1
|
Rehman M, Pan J, Mubeen S, Ma W, Luo D, Cao S, Saeed W, Jin G, Li R, Chen T, Chen P. Morpho-physio-biochemical, molecular, and phytoremedial responses of plants to red, blue, and green light: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20772-20791. [PMID: 38393568 DOI: 10.1007/s11356-024-32532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Light is a basic requirement to drive carbon metabolism in plants and supports life on earth. Spectral quality greatly affects plant morphology, physiology, and metabolism of various biochemical pathways. Among visible light spectrum, red, blue, and green light wavelengths affect several mechanisms to contribute in plant growth and productivity. In addition, supplementation of red, blue, or green light with other wavelengths showed vivid effects on the plant biology. However, response of plants differs in different species and growing conditions. This review article provides a detailed view and interpretation of existing knowledge and clarifies underlying mechanisms that how red, blue, and green light spectra affect plant morpho-physiological, biochemical, and molecular parameters to make a significant contribution towards improved crop production, fruit quality, disease control, phytoremediation potential, and resource use efficiency.
Collapse
Affiliation(s)
- Muzammal Rehman
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Jiao Pan
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Samavia Mubeen
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Wenyue Ma
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Dengjie Luo
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Shan Cao
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Wajid Saeed
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Gang Jin
- Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Peng Chen
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Viana AJS, Alves de Carvalho A, Alves de Assis RM, Mendonça SC, Rocha JPM, Pinto JEBP, Bertolucci SKV. Impact of Colored Shade Nets on Biomass Production, Essential Oil Composition and Orientin and Isoorientin Content in Lippia gracilis Schauer. Chem Biodivers 2023; 20:e202300809. [PMID: 37702456 DOI: 10.1002/cbdv.202300809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
The objective of this study was to evaluate the effect of ChromatiNet on vegetative growth, total antioxidant capacity, phenolic and essential oils (EOs) composition of Lippia gracilis. The plants were cultivated under full sunlight, black, blue and red ChromatiNet. The flavonoid content and antioxidant capacity were quantified spectrophotometrically. The C-glycosylflavone isomers (orientin and isoorientin) were isolated and identified by conventional spectroscopic techniques and measured using high-performance liquid chromatography-diode array detection. The EO was analysed by gas chromatography and gas chromatography-mass spectrometry. Environment influenced growth, total antioxidant capacity and phytochemical levels. Shoot dry weight, thymol, carvacrol and (E)-caryophyllene were favoured under red and black ChromatiNet. Root growth, EOs, caryophyllene oxide, p-cymene, flavonoids, orientin and isoorientin were favoured in sunlight. Growth and accumulation of EOs, flavonoids and photosynthetic pigments increased under blue ChromatiNet. Therefore, Lippia gracilis plants have plasticity related to the spectral quality of light and it cultivate depends of the phytochemicals of interest.
Collapse
Affiliation(s)
- Abraão José Silva Viana
- 1Laboratory of Phytochemistry and Medicinal Plants, Department of Agriculture, Federal University of Lavras, Lavras, Brazil, PO Box 3037, Lavras, 37203-202, Minas Gerais, Brazil
| | - Alexandre Alves de Carvalho
- Laboratory of Plant Tissue Culture and Medicinal Plants, Department of Agriculture, Federal University of Lavras, Lavras, 37203-202, Minas Gerais, Brazil
| | - Rafael Marlon Alves de Assis
- Laboratory of Plant Tissue Culture and Medicinal Plants, Department of Agriculture, Federal University of Lavras, Lavras, 37203-202, Minas Gerais, Brazil
| | - Simony Carvalho Mendonça
- 1Laboratory of Phytochemistry and Medicinal Plants, Department of Agriculture, Federal University of Lavras, Lavras, Brazil, PO Box 3037, Lavras, 37203-202, Minas Gerais, Brazil
| | - João Pedro Miranda Rocha
- 1Laboratory of Phytochemistry and Medicinal Plants, Department of Agriculture, Federal University of Lavras, Lavras, Brazil, PO Box 3037, Lavras, 37203-202, Minas Gerais, Brazil
| | - José Eduardo Brasil Pereira Pinto
- Laboratory of Plant Tissue Culture and Medicinal Plants, Department of Agriculture, Federal University of Lavras, Lavras, 37203-202, Minas Gerais, Brazil
| | - Suzan Kelly Vilela Bertolucci
- 1Laboratory of Phytochemistry and Medicinal Plants, Department of Agriculture, Federal University of Lavras, Lavras, Brazil, PO Box 3037, Lavras, 37203-202, Minas Gerais, Brazil
| |
Collapse
|
3
|
Bimolata W, Bhattacharya R, Goswami A, Dey PK, Mitra A. Spectral Light Treatment Influenced Morpho-Physiological Properties and Carvacrol Accumulation in Indian Borage. JOURNAL OF PLANT GROWTH REGULATION 2023:1-15. [PMID: 37359317 PMCID: PMC10201491 DOI: 10.1007/s00344-023-11028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/05/2023] [Indexed: 06/28/2023]
Abstract
Light emitting diodes (LEDs) as an alternative light source for plants had shown to enhance the plant material quality. Indian borage or Plectranthus amboinicus (Lour.) Spreng, a medicinal herb produces carvacrol as the major volatile organic compound (VOC). Histolocalization of VOCs and expression pattern of the terpenoid biosynthesis genes after spectral light treatment is not yet reported in P. amboinicus. This work investigated the morpho-physiological, biochemical and transcriptional responses towards red, green, blue, warm white and red-blue (RB, 1:1) LEDs treatment at 40 ± 5 μmol m-2 s-1 light intensity after 40 days. Maximal growth index (GI), leaf fresh weight and dry weight were obtained in RB (1:1) treated plants. There was one-fold increase in phenolics content and 2.5-fold increase in antioxidant activity in comparison to warm white. High quantity of terpenes and phenolics deposition were observed in the glandular trichomes of RB (1:1). Maximum carvacrol accumulation (14.45 µmol g-1 FW) was also detected in RB (1:1). The transcript levels of early terpene biosynthesis genes PaDXS, PaDXR, PaHMGR and cytochrome P450 monooxygenase genes, PaCYP1 and PaCYP9 were highly upregulated in RB (1:1) and green. The overall results suggest RB (1:1) as the better lighting option amongst the studied spectral lights for obtaining maximum phytochemicals in P. amboinicus. Work is being continued with different spectral ratios of red and blue LED lights to maximize phytochemical accumulation, the outcome of which will be reported elsewhere in near future. Supplementary Information The online version contains supplementary material available at 10.1007/s00344-023-11028-6.
Collapse
Affiliation(s)
- Waikhom Bimolata
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Raktim Bhattacharya
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Ambika Goswami
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Pritam Kumar Dey
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| |
Collapse
|
4
|
Sarfaraz D, Rahimmalek M, Sabzalian MR, Gharibi S, Matkowski A, Szumny A. Essential Oil Composition and Antioxidant Activity of Oregano and Marjoram as Affected by Different Light-Emitting Diodes. Molecules 2023; 28:molecules28093714. [PMID: 37175125 PMCID: PMC10180255 DOI: 10.3390/molecules28093714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Oregano and marjoram are important aromatic spices in the food industry, as well as medicinal plants with remarkable antioxidant properties. Despite their popularity, little is known about treatments that would influence the antioxidant capacity of essential oils. In this study, different spectra of LED light, namely blue, red, white, blue-red, and natural ambient light as a control, were applied to assess the essential oil content, composition, flavonoid, phenolic, and antioxidant capacity of oregano and marjoram. GC-MS analysis revealed thymol, terpinen-4-ol, sabinene, linalool, p-cymene, and γ-terpinene as the main compounds. In oregano, the thymol content ranged from 11.91% to 48.26%, while in marjoram it varied from 17.47% to 35.06% in different samples. In oregano and marjoram, the highest phenolic contents were in blue (61.26 mg of tannic acid E/g of DW) and in white (65.18 mg of TAE/g of DW) light, respectively, while blue-red illumination caused the highest increase in total flavonoids. The antioxidant activity of oregano and marjoram extract was evaluated using two food model systems, including DPPH and β-carotene bleaching. The highest antioxidant capacity was obtained in control light in oregano and blue-red light in marjoram. The results provide information on how to improve the desired essential oil profile and antioxidant capacity of extracts for industrial producers.
Collapse
Affiliation(s)
- Danial Sarfaraz
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mehdi Rahimmalek
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Shima Gharibi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Biotechnology, Botanical Garden of Medicinal Plants, Wroclaw Medical University, 50-367 Wrocław, Poland
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| |
Collapse
|
5
|
Beatrice P, Saviano G, Reguzzoni M, Divino F, Fantasma F, Chiatante D, Montagnoli A. Light spectra of biophilic LED-sourced system modify essential oils composition and plant morphology of Mentha piperita L. and Ocimum basilicum L. FRONTIERS IN PLANT SCIENCE 2023; 14:1093883. [PMID: 36743499 PMCID: PMC9893021 DOI: 10.3389/fpls.2023.1093883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Investigating morphological and molecular mechanisms that plants adopt in response to artificial biophilic lighting is crucial for implementing biophilic approaches in indoor environments. Also, studying the essential oils (EOs) composition in aromatic plants can help unveil the light influence on plant metabolism and open new investigative routes devoted to producing valuable molecules for human health and commercial applications. We assessed the growth performance and the EOs composition of Mentha x piperita and Ocimum basilicum grown under an innovative artificial biophilic lighting system (CoeLux®), that enables the simulation of natural sunlight with a realistic sun perception, and compared it to high-pressure sodium lamps (control) We found that plants grown under the CoeLux® light type experienced a general suppression of both above and belowground biomass, a high leaf area, and a lower leaf thickness, which might be related to the shade avoidance syndrome. The secondary metabolites composition in the plants' essential oils was scarcely affected by both light intensity and spectral composition of the CoeLux® light type, as similarities above 80% were observed with respect to the control light treatments and within both plant species. The major differences were detected with respect to the EOs extracted from plants grown under natural sunlight (52% similarity in M. piperita and 75% in O. basilicum). Overall, it can be speculated that the growth of these two aromatic plants under the CoeLux® lighting systems is a feasible strategy to improve biophilic approaches in closed environments that include both plants and artificial sunlight. Among the two plant species analyzed, O. basilicum showed an overall better performance in terms of both morphological traits and essential oil composition. To increase biomass production and enhance the EOs quality (e.g., higher menthol concentrations), further studies should focus on technical solutions to raise the light intensity irradiating plants during their growth under the CoeLux® lighting systems.
Collapse
Affiliation(s)
- Peter Beatrice
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Marcella Reguzzoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fabio Divino
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Francesca Fantasma
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Donato Chiatante
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Antonio Montagnoli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
6
|
Kozłowska W, Matkowski A, Zielińska S. Light Intensity and Temperature Effect on Salvia yangii (B. T. Drew) Metabolic Profile in vitro. FRONTIERS IN PLANT SCIENCE 2022; 13:888509. [PMID: 35646028 PMCID: PMC9136318 DOI: 10.3389/fpls.2022.888509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Plant in vitro culture is a feasible system for the testing influence of an environmental factor on the accumulation and chemodiversity of specialized metabolites, especially in medicinal plants. Light and temperature are among the most important factors affecting the physiology of plant organisms but their influence on specific metabolic pathways is not completely understood. Here, we examined the morphogenetic response, photosynthetic pigments content, lipid peroxidation level, DPPH radical scavenging activity, and the production of volatile and non-volatile constituents in Salvia yangii B. T. Drew (syn. Perovskia atriplicifolia Benth.) in vitro cultures kept under different light intensities (70, 130, and 220 μmol m-2 s-1) and at two selected temperatures (25 and 30°C). The experiment was continued for 7 months to monitor the changes in the treatment response in time. Phytochemical analysis was performed using chromatographic (GC-MS and UHLPC) and spectrophotometric techniques. The light intensity significantly influenced metabolic response in a non-linear manner, whereas temperature-induced adaptive modifications varied within the long cultivation. Significant differences were noted in the content of carnosic and rosmarinic acid, as well as in several sesquiterpenes (alloaromadendrene, β-caryophyllene, α-humulene). At elevated (30°C) temperature, a trend of differently modulated content of two major antioxidants-rosmarinic acid (RA, a phenylpropanoid pathway derived phenolic acid) and carnosic acid (CA, an abietane diterpenoid) was observed, where RA, but not CA, was depending on the light intensity. At 25°C, both compounds depended on light but in various ways. Among the volatile terpenoid compounds, the influence of light was pronounced, leading to modulation of proportions between individual mono- and sesquiterpenes as well as between hydrocarbon and oxygenated compounds. The study provided new information on the metabolic profile plasticity in S. yangii and added to the existing knowledge on the chemical adaptations in plant species from severe habitats.
Collapse
Affiliation(s)
- Weronika Kozłowska
- Division of Pharmaceutical Biotechnology, Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Wroclaw, Poland
| | - Adam Matkowski
- Division of Pharmaceutical Biology and Botany, Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Wroclaw, Poland
| | - Sylwia Zielińska
- Division of Pharmaceutical Biotechnology, Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
7
|
Effect of LED Lighting on Physical Environment and Microenvironment on In Vitro Plant Growth and Morphogenesis: The Need to Standardize Lighting Conditions and Their Description. PLANTS 2021; 11:plants11010060. [PMID: 35009064 PMCID: PMC8747321 DOI: 10.3390/plants11010060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022]
Abstract
In the last decades, lighting installations in plant tissue culture have generally been renewed or designed based on LED technology. Thanks to this, many different light quality advances are available but, with their massive implementation, the same issue is occurring as in the 1960s with the appearance of the Grolux (Sylvania) fluorescent tubes: there is a lack of a methodological standardization of lighting. This review analyzes the main parameters and variables that must be taken into account in the design of LED-based systems, and how these need to be described and quantified in order to homogenize and standardize the experimental conditions to obtain reproducible and comparable results and conclusions. We have designed an experimental system in which the values of the physical environment and microenvironment conditions and the behavior of plant tissue cultures maintained in cabins illuminated with two lighting designs can be compared. Grolux tubes are compared with a combination of monochromatic LED lamps calibrated to provide a spectral emission, and light irradiance values similar to those generated by the previous discharge lamps, achieving in both cases wide uniformity of radiation conditions on the shelves of the culture cabins. This study can help to understand whether it is possible to use LEDs as one standard lighting source in plant tissue culture without affecting the development of the cultures maintained with the previously regulated protocols in the different laboratories. Finally, the results presented from this caparison indicate how temperature is one of the main factors that is affected by the chosen light source.
Collapse
|
8
|
Growth Quality and Development of Olive Plants Cultured In-Vitro under Different Illumination Regimes. PLANTS 2021; 10:plants10102214. [PMID: 34686022 PMCID: PMC8541116 DOI: 10.3390/plants10102214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/20/2022]
Abstract
Light-emitting diodes (LEDs) are useful for the in-vitro micropropagation of plants, but little information is available on woody species. This work compares the effects of light quality and intensity on the growth and development of micropropagated olive plants from two different subspecies. Illumination was provided with fluorescent and LED lamps covering different red/blue ratios (90/10, 80/20, 70/30, 60/40) or red/blue/white combinations, as well as different light intensities (30, 34, 40, 52, 56, 84, 98 and 137 µmol m−2 s−1 of photosynthetic photon fluxes, PPF). Olive plants exhibited high sensitivity to light quality and intensity. Higher red/blue ratios or lower light intensities stimulated plant growth and biomass mainly as a consequence of a higher internodal elongation rate, not affecting either the total number of nodes or shoots. In comparison to fluorescent illumination, LED lighting improved leaf area and biomass, which additionally was positively correlated with light intensity. Stomatal frequency was positively, and pigments content negatively, correlated with light intensity, while no clear correlation was observed with light quality. In comparison with fluorescent lamps, LED illumination (particularly the 70/30 red/blue ratio with 34 µmol m−2 s−1 PPF intensity) allowed optimal manipulation and improved the quality of in-vitro micropropagated olive plants.
Collapse
|
9
|
Jung WS, Chung IM, Hwang MH, Kim SH, Yu CY, Ghimire BK. Application of Light-Emitting Diodes for Improving the Nutritional Quality and Bioactive Compound Levels of Some Crops and Medicinal Plants. Molecules 2021; 26:1477. [PMID: 33803168 PMCID: PMC7963184 DOI: 10.3390/molecules26051477] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Light is a key factor that affects phytochemical synthesis and accumulation in plants. Due to limitations of the environment or cultivated land, there is an urgent need to develop indoor cultivation systems to obtain higher yields with increased phytochemical concentrations using convenient light sources. Light-emitting diodes (LEDs) have several advantages, including consumption of lesser power, longer half-life, higher efficacy, and wider variation in the spectral wavelength than traditional light sources; therefore, these devices are preferred for in vitro culture and indoor plant growth. Moreover, LED irradiation of seedlings enhances plant biomass, nutrient and secondary metabolite levels, and antioxidant properties. Specifically, red and blue LED irradiation exerts strong effects on photosynthesis, stomatal functioning, phototropism, photomorphogenesis, and photosynthetic pigment levels. Additionally, ex vitro plantlet development and acclimatization can be enhanced by regulating the spectral properties of LEDs. Applying an appropriate LED spectral wavelength significantly increases antioxidant enzyme activity in plants, thereby enhancing the cell defense system and providing protection from oxidative damage. Since different plant species respond differently to lighting in the cultivation environment, it is necessary to evaluate specific wavebands before large-scale LED application for controlled in vitro plant growth. This review focuses on the most recent advances and applications of LEDs for in vitro culture organogenesis. The mechanisms underlying the production of different phytochemicals, including phenolics, flavonoids, carotenoids, anthocyanins, and antioxidant enzymes, have also been discussed.
Collapse
Affiliation(s)
- Woo-Suk Jung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Myeong Ha Hwang
- Interdisciplinary Program in Smart Science, Kangwon National University, Chuncheon 200-701, Korea; (M.H.H.); (C.Y.Y.)
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Chang Yeon Yu
- Interdisciplinary Program in Smart Science, Kangwon National University, Chuncheon 200-701, Korea; (M.H.H.); (C.Y.Y.)
| | - Bimal Kumar Ghimire
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| |
Collapse
|
10
|
Chaves MC, Freitas JCE, Nery FC, Paiva R, Prudente DDO, Costa BGP, Daubermann AG, Bernardes MM, Grazul RM. Influence of colorful light-emitting diodes on growth, biochemistry, and production of volatile organic compounds in vitro of Lippia filifolia (Verbenaceae). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 212:112040. [PMID: 32987263 DOI: 10.1016/j.jphotobiol.2020.112040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/13/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Lippia filifolia Mart. & Schauer belongs to the Verbenaceae family and it is endemic from the rupestrian fields of the Espinhaço mountain range, located in Minas Gerais, Brazil. It is an aromatic species with medicinal potential due to the production of volatile compounds that constitute its essential oil. The objective of this work was to evaluate the effects of light quality using light-emitting diodes (LEDs) over the growth of L. filifolia grown in vitro after 45 days of culture, analyzing its volatile organic compounds (VOCs), biochemical, and biometric traits. This study had four treatments according to the wavelength of LED lamps: (i) white (control), (ii) blue, (iii) red, and (iv) a combination of red + blue (mix). The light quality influenced the growth, metabolism, and VOCs production of plantlets. The specimens showed higher height under red and white treatments and higher biomass accumulation, nodal segments, and shoot numbers under the mix treatment. Higher total carbohydrate content was also observed on the mix treatment, while the white LED provided higher chlorophylls and carotenoids contents. In addition, the lipid peroxidation was more pronounced in mix and white LEDs treatments, and it was also observed significant but not quite changes in VOCs profiles due to light quality. Eucalyptol was the compound found in a higher concentration among the VOCs of L. filifolia grown in vitro at all light quality treatments studied.
Collapse
Affiliation(s)
| | | | - Fernanda Carlota Nery
- Universidade Federal de São João del-Rei, Departamento de Engenharia de Biossistemas, São João del-Rei, MG, Brasil.
| | - Renato Paiva
- Universidade Federal de Lavras, Departamento de Biologia, Lavras, MG, Brasil
| | | | | | | | | | | |
Collapse
|
11
|
Manivannan A, Soundararajan P, Park YG, Jeong BR. Physiological and Proteomic Insights Into Red and Blue Light-Mediated Enhancement of in vitro Growth in Scrophularia kakudensis-A Potential Medicinal Plant. FRONTIERS IN PLANT SCIENCE 2020; 11:607007. [PMID: 33552100 PMCID: PMC7855028 DOI: 10.3389/fpls.2020.607007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/16/2020] [Indexed: 05/03/2023]
Abstract
The current study has determined the effect of red and blue lights on the enhancement of growth, antioxidant property, phytochemical contents, and expression of proteins in Scrophularia kakudensis. In vitro-grown shoot tip explants of S. kakudensis were cultured on the plant growth regulator-free Murashige and Skoog (MS) medium and cultured under the conventional cool white fluorescent lamp (control), blue light-emitting diodes (LED) light, or red LED light. After 4 weeks, growth, stomatal ultrastructure, total phenols and flavonoids, activities of antioxidant enzymes, and protein expressions were determined. Interestingly, blue or red LED treatment increased the shoot length, shoot diameter, root length, and biomass on comparison with the control. In addition, the LED treatments enhanced the contents of phytochemicals in the extracts. The red LED treatment significantly elicited the accumulation of flavonoids in comparison with the control. In accordance with the secondary metabolites, the LED treatments modulated the activities of antioxidant enzymes. Moreover, the proteomic insights using two-dimensional gel electrophoresis system revealed the proteins involved in transcription and translation, carbohydrate mechanism, post-translational modification, and stress responses. Taken together, the incorporation of blue or red LED during in vitro propagation of S. kakudensis can be a beneficial way to increase the plant quality and medicinal values of S. kakudensis.
Collapse
Affiliation(s)
- Abinaya Manivannan
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | | | - Yoo Gyeong Park
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | - Byoung Ryong Jeong
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University, Jinju, South Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
- *Correspondence: Byoung Ryong Jeong,
| |
Collapse
|
12
|
Silva TD, Batista DS, Fortini EA, Castro KMD, Felipe SHS, Fernandes AM, Sousa RMDJ, Chagas K, Silva JVSD, Correia LNDF, Farias LM, Leite JPV, Rocha DI, Otoni WC. Blue and red light affects morphogenesis and 20-hydroxyecdisone content of in vitro Pfaffia glomerata accessions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111761. [PMID: 31896050 DOI: 10.1016/j.jphotobiol.2019.111761] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/11/2019] [Accepted: 12/20/2019] [Indexed: 01/17/2023]
Abstract
The combination of different colors from light-emitting diodes (LEDs) may influence growth and production of secondary metabolites in plants. In the present study, the effect of light quality on morphophysiology and content of 20-hydroxyecdysone (20E), a phytoecdysteroid, was evaluated in accessions of an endangered medicinal species, Pfaffia glomerata, grown in vitro. Two accessions (Ac22 and Ac43) were cultured in vitro under three different ratios of red (R) and blue (B) LEDs: (i) 1R:1B, (ii) 1R:3B, and (iii) 3R:1B. An equal ratio of red and blue light (1R:1B) increased biomass accumulation, anthocyanin content, and 20E production (by 30-40%). Moreover, 1R:1B treatment increased the size of vascular bundles and vessel elements, as well as strengthened xylem lignification and thickening of the cell wall of shoots. The 1R:3B treatment induced the highest photosynthetic and electron transport rates and enhanced the activity of oxidative stress-related enzymes. Total Chl content, Chl/Car ratio, and NPQ varied more by accession type than by light source. Spectral quality affected primary metabolism differently in each accession. Specifically, in Ac22 plants, fructose content was higher under 1R:1B and 1R:3B treatments, whereas starch accumulation was higher under 1R:3B, and sucrose under 3R:1B. In Ac43 plants, sugars were not influenced by light spectral quality, but starch content was higher under 3R:1B conditions. In conclusion, red and blue LEDs enhance biomass and 20E production in P. glomerata grown in vitro.
Collapse
Affiliation(s)
- Tatiane Dulcineia Silva
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Diego Silva Batista
- Departamento de Agricultura, Universidade Federal da Paraíba, Campus III, Bananeiras, PB, Brazil
| | | | - Kamila Motta de Castro
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Amanda Mendes Fernandes
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Kristhiano Chagas
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | - Letícia Monteiro Farias
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - João Paulo Viana Leite
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Diego Ismael Rocha
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Jataí, GO, Brazil
| | - Wagner Campos Otoni
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
13
|
Dörr OS, Brezina S, Rauhut D, Mibus H. Plant architecture and phytochemical composition of basil (Ocimum basilicum L.) under the influence of light from microwave plasma and high-pressure sodium lamps. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2019; 202:111678. [PMID: 31734433 DOI: 10.1016/j.jphotobiol.2019.111678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
Potted herbs such as basil are in high year-round demand in Central Europe. To ensure good quality in winter, artificial light is required. Many horticulturists, who want to replace their high-pressure‑sodium (HPS) lamps with light-emitting diodes (LEDs) to save electricity energy, struggle with high investment costs. In addition, switching to LEDs can overwhelm many smaller horticultural enterprises since there is a requirement of adjusting individual light recipes and furthermore cultivation problems can occur due to the lack of infrared radiation. In this study, the influence of light from microwave plasma lamps (MPL), acting as alternative light sources, on secondary metabolites and morphology of basil plants (Ocimum basilicum L.) was tested. Basil plants were grown in a climate chamber with MPL with two different light bulbs emitting either artificial sunlight (AS) or broad white light with increased blue and green light content (sulfur plasma light; SPL). The effect of these new lamp types was compared to standard commercial HPS lamps. In addition to morphological parameters such as height, internode length and fresh weight, plant secondary metabolites were examined. Essential oils and monoterpenes were quantified by GC-MS analysis, whereby phenolic compounds were analyzed calorimetrically. Elongation growth and biomass production was increased under the AS spectrum in comparison to HPS-grown plants. Increased stem elongation was attributed to a higher content of far-red light in the AS spectrum. Furthermore, basil plants grown under the AS spectrum contained the highest total phenolic and total flavonoid content compared to plants grown under the SPL and HPS lamps, probably due to the higher content of UV-A radiation. The lowest content of phenolic compounds was observed when HPS light was used, which was assumed to be caused by a low blue light content in the emission spectrum. An impact of the different light spectra on essential oil composition was determined. A significantly increased content of linalool was found in basil leaves developed under both tested MPL spectra compared to HPS-grown plants. The total yield of the four major essential oils was lowest under HPS treatment.
Collapse
Affiliation(s)
- Oliver S Dörr
- University Geisenheim, Department of Urban Horticulture and Planting Design, Germany.
| | - Silvia Brezina
- University Geisenheim, Department of Microbiology and Biochemistry, Germany
| | - Doris Rauhut
- University Geisenheim, Department of Microbiology and Biochemistry, Germany
| | - Heiko Mibus
- University Geisenheim, Department of Urban Horticulture and Planting Design, Germany
| |
Collapse
|