibited tumor growth. We suggest that COSthBSO nanophotosensitizers are promising candidates for PDT treatment of cancer cells.
Collapse
Affiliation(s)
- Hyo Young Lee
- Department of Radiological Science, Dong-Eui University, Pusan 47340, Republic of Korea
| | - Ji-Sun Park
- Interdisciplinary Program of Perfume and Cosmetic, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Taeyu Grace Kim
- Wellesley College, 106 Central Street, Wellesley, MA 02481, USA
| | - Taeyeon Kim
- College of Arts and Sciences, University of Pennsylvania, 20 Cohen Hall, 249 South 36th St, Philadelphia, PA 19104, USA
| | - Do Hoon Kim
- Tyros Biotechnology Inc., 75 Kneeland St. 14 Floors, Boston, MA 02111, USA
| | - Jejung Yun
- Jeonnam Bio Foundation (JBF), Food Research Center, Naju City 58275, Jeonnam, Republic of Korea
| | - Young-Il Jeong
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
6
|
Corte-Real M, Veiga F, Paiva-Santos AC, Pires PC. Improving Skin Cancer Treatment by Dual Drug Co-Encapsulation into Liposomal Systems-An Integrated Approach towards Anticancer Synergism and Targeted Delivery. Pharmaceutics 2024; 16:1200. [PMID: 39339235 PMCID: PMC11434718 DOI: 10.3390/pharmaceutics16091200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Skin cancer is a high-incidence complex disease, representing a significant challenge to public health, with conventional treatments often having limited efficacy and severe side effects. Nanocarrier-based systems provide a controlled, targeted, and efficacious methodology for the delivery of therapeutic molecules, leading to enhanced therapeutic efficacy, the protection of active molecules from degradation, and reduced adverse effects. These features are even more relevant in dual-loaded nanosystems, with the encapsulated drug molecules leading to synergistic antitumor effects. This review examines the potential of improving the treatment of skin cancer through dual-loaded liposomal systems. The performed analysis focused on the characterization of the developed liposomal formulations' particle size, polydispersity index, zeta potential, encapsulation efficiency, drug release, and in vitro and/or in vivo therapeutic efficacy and safety. The combination of therapeutic agents such as doxorubicin, 5-fluorouracil, paclitaxel, cetuximab, celecoxib, curcumin, resveratrol, quercetin, bufalin, hispolon, ceramide, DNA, STAT3 siRNA, Bcl-xl siRNA, Aurora-A inhibitor XY-4, 1-Methyl-tryptophan, and cytosine-phosphate-guanosine anionic peptide led to increased and targeted anticancer effects, having relevant complementary effects as well, including antioxidant, anti-inflammatory, and immunomodulatory activities, all relevant in skin cancer pathophysiology. The substantial potential of co-loaded liposomal systems as highly promising for advancing skin cancer treatment is demonstrated.
Collapse
Affiliation(s)
- Margarida Corte-Real
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (F.V.)
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
7
|
Guo Y, Zhong W, Peng C, Guo L. Topical Delivery of Dual Loaded Nano-Transfersomes Mediated Chemo-Photodynamic Therapy against Melanoma via Inducing Cell Cycle Arrest and Apoptosis. Int J Mol Sci 2024; 25:9611. [PMID: 39273560 PMCID: PMC11394987 DOI: 10.3390/ijms25179611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Melanoma is a malignant skin cancer associated with high mortality rates and drug resistance, posing a significant threat to human health. The combination of chemotherapy and photodynamic therapy (PDT) represents a promising strategy to enhance antitumor efficacy through synergistic anti-cancer effects. Topical delivery of chemotherapeutic drugs and photosensitizers (PS) offers a non-invasive and safe way to treat melanoma. However, the effectiveness of these treatments is often hindered by challenges such as limited skin permeability and instability of the PS. In this study, transfersomes (TFS) were designed to facilitate transdermal delivery of the chemotherapeutic drug 5-Fluorouracil (5-FU) and the PS Imperatorin (IMP) for combined chemo-photodynamic therapy for melanoma. The cytotoxic and phototoxic effects of TFS-mediated PDT (TFS-UVA) were investigated in A375 cells and nude mice. The study also demonstrated that TFS-UVA generated intracellular ROS, induced G2/ M phase cell cycle arrest, and promoted cell apoptosis. In conclusion, this study indicated that 5-FU/ IMP-TFS serves as an effective transdermal therapeutic strategy for chemo-PDT in treating melanoma.
Collapse
Affiliation(s)
- Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenxiao Zhong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
8
|
Kazemi KS, Kazemi P, Mivehchi H, Nasiri K, Eshagh Hoseini SS, Nejati ST, Pour Bahrami P, Golestani S, Nabi Afjadi M. Photodynamic Therapy: A Novel Approach for Head and Neck Cancer Treatment with Focusing on Oral Cavity. Biol Proced Online 2024; 26:25. [PMID: 39154015 PMCID: PMC11330087 DOI: 10.1186/s12575-024-00252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
Oral cancers, specifically oral squamous cell carcinoma (OSCC), pose a significant global health challenge, with high incidence and mortality rates. Conventional treatments such as surgery, radiotherapy, and chemotherapy have limited effectiveness and can result in adverse reactions. However, as an alternative, photodynamic therapy (PDT) has emerged as a promising option for treating oral cancers. PDT involves using photosensitizing agents in conjunction with specific light to target and destroy cancer cells selectively. The photosensitizers accumulate in the cancer cells and generate reactive oxygen species (ROS) upon exposure to the activating light, leading to cellular damage and ultimately cell death. PDT offers several advantages, including its non-invasive nature, absence of known long-term side effects when administered correctly, and cost-effectiveness. It can be employed as a primary treatment for early-stage oral cancers or in combination with other therapies for more advanced cases. Nonetheless, it is important to note that PDT is most effective for superficial or localized cancers and may not be suitable for larger or deeply infiltrating tumors. Light sensitivity and temporary side effects may occur but can be managed with appropriate care. Ongoing research endeavors aim to expand the applications of PDT and develop novel photosensitizers to further enhance its efficacy in oral cancer treatment. This review aims to evaluate the effectiveness of PDT in treating oral cancers by analyzing a combination of preclinical and clinical studies.
Collapse
Affiliation(s)
- Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Kazemi
- Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | | | | | - Shayan Golestani
- Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Pesnel S, Bertolotti A, Duquenne S, Zahouani H, Mortier L, Perrot J, Morel A. Plasmonic nanophotothermal therapy: Destruction of 500 mm 3 subcutaneous human basal cell carcinoma with gold nanoparticles and near infrared laser. Skin Res Technol 2024; 30:e13890. [PMID: 39096178 PMCID: PMC11297533 DOI: 10.1111/srt.13890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024]
Abstract
SIGNIFICANCE Multilesional basal cell carcinoma (BCC) are spread on sun exposed skin areas, including arms, face and back. The first-line treatment remains the surgical resection or Mohs surgery. Despite its high complexity, Mohs surgery is well practiced in USA and Germany and presents very good results both in esthetic and in carcinology point of view. Large lesions more than 2 cm remain challenging to remove by topical cream used in photodynamic therapy (PDT). If these larger lesions are not treated in less than 1 month, they could grow deeply in the skin, thus enhancing the risk of reoccurrence and the severity of the disease. Despite this model herein studied, that is non melanoma skin cancer is a good prognostic cancer, the therapy aims to be applied to more aggressive melanoma skin cancers. AIM Total regression of large cutaneous lesions less than 1 month with no reoccurrence. APPROACH Tumor induction on murine model bearing a 500 mm3 subcutaneous lesion. Increasing dose of gold nanoparticles at fixed initial concentration C0 = 0.3 mg/mL, infused into the tumor then exposition of the region of interest to NIR medical laser to assess the therapy. One or two intratumoral administration(s) were compared to surgery and control, that is no treatment, laser alone or nanoparticles alone. RESULTS Gold nanoparticles alone or the NIR laser alone did not induce the tumor regression. The combination of laser and nanoparticles called plasmonic nanophotothermal therapy induced apoptosis. Derma and hypoderm do not show any visible gold nanoparticles and demonstrated a good cicatrization process. CONCLUSION Plasmonic nanophotothermal therapy using two doses of gold nanoparticles was the only protocol that proved its efficacy on large lesions in 14 days, that is 500 mm3 on a murine model bearing human basal cell carcinoma.
Collapse
Affiliation(s)
| | - Antoine Bertolotti
- CICEC‐INSERM1410, Service de Maladies‐Infectieuses et DermatologieCHU RéunionSaint‐Pierre CedexRéunionFrance
| | | | | | - Laurent Mortier
- CHRU Lille, Service de Dermatologie, Hôpital HuriezLilleFrance
| | - Jean‐Luc Perrot
- CHU Saint Etienne, Service de dermatologie, Hôpital NordLilleFrance
| | | |
Collapse
|
10
|
Yin Q, Zhang J, Zhang H, Gao J, Weng L, Liu T, Sun S, Yao Y, Chen X. Cascade Nanoreactor Employs Mitochondrial-Directed Chemodynamic and δ-ALA-Mediated Photodynamic Synergy for Deep-Seated Oral Cancer Therapy. Adv Healthc Mater 2024; 13:e2304639. [PMID: 38642071 DOI: 10.1002/adhm.202304639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/03/2024] [Indexed: 04/22/2024]
Abstract
The management of oral squamous cell carcinoma (OSCC) poses significant challenges, leading to organ impairment and ineffective treatment of deep-seated tumors, adversely affecting patient prognosis. A cascade nanoreactor that integrates photodynamic therapy (PDT) and chemodynamic therapy (CDT) for comprehensive multimodal OSCC treatment is introduced. Utilizing iron oxide and mesoporous silica, the FMMSH drug delivery system, encapsulating the photosensitizer prodrug δ-aminolevulinic acid (δ-ALA), is developed. Triphenylphosphine (TPP) modification facilitates mitochondrial targeting, while tumor cell membrane (TCM) coating provides homotypic targeting. The dual-targeting δ-ALA@FMMSH-TPP-TCM demonstrate efficacy in eradicating both superficial and deep tumors through synergistic PDT/CDT. Esterase overexpression in OSCC cells triggers δ-ALA release, and excessive hydrogen peroxide in tumor mitochondria undergoes Fenton chemistry for CDT. The synergistic interaction of PDT and CDT increases cytotoxic ROS levels, intensifying oxidative stress and enhancing apoptotic mechanisms, ultimately leading to tumor cell death. PDT/CDT-induced apoptosis generates δ-ALA-containing apoptotic bodies, enhancing antitumor efficacy in deep tumor cells. The anatomical accessibility of oral cancer emphasizes the potential of intratumoral injection for precise and localized treatment delivery, ensuring focused therapeutic agent delivery to maximize efficacy while minimizing side effects. Thus, δ-ALA@FMMSH-TPP-TCM, tailored for intratumoral injection, emerges as a transformative modality in OSCC treatment.
Collapse
Affiliation(s)
- Qiqi Yin
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jie Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Handan Zhang
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiamin Gao
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Lin Weng
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tao Liu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shuyang Sun
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yanli Yao
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
11
|
de Arriba M, Borel N, LeibundGut-Landmann S. Water-filtered infrared A irradiation exerts antifungal effects on the skin fungus Malassezia. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112909. [PMID: 38669741 DOI: 10.1016/j.jphotobiol.2024.112909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Many common skin diseases are associated with changes in the microbiota. This applies for the commensal yeast Malassezia, which is linked to a wide range of skin disorders ranging from mild dandruff to severe seborrheic and atopic dermatitis, all of which have a detrimental impact on the individuals' quality of life. While antifungal medications offer relief in many cases, the challenges of disease recurrence and the emergence of resistance to the limited range of available antifungal drugs poses a pressing need for innovative therapeutic options. Here we examined the activity of water-filtered infrared A (wIRA) irradiation against Malassezia. wIRA's antimicrobial and wound healing properties make it an attractive option for localized, non-invasive, and contact-free treatment of superficial skin infections. Irradiation of Malassezia furfur with wIRA (570-1400 nm) resulted in a reduction of the yeast's metabolic activity. When put in contact with immune cells, wIRA-irradiated M. furfur was recovered at lower counts than non-irradiated M. furfur. Likewise, wIRA irradiation of M. furfur put in contact with keratinocytes, the primary host interface of the fungus in the skin, reduced the fungal counts, while the keratinocytes were not affected by the irradiation. The combination of wIRA with the photosensitizer methyl aminolevulinate exerted an additional antifungal effect on M. furfur, irrespective of the presence or absence of keratinocytes, suggesting an enhancement of the treatment effect when used in combination. These findings suggest that wIRA holds promise as a potential therapy for skin disorders associated with Malassezia.
Collapse
Affiliation(s)
- Magdalena de Arriba
- Section of Immunology, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland; Institute of Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 268, CH 8057 Zürich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 268, CH 8057 Zürich, Switzerland
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland; Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
12
|
Yu Q, Wu X, Lu Y, Chen Z, Zhu Q, Wu W. Ionic Liquid Pretreatment Enhances Skin Penetration of 5-Aminolevulinic Acid: A Promising Scheme for Photodynamic Therapy for Acne Vulgaris. ACS APPLIED BIO MATERIALS 2024; 7:2899-2910. [PMID: 38607995 DOI: 10.1021/acsabm.3c01295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Acne vulgaris is one of the most prevalent skin disorders; it affects up to 85% of adolescents and often persists into adulthood. Topical 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT) provides an alternative treatment for acne; however, its efficacy is greatly undermined by the limited skin permeability of ALA. Herein, biocompatible ionic liquids (ILs) based on aliphatic acid/choline were employed to enhance the dermal delivery of ALA, thereby improving the efficacy of PDT. In addition to the one-step delivery of ALA by utilizing ILs as carriers, a two-step strategy of pretreating the skin with blank ILs, followed by the administration of free ALA, was employed to test the IL-facilitated dermal delivery of ALA in vitro. The cumulative permeation of ALA through the excised rat skin after IL pretreatment was significantly greater than that in the untreated group, the 20% dimethyl sulfoxide (DMSO) penetration enhancer group, and the one-step group. The penetration efficiency was influenced by formulation and treatment factors, including the type of IL, pretreatment duration, water content in the ILs, and concentration of ALA. In rats, IL pretreatment facilitated faster, greater, and deeper ALA-induced protoporphyrin IX (PpIX) accumulation. Moreover, the IL pretreatment regimen significantly improved the efficacy of ALA-based PDT against acne vulgaris in a rat ear model. The model IL choline citrate ([Ch]3[Cit]1) had a moderate effect on the skin barrier. Trans-epidermal water loss could be recovered 1 h after IL treatment, but no irritation to the rat skin was detected after 7 days of consecutive treatment. It was concluded that biocompatible IL pretreatment enhances the penetration of ALA and thus facilitates the transformation of PpIX and improves the efficacy of PDT against acne vulgaris.
Collapse
Affiliation(s)
- Qin Yu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiying Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
13
|
Chen Z, Liu X, Jiang Z, Wu H, Yang T, Peng L, Wu L, Luo Z, Zhang M, Su J, Tang Y, Li J, Xie Y, Shan H, Lin Q, Wang X, Chen X, Peng H, Zhao S, Chen Z. A piezoelectric-driven microneedle platform for skin disease therapy. Innovation (N Y) 2024; 5:100621. [PMID: 38680817 PMCID: PMC11053245 DOI: 10.1016/j.xinn.2024.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
With over a million cases detected each year, skin disease is a global public health problem that diminishes the quality of life due to its difficulty to eradicate, propensity for recurrence, and potential for post-treatment scarring. Photodynamic therapy (PDT) is a treatment with minimal invasiveness or scarring and few side effects, making it well tolerated by patients. However, this treatment requires further research and development to improve its effective clinical use. Here, a piezoelectric-driven microneedle (PDMN) platform that achieves high efficiency, safety, and non-invasiveness for enhanced PDT is proposed. This platform induces deep tissue cavitation, increasing the level of protoporphyrin IX and significantly enhancing drug penetration. A clinical trial involving 25 patients with skin disease was conducted to investigate the timeliness and efficacy of PDMN-assisted PDT (PDMN-PDT). Our findings suggested that PDMN-PDT boosted treatment effectiveness and reduced the required incubation time and drug concentration by 25% and 50%, respectively, without any anesthesia compared to traditional PDT. These findings suggest that PDMN-PDT is a safe and minimally invasive approach for skin disease treatment, which may improve the therapeutic efficacy of topical medications and enable translation for future clinical applications.
Collapse
Affiliation(s)
- Ziyan Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xin Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Dermatology, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi 710000, China
| | - Zixi Jiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huayi Wu
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Tao Yang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Lanyuan Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lisha Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhongling Luo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Mi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jinmao Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yang Xie
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Han Shan
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Qibo Lin
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hanmin Peng
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zeyu Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
14
|
Trave I, Salvi I, Serazzi FA, Schiavetti I, Luca L, Parodi A, Cozzani E. The impact of occlusive vs non-occlusive application of methyl aminolevulinate on the efficacy and tolerability of daylight photodynamic therapy for actinic keratosis. Photodiagnosis Photodyn Ther 2024; 46:104049. [PMID: 38490345 DOI: 10.1016/j.pdpdt.2024.104049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Conventional photodynamic therapy (c-PDT) is an effective treatment for actinic keratoses (AKs) and nonmelanoma skin cancer which exploits the photosensitizing properties of methyl aminolaevulinate (MAL). Daylight photodynamic therapy (DL-PDT) is an alternative to c-PDT which does not require the application of MAL in occlusion and that is better tolerated by patients. The impact of occlusion on the efficacy of DL-PD has not been investigated by previous studies. OBJECTIVE To compare the efficacy and tolerability of occlusive and non-occlusive DL-PDT. METHODS We conducted a prospective intraindividual left/right comparison study. AKs of the face or scalp were marked in two symmetrical treatment areas. The two target areas were randomly assigned to DL-PDT with occlusive and non-occlusive application of MAL. The efficacy and cosmetic outcome were determined by a "blinded" investigator. RESULTS Lesions in occluded areas showed a better response in the clearance rate of the lesions (65.5% vs 35.0 %, p < 0.001 %), and cosmetic outcome (P < 0.001). There was no difference in phototoxicity or pain between occluded and non-occluded areas. CONCLUSION The occlusive application of MAL improves the efficacy of DL-PDT in clearing AKs and does not increase the incidence of side effects.
Collapse
Affiliation(s)
- Ilaria Trave
- Section of Dermatology, DISSAL, IRCCS Ospedale Policlinico San Martino, University of Genoa, via A. Pastore 1, 16132, Genova 16044, Italy.
| | - Ilaria Salvi
- Section of Dermatology, DISSAL, IRCCS Ospedale Policlinico San Martino, University of Genoa, via A. Pastore 1, 16132, Genova 16044, Italy
| | | | - Irene Schiavetti
- Department of Health Sciences, Section of Biostatistics, University of Genova, Genova 16132, Italy
| | - Laura Luca
- Section of Dermatology, DISSAL, IRCCS Ospedale Policlinico San Martino, University of Genoa, via A. Pastore 1, 16132, Genova 16044, Italy
| | - Aurora Parodi
- Section of Dermatology, DISSAL, IRCCS Ospedale Policlinico San Martino, University of Genoa, via A. Pastore 1, 16132, Genova 16044, Italy
| | - Emanuele Cozzani
- Section of Dermatology, DISSAL, IRCCS Ospedale Policlinico San Martino, University of Genoa, via A. Pastore 1, 16132, Genova 16044, Italy
| |
Collapse
|
15
|
Dragicevic N, Predic-Atkinson J, Nikolic B, Pajovic SB, Ivkovic S, Adzic M. Nanocarriers in topical photodynamic therapy. Expert Opin Drug Deliv 2024; 21:279-307. [PMID: 38349540 DOI: 10.1080/17425247.2024.2318460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Photodynamic therapy (PDT) has gained significant attention due to its superiority over conventional treatments. In the context of skin cancers and nonmalignant skin diseases, topical application of photosensitizer formulations onto affected skin, followed by illumination, offers distinct advantages. Topical PDT simplifies therapy by providing easy access to the skin, increasing drug concentration within the target area, and confining residual photosensitivity to the treated skin. However, the effectiveness of topical PDT is often hindered by challenges such as limited skin penetration or photosensitizer instability. Additionally, the hypoxic tumor environment poses further limitations. Nanocarriers present a promising solution to address these challenges. AREAS COVERED The objective of this review is to comprehensively explore and highlight the role of various nanocarriers in advancing topical PDT for the treatment of skin diseases. The primary focus is to address the challenges associated with conventional topical PDT approaches and demonstrate how nanotechnology-based strategies can overcome these challenges, thereby improving the overall efficiency and efficacy of PDT. EXPERT OPINION Nanotechnology has revolutionized the field of PDT, offering innovative tools to combat the unfavorable features of photosensitizers and hurdles in PDT. Nanocarriers enhance skin penetration and stability of photosensitizers, provide controlled drug release, reduce needed dose, increase production of reactive oxygen species, while reducing side effects, thereby improving PDT effectiveness.
Collapse
Affiliation(s)
- Nina Dragicevic
- Department of Pharmacy, Singidunum University, Belgrade, Serbia
| | | | - Bojan Nikolic
- Faculty of Health and Business studies, Singidunum University, Valjevo, Serbia
| | - Snezana B Pajovic
- Institute of Nuclear sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Ivkovic
- Institute of Nuclear sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Institute of Nuclear sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Yang YC, Zhu Y, Sun SJ, Zhao CJ, Bai Y, Wang J, Ma LT. ROS regulation in gliomas: implications for treatment strategies. Front Immunol 2023; 14:1259797. [PMID: 38130720 PMCID: PMC10733468 DOI: 10.3389/fimmu.2023.1259797] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Gliomas are one of the most common primary malignant tumours of the central nervous system (CNS), of which glioblastomas (GBMs) are the most common and destructive type. The glioma tumour microenvironment (TME) has unique characteristics, such as hypoxia, the blood-brain barrier (BBB), reactive oxygen species (ROS) and tumour neovascularization. Therefore, the traditional treatment effect is limited. As cellular oxidative metabolites, ROS not only promote the occurrence and development of gliomas but also affect immune cells in the immune microenvironment. In contrast, either too high or too low ROS levels are detrimental to the survival of glioma cells, which indicates the threshold of ROS. Therefore, an in-depth understanding of the mechanisms of ROS production and scavenging, the threshold of ROS, and the role of ROS in the glioma TME can provide new methods and strategies for glioma treatment. Current methods to increase ROS include photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemodynamic therapy (CDT), etc., and methods to eliminate ROS include the ingestion of antioxidants. Increasing/scavenging ROS is potentially applicable treatment, and further studies will help to provide more effective strategies for glioma treatment.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Yu Zhu
- College of Health, Dongguan Polytechnic, Dongguan, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si-Jia Sun
- Department of Postgraduate Work, Xi’an Medical University, Xi’an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Jin Wang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China
- Shaanxi Key Laboratory of Free Radical and Medicine, Xi’an, China
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province, Xi’an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| |
Collapse
|
17
|
Chen Y, Mei Y, Gu L, Li X, Guo P, Chen L, He D. A novel PDT: 5-aminolevulinic acid combined 450 nm blue laser photodynamic therapy significantly promotes cell death of HR-HPV infected cells. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:22-32. [PMID: 36633420 DOI: 10.1080/21691401.2022.2164585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 01/13/2023]
Abstract
Human papillomavirus (HPV) infection and related diseases are clinical challenges. The efficacy of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) using red laser (630 ± 5 nm) is remarkable and safe. In this study, we aim to investigate the efficacy of ALA-450 nm PDT comparing with ALA-635 nm PDT. We detected cell proliferation and cell apoptosis through MTT assay and flow cytometry assay respectively. Flow cytometry assay determined the intracellular reactive oxygen species (ROS) generation. Western blotting analysis investigated the protein expression. In vivo, immunohistochemical staining assay and TUNEL assay were performer to detect cell apoptosis. ALA-450 nm PDT inhibited the proliferation of End1 and HeLa cells, promoted cell apoptosis more effectively than ALA-635 nm PDT, and induced cell death probably through increasing the intracellular ROS generation and caspase-dependent apoptosis pathway. In vivo, ALA-450 nm PDT significantly inhibited tumour growth and activated cell apoptosis. The ALA-450 nm PDT had an advantage over ALA-635 nm PDT on inhibiting the proliferation of End1 and HeLa cells and inducing cell apoptosis. The ALA-450 nm PDT might be a promising therapeutic strategy for eradicating the HR-HPV infected cells and promoting the integration of diagnosis and treatment of HR-HPV related diseases.HighlightsWe combined 5-aminolevulinic acid with 450 nm blue laser using as a novel type of photodynamic therapy.The ALA-450 nm PDT had an advantage over ALA-635 nm PDT on inhibition of the proliferation of End1 and HeLa cells and inducing cell apoptosis in vitro and in vivo.The ALA-450 nm PDT may provide a novel alternative therapeutic option in patients with persistent HPV infection and promote the integration of diagnosis and treatment.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yibo Mei
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Lijiang Gu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Xing Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Lihong Chen
- Department of Obstetrics and Gynecology, Shaanxi Provincial People's Hospital, Shaanxi, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
18
|
Gaballo A, Ragusa A, Nobile C, Gallo N, Salvatore L, Piccirillo C, Nito A, Caputo A, Guida G, Zito A, Filotico R, Quarta A. Enhanced Delivery of 5-Aminolevulinic Acid by Lecithin Invasomes in 3D Melanoma Cancer Model. Mol Pharm 2023; 20:5593-5606. [PMID: 37755323 PMCID: PMC10630953 DOI: 10.1021/acs.molpharmaceut.3c00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Photodynamic therapy (PDT) is a noninvasive therapeutic approach for the treatment of skin cancer and diseases. 5-Aminolevulinic acid is a prodrug clinically approved for PDT. Once internalized by cancer cells, it is rapidly metabolized to the photosensitizer protoporphyrin IX, which under the proper light irradiation, stimulates the deleterious reactive oxygen species (ROS) production and leads to cell death. The high hydrophilicity of 5-aminolevulinic acid limits its capability to cross the epidermis. Lipophilic derivatives of 5-aminolevulinic acid only partly improved skin penetration, thus making its incorporation into nanocarriers necessary. Here we have developed and characterized 5-aminolevulinic acid loaded invasomes made of egg lecithin, either 1,2-dilauroyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine, and the terpene limonene. The obtained invasomes are highly thermostable and display a spherical morphology with an average size of 150 nm and an encapsulation efficiency of 80%; moreover, the ex vivo epidermis diffusion tests established that nanovesicles containing the terpene led to a much higher skin penetration (up to 80% in 3 h) compared to those without limonene and to the free fluorescent tracer (less than 50%). Finally, in vitro studies with 2D and 3D human cell models of melanoma proved the biocompatibility of invasomes, the enhanced intracellular transport of 5-aminolevulinic acid, its ability to generate ROS upon irradiation, and consequently, its antiproliferative effect. A simplified scaffold-based 3D skin model containing melanoma spheroids was also prepared. Considering the results obtained, we conclude that the lecithin invasomes loaded with 5-aminolevulinic acid have a good therapeutic potential and may represent an efficient tool that can be considered a valid alternative in the topical treatment of melanoma and other skin diseases.
Collapse
Affiliation(s)
- Antonio Gaballo
- Consiglio
Nazionale delle Ricerche, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Andrea Ragusa
- Department
of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Concetta Nobile
- Consiglio
Nazionale delle Ricerche, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Nunzia Gallo
- Department
of Engineering for Innovation, University
of Salento, via Monteroni, Lecce, 73100, Italy
| | - Luca Salvatore
- Typeone
Biomaterials Srl, Muro Leccese, Lecce, 73036, Italy
| | - Clara Piccirillo
- Consiglio
Nazionale delle Ricerche, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Alessia Nito
- Consiglio
Nazionale delle Ricerche, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Annalisa Caputo
- Consiglio
Nazionale delle Ricerche, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Gabriella Guida
- Department
of Basic Medical Sciences Neurosciences and Sense Organs, University of Bari, Bari, 70124, Italy
| | - Alfredo Zito
- Pathology
Department, IRCCS Istituto Tumori “Giovanni
Paolo II”, Bari, 70124, Italy
| | - Raffaele Filotico
- Dermato-Oncology
Unit, IRCCS Istituto Tumori “Giovanni
Paolo II”, Bari, 70124, Italy
- Section
of Dermatology and Venereology, Department of Precision and Regenerative
Medicine and Ionian Area (DiMePRe-J), University
of Bari “Aldo Moro”, Bari, 70124, Italy
| | - Alessandra Quarta
- Consiglio
Nazionale delle Ricerche, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
19
|
Sivasakthi P, Samanta PK. Exploring Thioxanthone Derivatives as Singlet Oxygen Photosensitizers for Photodynamic Therapy at the Near-IR Region. J Phys Chem A 2023; 127:8900-8910. [PMID: 37819527 DOI: 10.1021/acs.jpca.3c05780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In the lowest excited triplet state, the excited photosensitizer reacts with tissue oxygen and forms reactive oxygen species (ROS), which kills tissue cells in photodynamic therapy (PDT). Metal-free thio-based pure organic molecules and analogous nucleobases can be used as photosensitizers for PDT applications. Using quantum chemical methods, we studied one- and two-photon optical absorptions, fluorescence, and other excited-state properties of substituted thioxanthone derivatives for their potential as photosensitizers for PDT. Our calculated values were compared with the available experimental data. The calculation of the intersystem crossing rate constant for these photosensitizers explains the high quantum yield of the formation of ROS, as reported experimentally. The excited triplet-state population of the photosensitizer occurs through the 1π-π* → 3n-π* channel of intersystem crossing and increases in the presence of halogen substitution.
Collapse
Affiliation(s)
- Pandiyan Sivasakthi
- Department of Chemistry, School of Science, Gandhi Institute of Technology and Management (GITAM), Hyderabad 502329, India
| | - Pralok K Samanta
- Department of Chemistry, School of Science, Gandhi Institute of Technology and Management (GITAM), Hyderabad 502329, India
| |
Collapse
|
20
|
Nowak-Perlak M, Ziółkowski P, Woźniak M. A promising natural anthraquinones mediated by photodynamic therapy for anti-cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155035. [PMID: 37603973 DOI: 10.1016/j.phymed.2023.155035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Experimental studies emphasize the therapeutic potential of plant-derived photosensitizers used in photodynamic therapy. Moreover, several in vitro and in vivo research present the promising roles of less-known anthraquinones that can selectively target cancer cells and eliminate them after light irradiation. This literature review summarizes the current knowledge of chosen plant-based-photosensitizers in PDT to show the results of emodin, aloe-emodin, parietin, rubiadin, hypericin, and soranjidiol in photodynamic therapy of cancer treatment and describe the comprehensive perspective of their role as natural photosensitizers. METHODS Literature searches of chosen anthraquinones were conducted on PubMed.gov with keywords: "emodin", "aloe-emodin", "hypericin", "parietin", "rubiadin", "soranjidiol" with "cancer" and "photodynamic therapy". RESULTS According to literature data, this review concentrated on all existing in vitro and in vivo studies of emodin, aloe-emodin, parietin, rubiadin, soranjidiol used as natural photosensitizers emphasizing their effectiveness and detailed mechanism of action in anticancer therapy. Moreover, comprehensive preclinical and clinical studies on hypericin reveal that the above-described substances may be included in the phototoxic treatment of different cancers. CONCLUSIONS Overall, this review presented less-known anthraquinones with their promising molecular mechanisms of action. It is expected that in the future they may be used as natural PSs in cancer treatment as well as hypericin.
Collapse
Affiliation(s)
- Martyna Nowak-Perlak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland.
| | - Piotr Ziółkowski
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland
| |
Collapse
|
21
|
Qiao S, Tang H, Xia J, Ding M, Qiao S, Niu Y, Jiang G. Efficacy and safety of microneedling, fractional CO 2 laser, and cryotherapy combined with 5-aminolevulinic acid photodynamic therapy in the treatment of actinic keratosis: A multicenter prospective randomized controlled study. Photodiagnosis Photodyn Ther 2023; 43:103700. [PMID: 37429461 DOI: 10.1016/j.pdpdt.2023.103700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) for actinic keratosis (AK) is limited by the depth of treatment. Microneedling or fractional CO2 laser can facilitate the penetration of photosensitizer, while cryotherapy can treat deeper tissues but is not suitable for field cancerization. OBJECTIVE To investigate the efficacy of microneedling, fractional CO2 laser, and cryotherapy in combination with PDT for AK. METHODS Patients with AK were randomized into 4 groups, including group A with microneedling + PDT, group B with fractional CO2 laser + PDT, group C with cryotherapy + PDT, and group D with PDT. After 12 weeks, the clinical, dermoscopic, and reflectance confocal microscopy (RCM) outcomes were assessed. RESULTS A total of 129 patients were included in this study, with 31, 30, 35, and 31 patients in each group, yielding clinical response rates of 90.3%, 93.3%, 97.1%, and 74.2%, respectively (P=0.026). The RCM response rates were 71.0%, 80.0%, 85.7%, and 54.8%, respectively (P=0.030). The dermoscopic response rates were 77.4%, 83.3%, 88.6%, and 60.0%, respectively (P=0.039). Group C showed the best efficacy in terms of clinical, dermoscopic, and RCM outcomes. CONCLUSIONS All three treatments improved the efficacy of PDT and were well tolerated, with cryotherapy + PDT showing the best efficacy.
Collapse
Affiliation(s)
- Shiyun Qiao
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai Hai Road, Xuzhou, Jiangsu 221002, People's Republic of China; Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Tang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai Hai Road, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Jiali Xia
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai Hai Road, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Mingming Ding
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai Hai Road, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Shuyun Qiao
- Department of Rehabilitation Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pelvic Floor Rehabilitation, The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yanyan Niu
- Department of Dermatology, Suqian First People's Hospital, Suqian 223800, People's Republic of China
| | - Guan Jiang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai Hai Road, Xuzhou, Jiangsu 221002, People's Republic of China.
| |
Collapse
|
22
|
Jain R, Paul M, Padaga SG, Dubey SK, Biswas S, Singhvi G. Dual-Drug-Loaded Topical Delivery of Photodynamically Active Lipid-Based Formulation for Combination Therapy of Cutaneous Melanoma. Mol Pharm 2023. [PMID: 37262335 DOI: 10.1021/acs.molpharmaceut.3c00280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Topical administration of anti-cancer drugs along with photodynamically active molecules is a non-invasive approach, which stands to be a promising modality for treating aggressive cutaneous melanomas with the added advantage of high patient compliance. However, the efficiency of delivering drugs topically is limited by several factors, such as penetration of the drug across skin layers at the tumor site and limited light penetrability. In this study, curcumin, an active anti-cancer agent, and chlorin e6, a photoactivable molecule, were encapsulated into lipidic nanoparticles that produced reactive oxygen species (ROS) when activated at 665 nm by near-infrared (NIR) light. The optimized lipidic nanoparticle containing curcumin and chlorin e6 exhibited a particle size of less than 100 nm. The entrapment efficiency for both molecules was found to be 81%. The therapeutic efficacy of the developed formulation was tested on B16F10 and A431 cell lines via cytotoxicity evaluation, combination index, cellular uptake, nuclear staining, DNA fragmentation, ROS generation, apoptosis, and cell cycle assays under NIR irradiation (665 nm). Co-delivering curcumin and chlorin e6 exhibited higher cellular uptake, better cancer growth inhibition, and pronounced apoptotic events compared to the formulation having the free drug alone. The study results depicted that topical application of this ROS-generating dual-drug-loaded lipidic nanoparticles incorporated in SEPINEO gel achieved better permeation (80 ± 2.45%) across the skin, and exhibited the improved skin retention and a synergistic effect as well. The present work introduces photo-triggered ROS-generating dual-drug-based lipidic nanoparticles, which are simple and efficient to develop and exhibit synergistic therapeutic effects against cutaneous melanoma.
Collapse
Affiliation(s)
- Rupesh Jain
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan 333031, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sri Ganga Padaga
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan 333031, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
23
|
Yu N, Wu L, Su J, Chen M, Lu L, Huang K, Li Y, Jiang Z, Liu S, Peng L, Xie Y, Chen Z, Zhou W, Wan M, Bu W, Zhao S. Photodynamic therapy combined with surgery versus Mohs micrographic surgery for the treatment of difficult-to-treat basal cell carcinoma: A retrospective clinical study. J DERMATOL TREAT 2023; 34:2200871. [PMID: 37036184 DOI: 10.1080/09546634.2023.2200871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
BACKGROUND Mohs micrographic surgery (MMS) is the preferable surgery for difficult -to-treat basal cell carcinoma (BCC) but is an expensive, labor-intensive, and time-consuming technique. The aim of this study is to compare the efficacy and safety of photodynamic therapy combined with surgery(S-PDT) versus Mohs micrographic surgery (MMS) for the treatment of difficult-to-treat BCC. METHODS This was a retrospective, comparative study. A total of 32 patients, 16 patients with 48 lesions, were treated with S-PDT and the other 16 patients with 17 lesions treated by MMS were enrolled in this study. Follow-up was at least 36 months posttreatment. RESULTS The recurrence rate was no statistical difference between the S-PDT and MMS (P = 1.000, Fishers exact test). The median follow-up was 42.5 months (range 36-63 months).Mean healing time in the S-PDT [17.9 days (SD 9.8)] is longer than in MMS [7.5 days (SD 1.5)] during follow-up(P<0.001,Independent T test) . On the whole, the cosmetic outcome of patients in S-PDT was statistically no significant difference with that in MMS according to a 4-point scale (p = 0.719, chi-squared test). CONCLUSIONS S-PDT is a safe, effective, and novel cosmetic treatment, which holds the potential to be an alternative treatment to MMS for some cases.
Collapse
Affiliation(s)
- Nianzhou Yu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
| | - Lisha Wu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
| | - Juan Su
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
| | - Mingliang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
| | - Lixia Lu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
| | - Kai Huang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
| | - Yixin Li
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
| | - Zixi Jiang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
| | - Siliang Liu
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Lanyuan Peng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
| | - Yang Xie
- Department of Dermatology, The 3rd Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Zeyu Chen
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan China
| | - Miaojian Wan
- Department of Dermatology, The 3rd Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - WenBo Bu
- Department of Dermatologic Surgery, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Shuang Zhao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China, 410008
| |
Collapse
|
24
|
Toulemonde E, Faiz S, Dubois R, Verhasselt-Crinquette M, Carpentier O, Abi Rached H, Mortier L. Photodynamic therapy for the treatment of primary cutaneous B-cell marginal zone lymphoma: A series of 4 patients. JAAD Case Rep 2023; 33:62-66. [PMID: 36860806 PMCID: PMC9969199 DOI: 10.1016/j.jdcr.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Elise Toulemonde
- Department of Dermatology, Claude Huriez Hospital, Lille University Hospital, Lille, France,Correspondence to: Elise Toulemonde, BA, 2 Ave Oscar Lambret, 59000, Lille, France.
| | - Sarah Faiz
- Department of Dermatology, Claude Huriez Hospital, Lille University Hospital, Lille, France,Department of Dermatology, Hospital of Douai, Douai, France
| | - Romain Dubois
- Department of Anatomopathology, Biology and Pathology Center Pierre-Marie Degand, CHU Lille, Lille, France
| | | | - Olivier Carpentier
- Department of Dermatology, Claude Huriez Hospital, Lille University Hospital, Lille, France,Department of Dermatology, Hospital of Roubaix, Roubaix, France
| | - Henry Abi Rached
- Department of Dermatology, Claude Huriez Hospital, Lille University Hospital, Lille, France
| | - Laurent Mortier
- Department of Dermatology, Claude Huriez Hospital, CARADERM and University of Lille, U1189 Inserm, Lille, France
| |
Collapse
|
25
|
Kumar GS, Sha MS, Yempally S, Cabibihan JJ, Sadasivuni KK. A practical perspective for chromatic orthogonality for implementing in photolithography. Sci Rep 2023; 13:694. [PMID: 36639436 PMCID: PMC9839670 DOI: 10.1038/s41598-023-27869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Theoretically, it is more challenging to anticipate the conversion and selectivity of a photochemical experiment compared to thermally generated reactivity. This is due to the interaction of light with a photoreactive substrate. Photochemical reactions do not yet receive the same level of broad analytical study. Here, we close this research gap by presenting a methodology for statistically forecasting the time-dependent progression of photoreactions using widely available LEDs. This study uses NiS/ZnO in perovskite (MAPbI3) solar cells as an additive (5 volume %). The effect of monolithic perovskite solar cells (mPSCs) on forecasting the wavelength of LEDs has been carefully investigated using various characterization methods, including X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The photocatalytic activity was analyzed by measuring the voltage produced. Various factors like selectivity, stability and sensitivity were also examined. This work provides a new perspective to validate NiS/ZnO photocatalysts for predicting the wavelength of different light sources and to apply in photolithography.
Collapse
Affiliation(s)
| | - Mizaj Shabil Sha
- grid.412603.20000 0004 0634 1084Center for Advanced Materials, Qatar University, PO Box 2713, Doha, Qatar
| | - Swathi Yempally
- grid.412603.20000 0004 0634 1084Center for Advanced Materials, Qatar University, PO Box 2713, Doha, Qatar
| | - John-John Cabibihan
- grid.412603.20000 0004 0634 1084Department of Mechanical and Industrial Engineering, Qatar University, PO Box 2713, Doha, Qatar
| | - Kishor Kumar Sadasivuni
- grid.412603.20000 0004 0634 1084Center for Advanced Materials, Qatar University, PO Box 2713, Doha, Qatar
| |
Collapse
|
26
|
Prathyusha E, A P, Ahmed H, Dethe MR, Agrawal M, Gangipangi V, Sudhagar S, Krishna KV, Dubey SK, Pemmaraju DB, Alexander A. Investigation of ROS generating capacity of curcumin-loaded liposomes and its in vitro cytotoxicity on MCF-7 cell lines using photodynamic therapy. Photodiagnosis Photodyn Ther 2022; 40:103091. [PMID: 36031144 DOI: 10.1016/j.pdpdt.2022.103091] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
Photodynamic therapy (PDT) is highly efficient in eradicating targetlesions by using photosensitizers (PS) triggered by external light energy. Nanotechnology may help increase the solubility and effective delivery of PS towards improving its efficacy. Curcumin (Cur) was used as a natural PS for PDT in the present work. Briefly, curcumin was encapsulated in liposomes (LPs) using the thin film hydration method and optimized using the QbD approach through the Box-Behnken Design (BBD) to optimize the responses like entrapment efficiency and drug loading with a smaller vesicle size. The in vitro release studies performed using a dialysis bag (MWCO 12 KDa) suggested a sustained release of the Cur over 72 h in pH 7.4 PBS following the Weibull drug release kinetics. In addition, the ROS generating capabilities upon application of blue light (460 nm) and resulting cytotoxicity were evaluated in MCF-7 cell lines. The Cur-loaded liposome exhibited significant ROS generation and cytotoxicity to the cancer cells than free curcumin. Thus, the Cur-loaded liposomes could be used to treat breast cancer with photodynamic therapy.
Collapse
Affiliation(s)
- Eluri Prathyusha
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Prabakaran A
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Hafiz Ahmed
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Mithun Rajendra Dethe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Mukta Agrawal
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Polepally SEZ, Jadcherla, Telangana, India
| | - Vijayakumar Gangipangi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - S Sudhagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan 333031, India
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India
| | - Deepak B Pemmaraju
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India.
| |
Collapse
|
27
|
Zheng Y, Fan W, Jiang L, Lu Y. Sonophoresis enhances the skin penetration of 5-aminolevulinic acid: A promising pretreatment for photodynamic therapy. Exp Dermatol 2022; 31:1939-1943. [PMID: 36089333 DOI: 10.1111/exd.14670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
5-aminolevulinic acid (5-ALA) has a poor penetrance of the skin with topical application, which reduces the efficacy of photodynamic therapy (PDT). Sonophoresis involves the use of sound waves or ultrasonic energy to enhance the topical or transdermal delivery of drugs. The purpose of this study was to investigate the effects of sonophoresis on the penetration of 5-ALA into the skin. We calculated in vitro transdermal accumulation of ALA, and the fluorescence images were collected for analysis. The cumulative amount of 5-ALA that penetrated the skin with sonophoresis increased over time and was significantly larger than that without sonophoresis (p < 0.01). With 5% 5-ALA and sonophoresis, the distinct localization of 5-ALA-PpIX in sebaceous glands started to appear 30 min after 5-ALA application, which is much earlier than with 5% 5-ALA only. For all incubation times, fluorescence intensities distributing in sebaceous glands were significantly higher in sonophoresis treated than non-sonophoresis treated skin (p < 0.05). Sonophoresis could be a technique of choice for enhancing the production of 5-ALA-induced PpIX and improving the efficacy of 5-ALA-based PDT, which may decrease the treatment time, lower the cost of therapy and enhance the clinical improvement, allowing many more patients to be treated.
Collapse
Affiliation(s)
- Yujie Zheng
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Fan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Jiang
- Department of pharmacognosy, School of traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Toulemonde E, Douxami M, Faiz S, Dubois R, Verhasselt-Crinquette M, Carpentier O, Abi Rached H, Mortier L. Efficacy of textile photodynamic therapy for mycosis fungoides. JAAD Case Rep 2022; 32:11-14. [PMID: 36620497 PMCID: PMC9813480 DOI: 10.1016/j.jdcr.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Elise Toulemonde
- Department of Dermatology, Claude Huriez Hospital, Lille University Hospital, Lille, France,Correspondence and reprint requests to: Elise Toulemonde, BA, Department of Dermatology, CHRU de Lille: Centre Hospitalier Universitaire de Lille, 2 avenue Oscar Lambret, 59000, Lille, France.
| | - Marion Douxami
- Department of Dermatology, Claude Huriez Hospital, Lille University Hospital, Lille, France
| | - Sarah Faiz
- Department of Dermatology, Claude Huriez Hospital, Lille University Hospital, Lille, France,Department of Dermatology, Hospital of Douai, Douai, France
| | - Romain Dubois
- Department of Anatomopathology, Biology and Pathology Center Pierre-Marie Degand, CHU Lille, Lille, France
| | | | - Olivier Carpentier
- Department of Dermatology, Claude Huriez Hospital, Lille University Hospital, Lille, France,Department of Dermatology, Hospital of Roubaix, Roubaix, France
| | - Henry Abi Rached
- Department of Dermatology, Claude Huriez Hospital, Lille University Hospital, Lille, France
| | - Laurent Mortier
- Department of Dermatology, Claude Huriez Hospital, CARADERM and University of Lille, Lille, France
| |
Collapse
|
29
|
D’Ercole S, Carlesi T, Dotta TC, Pierfelice TV, D’Amico E, Tripodi D, Iezzi G, Piattelli A, Petrini M. 5-Aminolevulinic Acid and Red Led in Endodontics: A Narrative Review and Case Report. Gels 2022; 8:697. [PMID: 36354605 PMCID: PMC9689491 DOI: 10.3390/gels8110697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 08/26/2023] Open
Abstract
The present study aims to discuss the main factors involving the use of 5-aminolevulinic acid together with red LED light and its application in endodontic treatment through a narrative review and a case report. Persistence of microorganisms remaining on chemical-mechanical preparation or intracanal dressing is reported as the leading cause of failure in endodontics. Photodynamic therapy has become a promising antimicrobial strategy as an aid to endodontic treatment. Being easy and quick to apply, it can be used both in a single session and in several sessions, as well as not allowing forms of microbial resistance. 5-aminolevulinic acid in combination with red LED light has recently been studied in many branches of medicine, with good results against numerous types of bacteria including Enterococuss faecalis. The case report showed how bacterial count of CFU decreased by half (210 CFU/mL), after 45 min of irrigation with a gel containing 5% of 5-aminolevulinic acid compared to the sample before irrigation (420 CFU/mL). The subsequent irradiation of red LED light for 7 min, the bacterial count was equal to 0. Thus, it is concluded that the use of 5-aminolevulinic acid together with red LED light is effective in endodontic treatment.
Collapse
Affiliation(s)
- Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Teocrito Carlesi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Tatiane Cristina Dotta
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil
| | - Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Domenico Tripodi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences (Unicamillus), 00131 Rome, Italy
- Fondazione Villa Serena per la Ricerca, 65013 Città Sant’Angelo, Italy
- Casa di Cura Villa Serena, 65013 Città Sant’Angelo, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
30
|
Combination-Based Strategies for the Treatment of Actinic Keratoses with Photodynamic Therapy: An Evidence-Based Review. Pharmaceutics 2022; 14:pharmaceutics14081726. [PMID: 36015352 PMCID: PMC9416092 DOI: 10.3390/pharmaceutics14081726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) is a highly effective and widely adopted treatment strategy for many skin diseases, particularly for multiple actinic keratoses (AKs). However, PDT is ineffective in some cases, especially if AKs occur in the acral part of the body. Several methods to improve the efficacy of PDT without significantly increasing the risks of side effects have been proposed. In this study, we reviewed the combination-based PDT treatments described in the literature for treating AKs; both post-treatment and pretreatment were considered including topical (i.e., diclofenac, imiquimod, adapalene, 5-fluorouracil, and calcitriol), systemic (i.e., acitretin, methotrexate, and polypodium leucotomos), and mechanical–physical (i.e., radiofrequency, thermomechanical fractional injury, microneedling, microdermabrasion, and laser) treatment strategies. Topical pretreatments with imiquimod, adapalene, 5-fluorouracil, and calcipotriol were more successful than PDT alone in treating AKs, while the effect of diclofenac gel was less clear. Both mechanical laser treatment with CO2 and Er:YAG (Erbium:Yttrium–Aluminum–Garnet) as well as systemic treatment with Polypodium leucotomos were also effective. Different approaches were relatively more effective in particular situations such as in immunosuppressed patients, AKs in the extremities, or thicker AKs. Conclusions: Several studies showed that a combination-based approach enhanced the effectiveness of PDT. However, more studies are needed to further understand the effectiveness of combination therapy in clinical practice and to investigate the role of acitretin, methotrexate, vitamin D, thermomechanical fractional injury, and microdermabrasion in humans.
Collapse
|
31
|
Souto EB, da Ana R, Vieira V, Fangueiro JF, Dias-Ferreira J, Cano A, Zielińska A, Silva AM, Staszewski R, Karczewski J. Non-melanoma skin cancers: physio-pathology and role of lipid delivery systems in new chemotherapeutic treatments. Neoplasia 2022; 30:100810. [PMID: 35649306 PMCID: PMC9160356 DOI: 10.1016/j.neo.2022.100810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022]
Abstract
Non-melanoma carcinoma has high incidence rates and has two most common subtypes: basal cell carcinoma and squamous cell carcinoma. This type of carcinoma is usually not fatal; however, it can destroy sensory organs such as the nose, ears, and lips. The treatment of these injuries using non-invasive methods is thus strongly recommended. Some treatments for non-melanoma carcinoma are already well defined, such as surgery, cryosurgery, curettage and electrode section, and radiotherapy; however, these conventional treatments cause inflammation and scarring. In the non-surgical treatment of non-melanoma carcinoma, the topical administration of chemotherapeutic drugs contributes for an effective treatment with reduced side effects. However, the penetration of anticancer drugs in the deeper layers of the skin is required. Lipid delivery systems (liposomes, solid lipid nanoparticles, nanostructured lipid carriers) have been developed to overcome epidermal barrier of the skin and to allow the drugs to reach tumor cells. These lipid nanoparticles contribute to control the release profile of the loaded chemotherapeutic drugs, maintaining their stability and increasing death of tumor cells. In this review, the characteristics of non-melanoma carcinoma will be discussed, describing the main existing treatments, together with the contribution of lipid delivery systems as an innovative approach to increase the effectiveness of topical therapies for non-melanoma carcinomas.
Collapse
Affiliation(s)
- Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Raquel da Ana
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vânia Vieira
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150, Porto, Porto, Portugal
| | - Joana F Fangueiro
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150, Porto, Porto, Portugal
| | - João Dias-Ferreira
- Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), 08007 Barcelona, Spain
| | - Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Amélia M Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Rafał Staszewski
- Department of Hypertension Angiology and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jacek Karczewski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61-701 Poznań, Poland; Department of Gastroenterology, Dietetics and Internal Diseases, H. Swiecicki University Hospital, Poznan University of Medical Sciences, 60-355 Poznan, Poland.
| |
Collapse
|
32
|
Wen F, Li P, Meng H, Yan H, Huang X, Hao C, Su W. Nitrogen-doped carbon dots/curcumin nanocomposite for combined Photodynamic/photothermal dual-mode antibacterial therapy. Photodiagnosis Photodyn Ther 2022; 39:103033. [PMID: 35905831 DOI: 10.1016/j.pdpdt.2022.103033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/07/2023]
Abstract
Due to their excellent photophysical properties, carbon quantum dots have great potential in biomedical and drug delivery fields. In this study, nitrogen-doped carbon quantum dots with good water solubility were prepared using citric acid and ethylenediamine as precursors, and compounded with curcumin, a photosensitive component, to produce composite nanomaterials with photodynamic therapy and synergistic photothermal therapy. The formation of nitrogen-doped carbon quantum dots and composite nanomaterials was verified using physical and optical means. In addition, the composite nanomaterials produced single-linear oxygen and exacerbated the increase of solution temperature under blue (405 nm) and near-infrared (808 nm) light irradiation, respectively. The plate counting method showed that the composite nanomaterials exhibited good photodynamic synergistic photothermal antibacterial properties against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus under dual light source (405+808 nm) irradiation, which improved the photoinactivation of curcumin against bacteria. In addition, the composite nanomaterials exhibited low toxicity and good hemocompatibility. These experimental results suggested that the composite nanomaterials showed great potential in a multimodal photodynamic therapy synergistic photothermal treatment platform.
Collapse
Affiliation(s)
- Fangzhou Wen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Hongrong Meng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongjun Yan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaodong Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Cui Hao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| |
Collapse
|
33
|
Zhou Y, Mo M, Luo D, Yang Y, Hu J, Ye C, Lin L, Xu C, Chen W. Evolutionary Trend Analysis of Research on 5-ALA Delivery and Theranostic Applications Based on a Scientometrics Study. Pharmaceutics 2022; 14:pharmaceutics14071477. [PMID: 35890373 PMCID: PMC9320574 DOI: 10.3390/pharmaceutics14071477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
5-aminolevulinic acid (5-ALA) has been extensively studied for its sustainability and broad-spectrum applications in medical research and theranostics, as well as other areas. It’s a precursor of protoporphyrin IX (PpIX), a sustainable endogenous and naturally-existing photosensitizer. However, to the best of our knowledge, a scientometrics study based on the scientific knowledge assay of the overall situation on 5-ALA research has not been reported so far, which would be of major importance to the relevant researchers. In this study, we collected all the research articles published in the last two decades from the Web of Science Core Collection database and employed bibliometric methods to comprehensively analyze the dataset from different perspectives using CiteSpace. A total of 1595 articles were identified. The analysis results showed that China published the largest number of articles, and SBI Pharmaceuticals Co., Ltd. was the most productive institution that sponsored several of the most productive authors. The cluster analysis and burst detections indicated that the improvement of photodynamic efficacy theranostics is the up-to-date key direction in 5-ALA research. Furthermore, we emphatically studied nanotechnology involvement in 5-ALA delivery and theranostics research. We envision that our results will be beneficial for researchers to have a panorama of and deep insights into this area, thus inspiring further exploitations, especially of the nanomaterial-based systems for 5-ALA delivery and theranostic applications.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde 352100, China;
| | - Mulan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Dexu Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Yi Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Jialin Hu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Chenqing Ye
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde 352100, China;
| | - Longxiang Lin
- Shenzhen Osteomore Biotechnology Co., Ltd., Shenzhen 518118, China;
| | - Chuanshan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
- Correspondence: (C.X.); (W.C.)
| | - Wenjie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
- State Key Laboratory of Respiratory Disease, Guangdong-Hongkong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou 510182, China
- Sydney Vital Translational Cancer Research Centre, Westbourne St., Sydney, NSW 2065, Australia
- Correspondence: (C.X.); (W.C.)
| |
Collapse
|
34
|
Mishchenko T, Balalaeva I, Gorokhova A, Vedunova M, Krysko DV. Which cell death modality wins the contest for photodynamic therapy of cancer? Cell Death Dis 2022; 13:455. [PMID: 35562364 PMCID: PMC9106666 DOI: 10.1038/s41419-022-04851-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) was discovered more than 100 years ago. Since then, many protocols and agents for PDT have been proposed for the treatment of several types of cancer. Traditionally, cell death induced by PDT was categorized into three types: apoptosis, cell death associated with autophagy, and necrosis. However, with the discovery of several other regulated cell death modalities in recent years, it has become clear that this is a rather simple understanding of the mechanisms of action of PDT. New observations revealed that cancer cells exposed to PDT can pass through various non-conventional cell death pathways, such as paraptosis, parthanatos, mitotic catastrophe, pyroptosis, necroptosis, and ferroptosis. Nowadays, immunogenic cell death (ICD) has become one of the most promising ways to eradicate tumor cells by activation of the T-cell adaptive immune response and induction of long-term immunological memory. ICD can be triggered by many anti-cancer treatment methods, including PDT. In this review, we critically discuss recent findings on the non-conventional cell death mechanisms triggered by PDT. Next, we emphasize the role and contribution of ICD in these PDT-induced non-conventional cell death modalities. Finally, we discuss the obstacles and propose several areas of research that will help to overcome these challenges and lead to the development of highly effective anti-cancer therapy based on PDT.
Collapse
Affiliation(s)
- Tatiana Mishchenko
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Irina Balalaeva
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Anastasia Gorokhova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Maria Vedunova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Dmitri V. Krysko
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation ,grid.5342.00000 0001 2069 7798Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium ,grid.510942.bCancer Research Institute Ghent, Ghent, Belgium ,grid.448878.f0000 0001 2288 8774Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
35
|
Cells to Surgery Quiz: April 2022. J Invest Dermatol 2022; 142:e51-e57. [DOI: 10.1016/j.jid.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022]
|
36
|
Daylight-PDT: everything under the sun. Biochem Soc Trans 2022; 50:975-985. [PMID: 35385082 PMCID: PMC9162453 DOI: 10.1042/bst20200822] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022]
Abstract
5-Aminolevulinic acid-based photodynamic therapy (ALA-PDT) was first implemented over three decades ago and has since been mainly part of clinical practice for the management of pre-cancerous and cancerous skin lesions. Photodynamic therapy relies on the combination of a photosensitizer, light and oxygen to cause photo-oxidative damage of cellular components. 5-Aminolevulinic acid (ALA) is a natural precursor of the heme biosynthetic pathway, which when exogenously administered leads to the accumulation of the photoactivatable protoporphyrin IX. Although, effective and providing excellent cosmetic outcomes, its use has been restricted by the burning, stinging, and prickling sensation associated with treatment, as well as cutaneous adverse reactions that may be induced. Despite intense research in the realm of drug delivery, pain moderation, and light delivery, a novel protocol design using sunlight has led to some of the best results in terms of treatment response and patient satisfaction. Daylight PDT is the protocol of choice for the management of treatment of multiple or confluent actinic keratoses (AK) skin lesions. This review aims to revisit the photophysical, physicochemical and biological characteristics of ALA-PDT, and the underlying mechanisms resulting in daylight PDT efficiency and limitations.
Collapse
|
37
|
Zhang P, Han T, Xia H, Dong L, Chen L, Lei L. Advances in Photodynamic Therapy Based on Nanotechnology and Its Application in Skin Cancer. Front Oncol 2022; 12:836397. [PMID: 35372087 PMCID: PMC8966402 DOI: 10.3389/fonc.2022.836397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Comprehensive cancer treatments have been widely studied. Traditional treatment methods (e.g., radiotherapy, chemotherapy), despite ablating tumors, inevitably damage normal cells and cause serious complications. Photodynamic therapy (PDT), with its low rate of trauma, accurate targeting, synergism, repeatability, has displayed great advantages in the treatment of tumors. In recent years, nanotech-based PDT has provided a new modality for cancer treatment. Direct modification of PSs by nanotechnology or the delivery of PSs by nanocarriers can improve their targeting, specificity, and PDT efficacy for tumors. In this review, we strive to provide the reader with a comprehensive overview, on various aspects of the types, characteristics, and research progress of photosensitizers and nanomaterials used in PDT. And the application progress and relative limitations of nanotech-PDT in non-melanoma skin cancer and melanoma are also summarized.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Han
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Hui Xia
- Department of Hepatobiliary Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijie Dong
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Liuqing Chen
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lei
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Yao Y, Wang Y, Li C, Wu L, Tang G. Management of oral leukoplakia by ablative fractional laser‐assisted photodynamic therapy: A 3‐year retrospective study of 48 patients. Lasers Surg Med 2022; 54:682-687. [PMID: 35253237 PMCID: PMC9314786 DOI: 10.1002/lsm.23534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
Abstract
Objectives This study aimed to review the results of oral leucoplakia (OL) using ablative fractional laser‐assisted photodynamic therapy (AFL‐PDT) and to further evaluate the risk factors for recurrence and malignant transformation. Materials and Methods Forty‐eight patients diagnosed with OL using histopathology were enrolled in this study. All patients received one session of AFL‐PDT. Therapeutic efficacy was evaluated 1 month posttreatment. Follow‐up was scheduled every 3 months in the first year and every 6 months thereafter. Results An overall positive response rate of 87.5% (42/48) was achieved, including 62.5% (30/48) complete responses and 25.0% (12/48) partial responses. During the 3‐year follow‐up period, the recurrence and malignant transformation rates were 37.5% (18/48) and 8.3% (4/48), respectively. Lesions on gingiva/palate seemed to be associated with recurrence (p < 0.001; odds ratio [OR]: 1.64, 95% confidence interval [CI]: 1.13–2.37). The severity of epithelial dysplasia (p = 0.02; OR: 2.93, 95% CI: 1.96–4.42) and recurrence (p = 0.016; OR: 3.14, 95% CI: 2.04–4.84) were associated with a predisposition to malignant transformation. Conclusions AFL‐PDT is an effective management of OL, but requires close follow‐up. OL lesions on the gingiva/palate are predisposed to recurrence. OLs that recur with moderate/severe epithelial dysplasia have a higher risk of transforming into oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Yi‐Lin Yao
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology Shanghai China
| | - Yu‐Feng Wang
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology Shanghai China
| | - Chen‐Xi Li
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology Shanghai China
| | - Lan Wu
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology Shanghai China
| | - Guo‐Yao Tang
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology Shanghai China
| |
Collapse
|
39
|
Some Natural Photosensitizers and Their Medicinal Properties for Use in Photodynamic Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041192. [PMID: 35208984 PMCID: PMC8879555 DOI: 10.3390/molecules27041192] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022]
Abstract
Despite significant advances in early diagnosis and treatment, cancer is one of the leading causes of death. Photodynamic therapy (PDT) is a therapy for the treatment of many diseases, including cancer. This therapy uses a combination of a photosensitizer (PS), light irradiation of appropriate length and molecular oxygen. The photodynamic effect kills cancer cells through apoptosis, necrosis, or autophagy of tumor cells. PDT is a promising approach for eliminating various cancers but is not yet as widely applied in therapy as conventional chemotherapy. Currently, natural compounds with photosensitizing properties are being discovered and identified. A reduced toxicity to healthy tissues and a lower incidence of side effects inspires scientists to seek natural PS for PDT. In this review, several groups of compounds with photoactive properties are presented. The use of natural products has been shown to be a fruitful approach in the discovery of novel pharmaceuticals. This review focused on the anticancer activity of furanocoumarins, polyacetylenes, thiophenes, tolyporphins, curcumins, alkaloid and anthraquinones in relation to the light-absorbing properties. Attention will be paid to their phototoxic and anti-cancer effects on various types of cancer.
Collapse
|
40
|
Bartosińska J, Szczepanik-Kułak P, Raczkiewicz D, Niewiedzioł M, Gerkowicz A, Kowalczuk D, Kwaśny M, Krasowska D. Topical Photodynamic Therapy with Different Forms of 5-Aminolevulinic Acid in the Treatment of Actinic Keratosis. Pharmaceutics 2022; 14:346. [PMID: 35214078 PMCID: PMC8876011 DOI: 10.3390/pharmaceutics14020346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/03/2022] Open
Abstract
Photodynamic therapy (PDT) is safe and effective in the treatment of patients with actinic keratosis (AK). The aim of the study was to assess the efficacy, tolerability and cosmetic outcome of topical PDT in the treatment of AKs with three forms of photosensitizers: 5-Aminolevulinic acid hydrochloride (ALA-HCl), 5-Aminolevulinate methyl ester hydrochloride (MAL-HCl) and 5-Aminolevulinate phosphate (ALA-P). The formulations were applied onto selected scalp/face areas. Fluorescence was assessed with a FotoFinder Dermoscope 800 attachment. Skin areas were irradiated with Red Beam Pro+, Model APRO (MedLight GmbH, Herford, Germany). Applied treatments were assessed during the PDT as well as 7 days and 12 weeks after its completion. Ninety-four percent of patients rated obtained cosmetic effect excellent. The efficacy of applied PSs did not differ significantly. However, pain intensity during the PDT procedure was significantly lower in the area treated with ALA-P (5.8 on average) in comparison to the areas treated with ALA-HCl or MAL-HCl (7.0 on average on 0-10 scale). Obtained results show that ALA-P may undergo more selective accumulation than ALA-HCl and MAL-HCl. Our promising results suggest that PDT with the use of ALA-P in AK treatment may be an advantageous alternative to the already used ALA-HCl and MAL-HCl.
Collapse
Affiliation(s)
- Joanna Bartosińska
- Department of Cosmetology and Aesthetic Medicine, Medical University of Lublin, Chodźki 1 St., 20-093 Lublin, Poland
| | - Paulina Szczepanik-Kułak
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland; (P.S.-K.); (M.N.); (A.G.); (D.K.)
| | - Dorota Raczkiewicz
- Department of Medical Statistics, School of Public Health, Center of Postgraduate Medical Education, Kleczewska 61/63 St., 01-826 Warsaw, Poland;
| | - Marta Niewiedzioł
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland; (P.S.-K.); (M.N.); (A.G.); (D.K.)
| | - Agnieszka Gerkowicz
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland; (P.S.-K.); (M.N.); (A.G.); (D.K.)
| | - Dorota Kowalczuk
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4 St., 20-090 Lublin, Poland;
| | - Mirosław Kwaśny
- Institute of Optoelectronics, The Military University of Technology, Kaliskiego 2 St., 01-476 Warsaw, Poland;
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland; (P.S.-K.); (M.N.); (A.G.); (D.K.)
| |
Collapse
|
41
|
Wu W, Liu B. Modulating the optical properties and functions of organic molecules through polymerization. MATERIALS HORIZONS 2022; 9:99-111. [PMID: 34498024 DOI: 10.1039/d1mh01030a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic functional materials with advanced optical properties have attracted much attention due to their broad applications, such as in light-emitting diodes, solar cells, anti-counterfeiting, photocatalysis, and even disease diagnosis and treatment. Recent research has revealed that many optical properties of organic molecules can be improved through simple polymerization. In this review, we discuss the phenomenon, mechanism, and impact of polymerization on the properties of materials, including the polymerization-induced spectral shift, polymerization-enhanced photosensitization, polymerization-enhanced two-photon absorption, polymerization-enhanced photocatalytic efficiency, polymerization-induced room temperature phosphorescence, polymerization-induced thermally activated delayed fluorescence, and polymerization-induced emission using specific examples with different applications. The new opportunities arising from polymerization in designing high performance optical materials are summarized in the future perspective.
Collapse
Affiliation(s)
- Wenbo Wu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
42
|
He J, Yang Y, Jin L, Li S, Xie F, Fan J, Li C. 20% ALA-PDT pretreated by fire needle in patients with dissecting cellulitis of the scalp: An interim analysis. Photodiagnosis Photodyn Ther 2021; 36:102544. [PMID: 34551324 DOI: 10.1016/j.pdpdt.2021.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Dissecting cellulitis of the scalp (DCS) is a rare but distinctive, chronic suppurative condition, and the treatment is a therapeutic challenge. Recently, treatment of DCS with 5-aminolaevulinic acid photodynamic therapy (ALA-PDT) has been considered as a potential option. OBJECTIVE To evaluate the efficacy and safety of 20% ALA-PDT pretreated by fire needle in the treatment of DCS. MATERIALS AND METHODS Topical 20% ALA-PDT with fire needle intervention as a pretreatment, was applied to six patients with DCS. All patients completed three sessions treatment at an interval of ten days. They were assessed for the efficacy at the baseline and on ten days after each treatment. According to the reduction of lesions and the improvements of patients' symptoms after each session, the objective assessment of therapeutic effect was divided into four grades. The adverse effects were recorded. RESULTS A total of six male patients were enrolled in our study. After three sessions of ALA-PDT, among them, three patients recovered, two patients achieved significant improvement and one patient achieved partial response.Patient 4 (Pt.4) relapsed at 6-month follow-up. Pt.1 and Pt.6. maintained complete response after one year follow-up. We also found that the clearance rate of the popular/nodular and cyst/abscess was much higher than sinus. CONCLUSION 20% ALA-PDT pretreated by fire needle could be an effective, minimally-invasive, safe method for DCS patients. Lesion in the early stages have a better response than sinus.
Collapse
Affiliation(s)
- Juan He
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China; Medical College of Nankai University, Tianjin, 300071, China
| | - Yi Yang
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Liang Jin
- Department of Dermatology, Air Force Medical Center, PLA, Beijing 100142, China
| | - Shan Li
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Fang Xie
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jianfeng Fan
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Chengxin Li
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
43
|
Wainwright M. Anti-infective dyes in the time of COVID. DYES AND PIGMENTS : AN INTERNATIONAL JOURNAL 2021; 196:109813. [PMID: 34548711 PMCID: PMC8447552 DOI: 10.1016/j.dyepig.2021.109813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The phenomenal global upheaval caused by SARS-CoV-2 has produced amazing responses from science and healthcare, particularly in the rapid realisation and production of vaccines. However, until early 2020 global infection control research was highly focused on rapidly increasing rates of conventional antimicrobial resistance (AMR) and the supply of drugs to counter this. Antimicrobial dyes have been suggested by various authors for inclusion in this effort, usually with little return from responsible authorities, and normally on the basis of post-treatment staining or potential toxicity, but this does not deny the fact that such dyes, particularly with photoactivation, are the only class of agents with pan-microbial activity - i.e. against each of bacteria, viruses, fungi and protozoa - regardless of the organism's drug resistance status. Conventional antibacterials, antivirals etc. usually demonstrate activity against one particular section of pathogens only, and disinfectants such as chlorhexidine or benzalkonium salts are too toxic for internal use. This perspective reflects both the background utility of antimicrobial dyes and ways forward for their inclusion in 21st Century infection control protocols.
Collapse
Affiliation(s)
- Mark Wainwright
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool L3 3AF, United Kingdom
| |
Collapse
|
44
|
Hua J, Wu P, Gan L, Zhang Z, He J, Zhong L, Zhao Y, Huang Y. Current Strategies for Tumor Photodynamic Therapy Combined With Immunotherapy. Front Oncol 2021; 11:738323. [PMID: 34868932 PMCID: PMC8635494 DOI: 10.3389/fonc.2021.738323] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
Photodynamic therapy (PDT) is a low invasive antitumor therapy with fewer side effects. On the other hand, immunotherapy also has significant clinical applications in the treatment of cancer. Both therapies, on their own, have some limitations and are incapable of meeting the demands of the current cancer treatment. The efficacy of PDT and immunotherapy against tumor metastasis and tumor recurrence may be improved by combination strategies. In this review, we discussed the possibility that PDT could be used to activate immune responses by inducing immunogenic cell death or generating cancer vaccines. Furthermore, we explored the latest advances in PDT antitumor therapy in combination with some immunotherapy such as immune adjuvants, inhibitors of immune suppression, and immune checkpoint blockade.
Collapse
Affiliation(s)
- Jianfeng Hua
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Pan Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Lu Gan
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhikun Zhang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- The First People’s Hospital of Changde City, Changde, China
| |
Collapse
|
45
|
Jhanker Y, Mbano MN, Ponto T, Espartero LJL, Yamada M, Prow T, Benson HAE. Comparison of physical enhancement technologies in the skin permeation of methyl amino levulinic acid (mALA). Int J Pharm 2021; 610:121258. [PMID: 34740760 DOI: 10.1016/j.ijpharm.2021.121258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 11/19/2022]
Abstract
Physical drug delivery enhancement in skin has been shown to enhance cosmeceutical actives efficacy. Among the physical drug delivery enhancement technologies, microneedle is the most commercially successful technology. However, there are pros and cons like other physical enhancement technologies including variabilities in penetration depth and lack of efficacy. In this study, three physical topical dug delivery enhancements, elongated microparticles, microneedles and dermaroller, were applied to ex vivo pig skin and compared. The model topical drug that was used is 5-Aminolevulinic acid, the most commonly used photosensitiser prodrug. The skin was pre-treated before mounting on to Franz cell diffusion apparatus. Transdermal epidermal water loss was measured, and receptor fluids were collected at 7 time points for HPLC analysis. The results show that all three technologies disrupted the skin surface. All microporation pre-treatments significantly enhanced mALA cumulative permeation over 8 h (p < 0.001), with the 24x dermaroller significantly greater than 12x dermaroller (p < 0.001) and both dermaroller treatments significantly greater than microneedles and elongated microparticles (p < 0.05). The microporation pre-treatments all significantly increased mALA deposition in the stratum corneum and deeper skin tissues compared to passive administration, with deposition increases ranging from 3.6x to 15.1x that of passive administration. The DR pretreatment showed highest enhancement ratios (amount 5-Aminolevulinic acid in skin at 8 h following pretreatment v passive) with the following order of enhancement: 24x dermaroller > 12x dermaroller > microneedles > elongated microparticles. In conclusion, physical enhancement tools such as microneedles, dermarollers and elongated microparticles demonstrated significant penetration and retention of mALA through/into piglet skin. Further study is needed to determine the cost, dose and patient compliance.
Collapse
Affiliation(s)
- Yeakuty Jhanker
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Melinda N Mbano
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Thellie Ponto
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | | | - Miko Yamada
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Tarl Prow
- Future Industries Institute, University of South Australia, Adelaide, Australia; Skin Research Centre, York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Heather A E Benson
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
46
|
Could Photodynamic Therapy Be a Promising Therapeutic Modality in Hepatocellular Carcinoma Patients? A Critical Review of Experimental and Clinical Studies. Cancers (Basel) 2021; 13:cancers13205176. [PMID: 34680325 PMCID: PMC8534013 DOI: 10.3390/cancers13205176] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Hepatocellular Carcinoma (HCC) is one of the leading causes of cancer-associated mortality worldwide. With a limited number of therapeutic options available and a lack of effective anti-tumoral immune responses by the therapies, there is a dire need to search for new translational treatment options. Photodynamic Therapy (PDT), in recent years, has proven itself as an effective anti-cancer therapy. In this review, we discuss the mechanism of PDT, its evolution as an anti-cancer modality, with a special focus on HCC. We also highlight the immune response generated by PDT and how it could be essential in HCC treatment. Finally, we proposed an intraoperative procedure for the treatment of HCC by combining hepatectomy with PDT. Abstract Photodynamic Therapy (PDT) relies on local or systemic administration of a light-sensitive dye, called photosensitizer, to accumulate into the target site followed by excitation with light of appropriate wavelength and fluence. This photo-activated molecule reacts with the intracellular oxygen to induce selective cytotoxicity of targeted cells by the generation of reactive oxygen species. Hepatocellular carcinoma (HCC), one of the leading causes of cancer-associated mortality worldwide, has insufficient treatment options available. In this review, we discuss the mechanism and merits of PDT along with its recent developments as an anti-cancerous therapy. We also highlight the application of this novel therapy for diagnosis, visualization, and treatment of HCC. We examine the underlying challenges, some pre-clinical and clinical studies, and possibilities of future studies associated with PDT. Finally, we discuss the mechanism of an active immune response by PDT and thereafter explored the role of PDT in the generation of anti-tumor immune response in the context of HCC, with an emphasis on checkpoint inhibitor-based immunotherapy. The objective of this review is to propose PDT as a plausible adjuvant to existing therapies for HCC, highlighting a feasible combinatorial approach for HCC treatment.
Collapse
|
47
|
Influence of Incubation Time on Ortho-Toluidine Blue Mediated Antimicrobial Photodynamic Therapy Directed against Selected Candida Strains-An In Vitro Study. Int J Mol Sci 2021; 22:ijms222010971. [PMID: 34681632 PMCID: PMC8536188 DOI: 10.3390/ijms222010971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/25/2022] Open
Abstract
(1) Background and the aim: The appropriate incubation time in the antimicrobial photodynamic therapy protocol seems to have a huge impact on the efficacy of this process. This is particularly important in relation to Candida strains, due to the size of these cells and the presence of the cell wall. The aims of this study were to determine the optimal incubation time needed for the absorption of toluidine blue by cells of C. albicans, C. glabrata, C. krusei and C. parapsilosis using direct observation by optical microscopy, and to evaluate the efficacy of TBO-mediated aPDT on planktonic cells of these strains. (2) Methods: The microscopic evaluation consisted of taking a series of images at a magnification of 600× and counting the % of stained cells. The in vitro effect of TBO-mediated aPDT combined with a diode laser (635 nm, 400mW, 12 J/cm2, CW) on the viability of yeast cells with different incubation times was evaluated. (3) Results: The presence of TBO within the cytoplasm was observed in all tested Candida strains and at all microscopic evaluation times. However, the highest percentages of cells were stained at 7 and 10 min. The highest % reduction of CFU/mL after TBO-mediated aPDT against Candida was obtained for the strain C. albicans ATCC 10,231 and it was 78.55%. (4) Conclusions: TBO-mediated aPDT against Candida was effective in reducing the number of CFU/mL at all assessed incubation times. However, the most efficient period for almost all strains was 7–10 min.
Collapse
|
48
|
Yu N, Luo X, Wei T, Zhang Q, Yu J, Wu L, Su J, Chen M, Huang K, Li F, Xie Y, Fang F, Zhang L, He R, Chen X, Zhao S, Bu W. Dermabrasion combined with photodynamic therapy: a new option for the treatment of non-melanoma skin cancer. Lasers Med Sci 2021; 37:1255-1263. [PMID: 34365550 DOI: 10.1007/s10103-021-03381-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/16/2021] [Indexed: 12/01/2022]
Abstract
Non-melanoma skin cancer (NMSC) is the most common malignancy. Photodynamic therapy (PDT) is effective for the treatment of certain NMSCs. However, the clinical response rates of some NMSCs to single PDT are still far from ideal. The reason may be that PDT has shown limited efficacy in managing thicker NMSCs. To explore the efficacy and safety of dermabrasion combined with PDT (D-PDT) for the treatment of NMSCs. This was a retrospective, single-arm, multi-centre study. In total, 172 tumours from 40 patients were treated with D-PDT during the study period. The mean follow-up period was 40 months (range 15-110 months). D-PDT was performed with 633-nm red light at 80 m W/cm2 after lesion dermabrasion and 4 h of photosensitizer exposure. Six nodular basal cell carcinomas (nBCCs) from 6 patients, 9 squamous cell carcinomas (SCCs) from 9 patients, 17 Bowen diseases (BDs) from 10 patients and 140 actinic keratoses (AKs) from 15 patients treated with D-PDT were examined in this study. Only two patients with three AKs experienced recurrence over 12 months. The mean final follow-up periods of patients with AKs, BDs, nBCCs and SCCs were 30, 33, 45 and 60 months, respectively. Thirty-four of the 40 patients treated with D-PDT reported excellent or good cosmetic results. The mean Dermatology Life Quality Index (DLQI) scores of the patients improved significantly after treatment (estimated MD 9.72 [95% CI 8.69 to 10.75]; p < 0.001). D-PDT is a safe, cosmetic and effective treatment that could be a new candidate therapeutic for NMSC.
Collapse
Affiliation(s)
- Nianzhou Yu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xi Luo
- Department of Dermatology, Shanghai Dermatology Hospital, Shanghai, 200443, China
| | - Tianhong Wei
- Department of UltrasoundXiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qian Zhang
- Department of Dermatologic Surgery, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jing Yu
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 111 Xiangya Road, Changsha, 410078, Hunan, China
| | - Lisha Wu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mingliang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Kai Huang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fangfang Li
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yang Xie
- Department of Dermatology, The 3rd Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Fang Fang
- Department of UltrasoundXiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Liang Zhang
- Department of Dermatology, Wuhan First People's Hospital, Wuhan, 430022, Hubei, China
| | - Renliang He
- Department of Dermatologic Surgery, Dermatology Hospital of Southern Medical University, Guangzhou, 510091, Guangdong, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Shuang Zhao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - WenBo Bu
- Department of Dermatologic Surgery, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
49
|
Borlan R, Stoia D, Gaina L, Campu A, Marc G, Perde-Schrepler M, Silion M, Maniu D, Focsan M, Astilean S. Fluorescent Phthalocyanine-Encapsulated Bovine Serum Albumin Nanoparticles: Their Deployment as Therapeutic Agents in the NIR Region. Molecules 2021; 26:molecules26154679. [PMID: 34361832 PMCID: PMC8348139 DOI: 10.3390/molecules26154679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
In recent times, researchers have aimed for new strategies to combat cancer by the implementation of nanotechnologies in biomedical applications. This work focuses on developing protein-based nanoparticles loaded with a newly synthesized NIR emitting and absorbing phthalocyanine dye, with photodynamic and photothermal properties. More precisely, we synthesized highly reproducible bovine serum albumin-based nanoparticles (75% particle yield) through a two-step protocol and successfully encapsulated the NIR active photosensitizer agent, achieving a good loading efficiency of 91%. Making use of molecular docking simulations, we confirm that the NIR photosensitizer is well protected within the nanoparticles, docked in site I of the albumin molecule. Encouraging results were obtained for our nanoparticles towards biomedical use, thanks to their negatively charged surface (−13.6 ± 0.5 mV) and hydrodynamic diameter (25.06 ± 0.62 nm), favorable for benefitting from the enhanced permeability and retention effect; moreover, the MTT viability assay upholds the good biocompatibility of our NIR active nanoparticles. Finally, upon irradiation with an NIR 785 nm laser, the dual phototherapeutic effect of our NIR fluorescent nanoparticles was highlighted by their excellent light-to-heat conversion performance (photothermal conversion efficiency 20%) and good photothermal and size stability, supporting their further implementation as fluorescent therapeutic agents in biomedical applications.
Collapse
Affiliation(s)
- Raluca Borlan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania; (R.B.); (D.M.)
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; (D.S.); (A.C.)
| | - Daria Stoia
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; (D.S.); (A.C.)
| | - Luiza Gaina
- The Research Centre on Fundamental and Applied Heterochemistry, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028 Cluj-Napoca, Romania;
| | - Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; (D.S.); (A.C.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, ‘Iuliu Hațieganu’ University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| | - Maria Perde-Schrepler
- Department of Radiobiology and Tumor Biology, Oncology Institute Prof. Dr. Ion Chiricuta, 400015 Cluj-Napoca, Romania;
| | - Mihaela Silion
- Physics of Polymers and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, 700487 Iasi, Romania;
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania; (R.B.); (D.M.)
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; (D.S.); (A.C.)
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; (D.S.); (A.C.)
- Correspondence: (M.F.); (S.A.)
| | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania; (R.B.); (D.M.)
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; (D.S.); (A.C.)
- Correspondence: (M.F.); (S.A.)
| |
Collapse
|
50
|
Abrouk M, Dong J, Waibel JS. Medical and aesthetic improvement of photodamaged skin by the combination of intense pulsed light and photodynamic therapy with 10% aminolevulinic acid hydrochloride gel. Lasers Surg Med 2021; 54:62-65. [PMID: 34324724 DOI: 10.1002/lsm.23460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/11/2021] [Accepted: 07/11/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To evaluate the efficacy and safety of photodynamic therapy (PDT) with the novel 10% aminolevulinic acid (ALA) hydrochloride gel (10% ALA gel) and BF-RhodoLED® light (635 nm; 37 J/cm2 ) in combination with intense pulsed light (IPL) to augment the medical and aesthetic improvement of photodamaged skin of the décolleté. METHODS This was a single-site prospective, randomized, intraindividual split chest pilot study with 20 female subjects with moderate to severe photodamage of the décolleté. Subjects were randomized to ALA-PDT + IPL to one split-side of the chest and ALA-PDT only to the contralateral side. Three blinded raters assessed aesthetic improvement using the global aesthetic improvement scale (GAIS). RESULTS Eighteen subjects completed the study. Superior GAIS results were achieved on the ALA-PDT + IPL treatment side than on the ALA-PDT only treatment side (p < 0.001) after 24 weeks of follow-up. CONCLUSIONS ALA-PDT using 10% ALA hydrochloride gel and BF-RhodoLED® light had superior rejuvenation effects on the décolleté when combined with IPL compared to ALA-PDT alone.
Collapse
Affiliation(s)
- Michael Abrouk
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joanna Dong
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jill S Waibel
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery (Voluntary Faculty), University of Miami, Miami, Florida, USA
| |
Collapse
|