1
|
Vladkova TG, Smani Y, Martinov BL, Gospodinova DN. Recent Progress in Terrestrial Biota Derived Antibacterial Agents for Medical Applications. Molecules 2024; 29:4889. [PMID: 39459256 PMCID: PMC11510244 DOI: 10.3390/molecules29204889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Conventional antibiotic and multidrug treatments are becoming less and less effective and the discovery of new effective and safe antibacterial agents is becoming a global priority. Returning to a natural antibacterial product is a relatively new current trend. Terrestrial biota is a rich source of biologically active substances whose antibacterial potential has not been fully utilized. The aim of this review is to present the current state-of-the-art terrestrial biota-derived antibacterial agents inspired by natural treatments. It summarizes the most important sources and newly identified or modified antibacterial agents and treatments from the last five years. It focuses on the significance of plant- animal- and bacteria-derived biologically active agents as powerful alternatives to antibiotics, as well as the advantages of utilizing natural antibacterial molecules alone or in combination with antibiotics. The main conclusion is that terrestrial biota-derived antibacterial products and substances open a variety of new ways for modern improved therapeutic strategies. New terrestrial sources of known antibacterial agents and new antibacterial agents from terrestrial biota were discovered during the last 5 years, which are under investigation together with some long-ago known but now experiencing their renaissance for the development of new medical treatments. The use of natural antibacterial peptides as well as combinational therapy by commercial antibiotics and natural products is outlined as the most promising method for treating bacterial infections. In vivo testing and clinical trials are necessary to reach clinical application.
Collapse
Affiliation(s)
- Todorka G. Vladkova
- Department of Polymer Engineering, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria
| | - Younes Smani
- Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain;
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain
| | - Boris L. Martinov
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Dilyana N. Gospodinova
- Faculty of Electrical Engineering, Technical University of Sofia, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| |
Collapse
|
2
|
Ao B, Jiang H, Cai X, Liu D, Tu J, Shi X, Wang Y, He F, Lv J, Li J, Hu Y, Xia X, Hou J. Synthesis of Tellurium Nanoparticles Using Moringa oleifera Extract, and Their Antibacterial and Antibiofilm Effects against Bacterial Pathogens. Microorganisms 2024; 12:1847. [PMID: 39338521 PMCID: PMC11434551 DOI: 10.3390/microorganisms12091847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Today, pathogenic microorganisms are increasingly developing resistance to conventional drugs, necessitating the exploration of alternative strategies. In addressing this challenge, nano-based antibacterial agents offer a promising avenue of research. In the present study, we used an extract of Moringa oleifera, a widely recognized edible and medicinal plant, to synthesize biogenetic tellurium nanoparticles (Bio-TeNPs). Transmission electron microscopy, scanning electron microscopy, and dynamic light scattering analyses revealed that the obtained Bio-TeNPs had diameters between 20 and 50 nm, and zeta potential values of 23.7 ± 3.3 mV. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the Bio-TeNPs consisted primarily of Te(0), along with some organic constituents. Remarkably, these Bio-TeNPs exhibited potent antibacterial activity against a spectrum of pathogens, including Escherichia coli, Klebsiella pneumoniae, Shigella dysenteriae, Salmonella typhimurium, Streptococcus pneumoniae, and Streptococcus agalactiae. In addition, findings from growth curve experiments, live/dead cell staining, and scanning electron microscopy observations of cell morphology demonstrated that Bio-TeNPs at a concentration of 0.07 mg/mL effectively disrupted E. coli and K. pneumoniae cells, leading to cell rupture or shrinkage. The biofilm inhibition rates of 0.7 mg/mL Bio-TeNPs against E. coli and K. pneumoniae reached 92% and 90%, respectively. In addition, 7 mg/mL Bio-TeNPs effectively eradicated E. coli from the surfaces of glass slides, with a 100% clearance rate. These outcomes underscore the exceptional antibacterial efficacy of Bio-TeNPs and highlight their potential as promising nanomaterials for combating bacterial infections.
Collapse
Affiliation(s)
- Bo Ao
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Honglin Jiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (H.J.); (F.H.); (J.L.)
| | - Xuan Cai
- Wuhan University, Wuhan 430060, China;
| | - Decheng Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Junming Tu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Xiaoshan Shi
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Yanxiang Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Fei He
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (H.J.); (F.H.); (J.L.)
| | - Jing Lv
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (H.J.); (F.H.); (J.L.)
| | - Jingjing Li
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Xian Xia
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| |
Collapse
|
3
|
Shoudho K, Uddin S, Rumon MMH, Shakil MS. Influence of Physicochemical Properties of Iron Oxide Nanoparticles on Their Antibacterial Activity. ACS OMEGA 2024; 9:33303-33334. [PMID: 39130596 PMCID: PMC11308002 DOI: 10.1021/acsomega.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
The increasing occurrence of infectious diseases caused by antimicrobial resistance organisms urged the necessity to develop more potent, selective, and safe antimicrobial agents. The unique magnetic and tunable properties of iron oxide nanoparticles (IONPs) make them a promising candidate for different theragnostic applications, including antimicrobial agents. Though IONPs act as a nonspecific antimicrobial agent, their antimicrobial activities are directly or indirectly linked with their synthesis methods, synthesizing precursors, size, shapes, concentration, and surface modifications. Alteration of these parameters could accelerate or decelerate the production of reactive oxygen species (ROS). An increase in ROS role production disrupts bacterial cell walls, cell membranes, alters major biomolecules (e.g., lipids, proteins, nucleic acids), and affects metabolic processes (e.g., Krebs cycle, fatty acid synthesis, ATP synthesis, glycolysis, and mitophagy). In this review, we will investigate the antibacterial activity of bare and surface-modified IONPs and the influence of physiochemical parameters on their antibacterial activity. Additionally, we will report the potential mechanism of IONPs' action in driving this antimicrobial activity.
Collapse
Affiliation(s)
- Kishan
Nandi Shoudho
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
- Department
of Chemical Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Shihab Uddin
- Department
of Bioengineering, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Kingdom
of Saudi Arabia
| | - Md Mahamudul Hasan Rumon
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
4
|
Haider FU, Zulfiqar U, Ul Ain N, Hussain S, Maqsood MF, Ejaz M, Yong JWH, Li Y. Harnessing plant extracts for eco-friendly synthesis of iron nanoparticle (Fe-NPs): Characterization and their potential applications for ameliorating environmental pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116620. [PMID: 38905935 DOI: 10.1016/j.ecoenv.2024.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/11/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Iron-nanoparticles (Fe-NPs) are increasingly been utilized in environmental applications due to their efficacy and strong catalytic activities. The novelty of nanoparticle science had attracted many researchers and especially for their green synthesis, which can effectively reuse biological resources during the polymerization reactions. Thus, the synthesis of Fe-NPs utilizing plant extracts could be considered as the eco-friendly, simple, rapid, energy-efficient, sustainable, and cost-effective. The green synthesis route can be recognized as a practical, valuable, and economically effective alternative for large-scale production. During the production process, some biomolecules present in the extracts undergo metal salts reduction, which can serve as both a capping and reducing mechanism, enhancing the reactivity and stability of green-synthesized Fe-NPs. The diversity of species provided a wide range of potential sources for green synthesis of Fe-NPs. With improved understanding of the specific biomolecules involved in the bioreduction and stabilization processes, it will become easier to identify and utilize new, potential plant materials for Fe-NPs synthesis. Newly synthesized Fe-NPs require different characterization techniques such as transmission electron microscope, ultraviolet-visible spectrophotometry, and X-ray absorption fine structure, etc, for the determination of size, composition, and structure. This review described and assessed the recent advancements in understanding green-synthesized Fe-NPs derived from plant-based material. Detailed information on various plant materials suitable of yielding valuable biomolecules with potential diverse applications in environmental safety. Additionally, this review examined the characterization techniques employed to analyze Fe-NPs, their stability, accumulation, mobility, and fate in the environment. Holistically, the review assessed the applications of Fe-NPs in remediating wastewaters, organic residues, and inorganic contaminants. The toxicity of Fe-NPs was also addressed; emphasizing the need to refine the synthesis of green Fe-NPs to ensure safety and environmental friendliness. Moving forward, the future challenges and opportunities associated with the green synthesis of Fe-NPs would motivate novel research about nanoparticles in new directions.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Noor Ul Ain
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan
| | | | - Mukkaram Ejaz
- Silesian University of Technology, Institute of Physics-Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Konarskiego 22B, Gliwice 44-100, Poland.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
5
|
Iqbal M, Aftab ZEH, Anjum T, Rizwana H, Akram W, Aftab A, Sajid ZA, Li G. Nano-Integrated Plant Tissue Culture to Increase the Rate of Callus Induction, Growth, and Curcuminoid Production in Curcuma longa. PLANTS (BASEL, SWITZERLAND) 2024; 13:1819. [PMID: 38999659 PMCID: PMC11244278 DOI: 10.3390/plants13131819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Turmeric has attracted a significant amount of interest in recent years due to its strong antimicrobial properties. The tissue culture of turmeric is preferred to obtain disease-free, highest number of plantlets with good uniform chemistry. However, there is a need to increase the speed of the whole process to meet the growing demand for planting materials and to save time and resources. Iron oxide nanoparticles (Fe3O4 NPs) showed positive effects on callus initiation time, proliferation rate, percent root response, shoot length, percent rooting, and number of roots per explant. Highest callus induction, i.e., 80%, was recorded in cultures that were grown in the presence of 15 mg/L of Fe3O4 NPs. Callus initiated earlier in culture tubes that received green synthesized iron nanoparticles in a concentration between 10-15 mg/L. Biofabricated nanoparticles were characterized for their size, physiochemical, and optical properties through UV-Vis spectroscopy, FTIR, XRD, and SEM. Curcuminoids profiling was performed by implementing LC-Ms that revealed increased quantities in plantlets grown in nano-supplemented media when compared to the control.
Collapse
Affiliation(s)
- Muhammad Iqbal
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Zill-E-Huma Aftab
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Waheed Akram
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Arusa Aftab
- Department of Botany, Lahore College for Women University, Lahore 54000, Pakistan
| | - Zahoor Ahmad Sajid
- Institute of Botany, Faculty of Life Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
6
|
Wang G, Li H, Shao X, Teng S, Wu Q. Design and development of pH-responsive levofloxacin-loaded metal-organic framework for the promising treatment of pediatric abdominal wound repair. Regen Ther 2024; 26:170-179. [PMID: 38911026 PMCID: PMC11192780 DOI: 10.1016/j.reth.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] Open
Abstract
With over 9 million fatalities per year expected by 2030, infectious diseases will remain a significant burden on the world economy and cause high mortality rates. An excellent method to increase the bioactivity of levofloxacin (LEV) in pediatric abdominal wound repair is the finding of a stimuli-based drug delivery system (DDS). We designed and developed an LEV incorporated with zeolite imidazole framework-8 (ZIF-8) as a promising nanocarrier for wound healing applications. The spectral analysis and morphological analysis confirm the formation of our newly fabricated composites. Mouse embryonic fibroblast NIH3T3 cells, the cytotoxicity, cytocompatibility, and cell proliferation characteristics of LEV@ZIF-8 were evaluated in vitro. LEV@ZIF-8 composite considerably improved the biocompatibility against NIH3T3 cells after 72-h of exposure, according to in vitro experiments. Under acidic circumstances, the pH-responsive drug release studies exhibit superior LEV release, and in physiological circumstances, there is no unintended drug release. The LEV@ZIF-8 composite-treated cells demonstrate the most remarkable cell growth and migration method in a very short time, according to the results of the wound scratch experiment. The composite exposure concentration depended on inhibition against various microorganisms in the antibacterial activity testing. According to the study, LEV@ZIF-8 are appropriate and effective DDS for stimuli-based pediatric abdominal wound repair.
Collapse
Affiliation(s)
- Guoyan Wang
- Department of Pediatric General Surgery, The First People's Hospital of Chengzhou, Chenzhou, 423000, China
| | - Hongwei Li
- Department of Pediatric General Surgery, The First People's Hospital of Chengzhou, Chenzhou, 423000, China
| | - Xinhua Shao
- Department of Pediatric General Surgery, The First People's Hospital of Chengzhou, Chenzhou, 423000, China
| | - Shuisheng Teng
- Department of Pediatric General Surgery, The First People's Hospital of Chengzhou, Chenzhou, 423000, China
| | - Qiong Wu
- Department of Pediatric Respiratory Medicine, The First People's Hospital of Chengzhou, Chenzhou, 423000, China
| |
Collapse
|
7
|
Subramani K, Incharoensakdi A. Physicochemical and photocatalytic properties of biogenic ZnO and its chitosan nanocomposites for UV-protection and antibacterial activity on coated textiles. Int J Biol Macromol 2024; 263:130391. [PMID: 38417746 DOI: 10.1016/j.ijbiomac.2024.130391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
The textiles for medical use and the purification of textile factory effluents have become the most crucial part of the human healthcare sector. In this study bioactive compounds produced by four distinct plant extracts were used for the synthesis of zinc oxide nanoparticles. The four different ZnO nanoparticles were comprehensively characterized by different analytical techniques. XRD analysis revealed the crystalline nature and phase purity of the ZnO nanoparticles. FTIR spectra provided information on the function of plant extracts in the stabilization or capping process. The size distribution and morphological diversity of the nanoparticles were further clarified by SEM and TEM images. The photocatalytic degradation activity of the four ZnO nanoparticles on two different dyes showed that ZnO nanoparticles prepared from A. indica were most effective for the degradation of 98 % and 91 % of Rhodamine B and Alizarin red dye respectively. The selected ZnO nanoparticles from A. indica were used to prepare ZnO-chitosan nanocomposites before coating on cotton fabrics. The hydrophobicity, UV protection factor, and antibacterial activity of ZnO-chitosan nanocomposites, when coated on cotton fabrics, were also examined. The overall results demonstrated the ZnO and ZnO-chitosan nanocomposite prepared in the present study as a promising material for environmental remediation application.
Collapse
Affiliation(s)
- Karthik Subramani
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand.
| |
Collapse
|
8
|
Perumalsamy H, Balusamy SR, Sukweenadhi J, Nag S, MubarakAli D, El-Agamy Farh M, Vijay H, Rahimi S. A comprehensive review on Moringa oleifera nanoparticles: importance of polyphenols in nanoparticle synthesis, nanoparticle efficacy and their applications. J Nanobiotechnology 2024; 22:71. [PMID: 38373982 PMCID: PMC10877787 DOI: 10.1186/s12951-024-02332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Moringa oleifera is one of the popular functional foods that has been tremendously exploited for synthesis of a vast majority of metal nanoparticles (NPs). The diverse secondary metabolites present in this plant turn it into a green tool for synthesis of different NPs with various biological activities. In this review, we discussed different types of NPs including silver, gold, titanium oxide, iron oxide, and zinc oxide NPs produced from the extract of different parts of M. oleifera. Different parts of M. oleifera take a role as the reducing, stabilizing, capping agent, and depending on the source of extract, the color of solution changes within NP synthesis. We highlighted the role of polyphenols in the synthesis of NPs among major constituents of M. oleifera extract. The different synthesis methods that could lead to the formation of various sizes and shapes of NPs and play crucial role in biomedical application were critically discussed. We further debated the mechanism of interaction of NPs with various sizes and shapes with the cells, and further their clearance from the body. The application of NPs made from M. oleifera extract as anticancer, antimicrobial, wound healing, and water treatment agent were also discussed. Small NPs show better antimicrobial activity, while they can be easily cleared from the body through the kidney. In contrast, large NPs are taken by the mono nuclear phagocyte system (MPS) cells. In case of shape, the NPs with spherical shape penetrate into the bacteria, and show stronger antibacterial activity compared to the NPs with other shapes. Finally, this review aims to correlate the key characteristics of NPs made from M. oleifera extract, such as size and shape, to their interactions with the cells for designing and engineering them for bio-applications and especially for therapeutic purposes.
Collapse
Affiliation(s)
- Haribalan Perumalsamy
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea.
- Center for Creative Convergence Education, Hanyang University, Seoul, Republic of Korea.
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-Gu, Seoul, 05006, Republic of Korea.
| | - Johan Sukweenadhi
- Faculty of Biotechnology, University of Surabaya, Surabaya, 60293, Indonesia
| | - Sagnik Nag
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences (JCSMHS), Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Mohamed El-Agamy Farh
- Department of Radiation Oncology, College of Medicine, Yonsei University, Seoul, South Korea
| | - Hari Vijay
- Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
9
|
Ibrahim D, I Abdel Rahman MM, M Abd El-Ghany A, A A Hassanen E, A Al-Jabr O, A Abd El-Wahab R, Zayed S, Abd El Khalek Salem M, Nabil El Tahawy S, Youssef W, A Tolba H, E Dawod R, Taha R, H Arisha A, T Y Kishawy A. Chlorella vulgaris extract conjugated magnetic iron nanoparticles in nile tilapia (Oreochromis niloticus): Growth promoting, immunostimulant and antioxidant role and combating against the synergistic infection with Ichthyophthirius multifiliis and Aeromonashydrophila. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109352. [PMID: 38171430 DOI: 10.1016/j.fsi.2023.109352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Nile tilapia reared under intensive conditions was more susceptible for Ichthyophthirius multifilii (I. multifiliis) infection eliciting higher mortality, lower productive rate and further bacterial coinfection with Aeromonas hydrophila (A. hydrophila). The higher potency of magnetic field of iron oxide nanoparticles (NPs) can kill pathogens through inhibiting their viability. Herein, coating of Chlorella vulgaris extract (ChVE) with magnetic iron oxide NPs (Mag iron NPs) can create an external magnetic field that facilitates their release inside the targeted tissues. Thus, the current study is focused on application of new functionalized properties of Mag iron NPs in combination with ChVE and their efficacy to alleviate I. multifiliis and subsequent infection with A. hydrophila in Nile tilapia. Four hundred fingerlings were divided into: control group (with no additives), three groups fed control diet supplemented with ChVE, Mag iron NPs and ChVE@Mag iron NPs for 90 days. At the end of feeding trial fish were challenged with I. multifiliis and at 9 days post challenge was coinfected by A. hydrophila. A remarkable higher growth rate and an improved feed conversion ratio were detected in group fed ChVE@Mag iron-NPs. The maximum expression of antioxidant enzymes in skin and gills tissues (GSH-Px, CAT, and SOD) which came in parallel with higher serum activities of these enzymes was identified in groups received ChVE@Mag iron-NPs. Furthermore, group fed a combination of ChVE and Mag iron-NPs showed a boosted immune response (higher lysozyme, IgM, ACH50, and MPO) prior to challenge with I. multifiliis. In contrast, fish fed ChVE@Mag iron-NPs supplemented diet had lower infection (decreased by 62%) and mortality rates (decreased by 84%), as well as less visible white spots (decreased by 92 % at 12 dpi) on the body surfaces and mucous score. Interestingly, post I. multifiliis the excessive inflammatory response in gill and skin tissues was subsided by feeding on ChVE@Mag iron-NPs as proved by down regulation of IL-1β, TNFα, COX-2 and iNOS and upregulation of IL-10, and IgM, IgT and Muc-2 genes. Notably, group exposed to I. multifiliis-showed higher mortality when exposed to Aeromonas hydrophilia (increased by 43 %) while group fed ChVE@Mag iron-NPs exhibited lower morality (2%). Moreover, the bacterial loads of A. hydrophilia in fish infected by I. multifiliis and fed control diet were higher than those received dietary supplement of ChVE, Mag iron-NPs and the most reduced load was obtained in group fed ChVE@Mag iron-NPs at 7 dpi. In conclusion, ChVE@Mag iron-NPs fed fish had stronger immune barrier and antioxidant functions of skin and gills, and better survival following I. multifiliis and A. hydrophilia infection.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | | | - Amany M Abd El-Ghany
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Eman A A Hassanen
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Omar A Al-Jabr
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Reham A Abd El-Wahab
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), 246 Dokki, Giza 12618, Egypt
| | - Shimaa Zayed
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), 246 Dokki, Giza 12618, Egypt
| | - Mona Abd El Khalek Salem
- Department of Fish Diseases, Animal Health Research Institute (AHRI), Agriculture Research Center, Mansoura, Egypt
| | - Shimaa Nabil El Tahawy
- Department of Clinical Pathology, Zagazig Branch, Animal Health Research Institute, Agriculture Research Center, Zagazig 44516, Egypt
| | - Wessam Youssef
- Biotechnology Department, Animal Health Research Institute (AHRI), 246 Dokki, Giza 12618, Egypt
| | - Heba A Tolba
- Department of Fish Health and Management, Central Laboratory of Aquaculture Research (CLAR), AboHamad, Agriculture Research Center (ARC), Egypt
| | - Rehab E Dawod
- Department of Bacteriology, Animal Health Institute, Damietta Branch, Agriculture Research Center (ARC), Dokki, Giza, Egypt
| | - Rahma Taha
- Department of Zoology, Animal Immunology and Physiology, Faculty of Science, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Asmaa T Y Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
10
|
Sithara NV, Bharathi D, Lee J, Mythili R, Devanesan S, AlSalhi MS. Synthesis of iron oxide nanoparticles using orange fruit peel extract for efficient remediation of dye pollutant in wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:30. [PMID: 38227286 DOI: 10.1007/s10653-023-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024]
Abstract
The removal of color-causing compounds from wastewater is a significant challenge that industries encounter due to their toxic, carcinogenic, and harmful properties. Despite the extensive research and development of various techniques with the objective of effectively degrading color pollutants, the challenge still persists. This paper introduces a simple technique for producing iron oxide nanoparticles (Fe2O3 NPs) using orange fruit peel for sustainable dye degradation in aqueous environment. The observation of color change and the measurement of UV-visible absorbance at 240 nm provided a confirmation for the development of Fe2O3 NPs. Transmission electron microscopy examination demonstrated that the Fe2O3 NPs have an agglomerated distribution and forming spherical structures with size ranging from 25-80 nm. Energy-dispersive X-ray spectroscopy analysis supported the existence of Fe and O. Fourier transform infrared spectroscopy conducted to investigate the involvement of orange peel extract in the reduction, capping, and synthesis of Fe2O3 NPs from the precursor salt. Fe2O3 NPs showed a photocatalytic remediation of 97%, for methylene blue under visible light irradiation. Additionally, prepared NPs exhibited concentration depended biofilm inhibition action against E. coli and S. aureus. In conclusion, Fe2O3 NPs can efficiently purify water and suppress pathogens due to their strong degrading activity, reusability, and biofilm inhibition property.
Collapse
Affiliation(s)
- N V Sithara
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamil Nadu, 641028, India.
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, 641014, India.
| | - Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - R Mythili
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600077, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, 11451, Riyadh, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Yadav S, Chander S, Gupta A. Decolorisation of textile wastewater using biosynthesised iron oxide nanomaterials and Optimisation by Response Surface Methodology. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202303507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2025]
Abstract
AbstractIn this study, the bacteria (Pseudomonas sp.) was isolated and cultured for biogenic fabrication of Fe3O4 (synthesised using bacterial cell mass) and Fe3O4@ME (synthesised using bacterial extracts) nanoparticles. The biomolecules of the bacterial extract function as a reducing and capping agent, giving the nanoparticle surface negative charges, according to the FTIR and Z potential analysis. The parameters were optimised and screened for indigo blue (IB) dye adsorption onto Fe3O4 and Fe3O4@ME nanoparticles. This work used the Design of the Experimental (DoE) method rather than the conventional one‐variable‐at‐a‐time method. The central composite design (CCD) experiment consisted of 13 experimental runs, and an analysis of variance (ANOVA) was performed to analyse the results. The models for IB dye removal using Fe3O4 and Fe3O4@ME nanomaterials showed adjusted R2 values of 0.99 and 0.99 and predicted R2 values of 0.97 and 0.99, respectively, indicating good model fit. The optimum conditions required for 70 and 64 % colour removal for Fe3O4 and Fe3O4@ME nanomaterials, respectively, are observed at 0.050 gm sorbent doses at the constant room temperature and contact time of 100 min.
Collapse
Affiliation(s)
- Sangita Yadav
- Department of Environmental Science and Engineering GJUS&T Hisar 125001 Haryana India
| | - Subhash Chander
- Department of Environmental Science and Engineering GJUS&T Hisar 125001 Haryana India
| | - Asha Gupta
- Department of Environmental Science and Engineering GJUS&T Hisar 125001 Haryana India
| |
Collapse
|
12
|
Zúñiga-Miranda J, Guerra J, Mueller A, Mayorga-Ramos A, Carrera-Pacheco SE, Barba-Ostria C, Heredia-Moya J, Guamán LP. Iron Oxide Nanoparticles: Green Synthesis and Their Antimicrobial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2919. [PMID: 37999273 PMCID: PMC10674528 DOI: 10.3390/nano13222919] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
The rise of antimicrobial resistance caused by inappropriate use of these agents in various settings has become a global health threat. Nanotechnology offers the potential for the synthesis of nanoparticles (NPs) with antimicrobial activity, such as iron oxide nanoparticles (IONPs). The use of IONPs is a promising way to overcome antimicrobial resistance or pathogenicity because of their ability to interact with several biological molecules and to inhibit microbial growth. In this review, we outline the pivotal findings over the past decade concerning methods for the green synthesis of IONPs using bacteria, fungi, plants, and organic waste. Subsequently, we delve into the primary challenges encountered in green synthesis utilizing diverse organisms and organic materials. Furthermore, we compile the most common methods employed for the characterization of these IONPs. To conclude, we highlight the applications of these IONPs as promising antibacterial, antifungal, antiparasitic, and antiviral agents.
Collapse
Affiliation(s)
- Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Julio Guerra
- Facultad de Ingeniería en Ciencias Aplicadas, Universidad Técnica del Norte, Ibarra 100107, Ecuador;
| | - Alexander Mueller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| |
Collapse
|
13
|
Sharma R, Garg R, Bali M, Eddy NO. Potential applications of green-synthesized iron oxide NPs for environmental remediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1397. [PMID: 37910248 DOI: 10.1007/s10661-023-12035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Water pollution is a significant issue worldwide due to an increase in anthropogenic activities. Heavy metals and dyes are among the most problematic contaminants that threaten the environment and negatively impact human health. Iron oxide nanoparticles (IONPs) synthesized using green methods have shown potential in these areas due to their significant adsorption capacity and photocatalytic potential. The size and morphology of biogenic IONPs can be tailored depending upon the concentration of the reducing medium and metal salt precursor. Green-synthesized IONPs have been found to be effective, economical, and environmentally friendly with their large surface area, making them suitable for removing toxic matter from contaminated water. Furthermore, they exhibit antibacterial potential against harmful microorganisms. The study emphasizes the importance of using such environmentally friendly tools to remove heavy metal ions and organic compounds from contaminated water. The underlying mechanism for the adsorption of heavy metal ions, photocatalytic degradation of organic compounds, and antimicrobial action has been explored in detail. The future prospective for the beneficial utilization of biogenic IONPs has also been signified to provide a detailed overview.
Collapse
Affiliation(s)
- Rajat Sharma
- Department of Chemistry, USS, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Rajni Garg
- Department of Applied Sciences, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India.
| | - Manoj Bali
- Department of Chemistry, USS, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Nnabuk O Eddy
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
14
|
Al-Hakkani MF, Ahmed N, Abbas AA, Hassan MHA, Aziz HA, Elshamsy AM, Khalifa HO, Abdelshakour MA, Saddik MS, Elsayed MMA, Sabet MA, El-Mokhtar MA, Alsehli M, Amin MS, Abu-Dief AM, Mohammed HHH. Synthesis, Physicochemical Characterization using a Facile Validated HPLC Quantitation Analysis Method of 4-Chloro-phenylcarbamoyl-methyl Ciprofloxacin and Its Biological Investigations. Int J Mol Sci 2023; 24:14818. [PMID: 37834266 PMCID: PMC10573198 DOI: 10.3390/ijms241914818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
A novel derivative of ciprofloxacin (Cpx) was synthesized and characterized using various analytical techniques, including FT-IR spectroscopy, UV-Vis spectroscopy, TEM and SEM analysis, 1H NMR, 13C NMR, and HPLC analysis. The newly prepared Cpx derivative (Cpx-Drv) exhibited significantly enhanced antibacterial properties compared to Cpx itself. In particular, Cpx-Drv demonstrated a 51% increase in antibacterial activity against S. aureus and a 30% improvement against B. subtilis. It displayed potent inhibitory effects on topoisomerases II (DNA gyrase and topoisomerase IV) as potential molecular targets, with IC50 values of 6.754 and 1.913 µg/mL, respectively, in contrast to Cpx, which had IC50 values of 2.125 and 0.821 µg/mL, respectively. Docking studies further supported these findings, showing that Cpx-Drv exhibited stronger binding interactions with the gyrase enzyme (PDB ID: 2XCT) compared to the parent Cpx, with binding affinities of -10.3349 and -7.7506 kcal/mole, respectively.
Collapse
Affiliation(s)
- Mostafa F. Al-Hakkani
- Department of Research, Development, and Stability, UP Pharma, Industrial Zone, Arab El Awamer, Abnoub 76, Assiut 71745, Egypt; (N.A.); (A.A.A.)
| | - Nourhan Ahmed
- Department of Research, Development, and Stability, UP Pharma, Industrial Zone, Arab El Awamer, Abnoub 76, Assiut 71745, Egypt; (N.A.); (A.A.A.)
| | - Alaa A. Abbas
- Department of Research, Development, and Stability, UP Pharma, Industrial Zone, Arab El Awamer, Abnoub 76, Assiut 71745, Egypt; (N.A.); (A.A.A.)
| | - Mohammad H. A. Hassan
- Department of Medical Laboratory Technology, Higher Technological Institute for Applied Health Sciences in Minya, Minya 71511, Egypt;
| | - Hossameldin A. Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Valley University, New Valley 72511, Egypt;
| | - Ali M. Elshamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Mina, New Minia 61768, Egypt;
| | - Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafr El Sheikh 33516, Egypt
| | - Mohamed A. Abdelshakour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Mohammed S. Saddik
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.S.S.); (M.M.A.E.)
| | - Mahmoud M. A. Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.S.S.); (M.M.A.E.)
| | - Marwa A. Sabet
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sphinx University, New-Assiut 71684, Egypt;
| | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Mosa Alsehli
- Department of Chemistry, College of Science, Taibah University, Madinah P.O. Box 344, Saudi Arabia; (M.A.); (M.S.A.)
| | - M. S. Amin
- Department of Chemistry, College of Science, Taibah University, Madinah P.O. Box 344, Saudi Arabia; (M.A.); (M.S.A.)
- Chemistry Department, Faculty of science, Ain Shams University, Cairo 11566, Egypt
| | - Ahmed M. Abu-Dief
- Department of Chemistry, College of Science, Taibah University, Madinah P.O. Box 344, Saudi Arabia; (M.A.); (M.S.A.)
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Hamada H. H. Mohammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| |
Collapse
|
15
|
Jagan K, Surendhiran S, Savitha S, Balu K, Karthick M, Naren Vidaarth T, Karthik A, Kalpana B, Senthilmurugan R. Influence of different alkaline actuators in synthesis of NiO NPs: A comparative green approach on photocatalytic and in vitro biological activity. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
16
|
Sridevi H, Bhat MR, Kumar PS, Kumar NM, Selvaraj R. Structural characterization of cuboidal α-Fe2O3 nanoparticles synthesized by a facile approach. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Abstractα-Fe2O3 nanoparticles were synthesized using Tabebuia aurea leaf extract by a facile approach. The signature peaks for Fe and O in the EDX spectrum verified the formation of Fe2O3 nanoparticles. Cuboidal-shaped nanoparticles were observed in the FE-SEM image. In the XRD pattern, it was observed that the peaks belong to α-Fe2O3 nanoparticles. These particles were pure and crystalline with an average particle size of 25.69 nm. The signals at 538 and 494 cm−1 in the FTIR image confirmed the formation of hematite nanoparticles. BET analysis showed a comparatively greater surface area (31.03 m2/g) than the commercial α-Fe2O3 nanoparticles, and the pores were mesoporous. XPS analysis confirmed the existence of α-Fe2O3 by showing the specific oxidation states for iron and oxygen at 710.34 and 529.67 eV, respectively. The saturation magnetization value of 13.97 emu/g confirmed the superparamagnetic nature. The TGA, which determined the thermal stability of the nanoparticles, reported a total weight loss of 12.75%. Hence, the highly crystalline, pure, mesoporous, superparamagnetic α-Fe2O3 nanoparticles with high surface area synthesized using T. aurea leaf extract can be potentially applied in diverse fields.
Collapse
|
17
|
Batool A, Aisida SO, Javed R, Mushtaq M, Ugwuoke CO, Ali JS, Albalawi H, Ahmad I, Zhao TK, Ezema FI. PEG Capped $${Ni}_{x}{Co}_{1-x}{Fe}_{2 }{O}_{4}$$ Nanocomposites: Microstructural, Morphological, Optical, Magnetic, Antimicrobial, and Photodegradable Properties. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Ubah PC, Dashti AF, Saaid M, Imam SS, Adnan R. Fabrication and response optimization of Moringa oleifera-functionalized nanosorbents for the removal of diesel range organics from contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4462-4484. [PMID: 35969341 DOI: 10.1007/s11356-022-22245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this research is to synthesize environmentally friendly nanosorbents for the novel adsorption of diesel range organics (DRO) from contaminated water. Central composite design (CCD) analysis of response surface methodology (RSM) was employed in a model fitting of the variables predicting the adsorption efficiency of Moringa oleifera-functionalized zerovalent iron particles (ZINPs) for the removal of DRO. The effects of the reaction parameters on the response were screened using 24 factorial designs to determine the statistically significant independent variables. A quadratic model predicting the DRO adsorption efficiency of ZINPs with an F value of 276.84 (p value < 0.0001) was developed. Diagnostic plots show that the predicted values were in excellent agreement with actual experimental values (R2 = 0.99). The maximum percentage removal of DRO of 92.6% was achieved after optimization, using the synthesized ZINPs after 8 h of contact between DRO substrates and ZINPs at pH of 8, the temperature of 25 °C, with an adsorbent dosage of 2 g/L and at composite desirability of 1. Characterization of ZINPs revealed the formation of quasi nanospheres and nanocubes with an average particle diameter of 50.9 ± 9.7, a crystallite size of 15.31 nm, a crystallinity index of 32.47% and a pore width of 75.69-88.59 nm. The adsorption equilibrium data modelling of ZINPs for adsorption of DRO was best described by Langmuir isotherm with the maximum monolayer coverage capacity of 7.194 mg/g. The separation factor [Formula: see text], indicated favourable adsorption. The adsorption kinetic data were consistent with pseudo-second-order kinetics indicating probable chemisorption.
Collapse
Affiliation(s)
- Promise Chima Ubah
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
- Department of Industrial Chemistry, Federal University of Technology, Imo State, Owerri, PMB 1526, Nigeria
| | | | - Mardiana Saaid
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Saifullahi Shehu Imam
- Department of Pure and Industrial Chemistry, Bayero University, Kano, P.M.B 3011, Nigeria
| | - Rohana Adnan
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
19
|
Patel A. Metal nanoparticles produced by plants with antibacterial properties against Staphylococcus aureus. BRAZ J BIOL 2023; 82:e268052. [PMID: 36888798 DOI: 10.1590/1519-6984.268052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/15/2022] [Indexed: 03/08/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathogenic bacteria that causes a variety of potentially fatal infections. The emergence of antibiotic-resistant strains of S. aureus has made treatment even more difficult. In recent years, nanoparticles have been used as an alternative therapeutic agent for S. aureus infections. Among various methods for the synthesis of nanoparticles, the method utilizing plant extracts from different parts of a plant, such as root, stem, leaf, flower, seeds, etc. is gaining widespread usage. Phytochemicals present in plant extract are an inexpensive, eco-friendly, natural material that act as reducing and stabilization agent for the nanoparticle synthesis. The utilization of plant-fabricated nanoparticles against S. aureus is currently in trend. The current review discusses recent findings in the therapeutic application of phytofabricated metal-based nanoparticles against Staphylococcus aureus.
Collapse
Affiliation(s)
- A Patel
- King Khalid University, College of Medicine, Department of Clinical Biochemistry, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Nandhini G, Shobana MK. Influence of phytochemicals with iron oxide nanoparticles for biomedical applications: a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Moacă EA, Watz C, Faur AC, Lazăr D, Socoliuc V, Păcurariu C, Ianoș R, Rus CI, Minda D, Barbu-Tudoran L, Dehelean CA. Biologic Impact of Green Synthetized Magnetic Iron Oxide Nanoparticles on Two Different Lung Tumorigenic Monolayers and a 3D Normal Bronchial Model-EpiAirway TM Microtissue. Pharmaceutics 2022; 15:2. [PMID: 36678632 PMCID: PMC9866254 DOI: 10.3390/pharmaceutics15010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The present study reports the successful synthesis of biocompatible magnetic iron oxide nanoparticles (MNPs) by an ecofriendly single step method, using two ethanolic extracts based on leaves of Camellia sinensis L. and Ocimum basilicum L. The effect of both green raw materials as reducing and capping agents was taken into account for the development of MNPs, as well as the reaction synthesis temperature (25 °C and 80 °C). The biological effect of the MNPs obtained from Camellia sinensis L. ethanolic extract (Cs 25, Cs 80) was compared with that of the MNPs obtained from Ocimum basilicum L. ethanolic extract (Ob 25, Ob 80), by using two morphologically different lung cancer cell lines (A549 and NCI-H460); the results showed that the higher cell viability impairment was manifested by A549 cells after exposure to MNPs obtained from Ocimum basilicum L. ethanolic extract (Ob 25, Ob 80). Regarding the biosafety profile of the MNPs, it was shown that the EpiAirwayTM models did not elicit important viability decrease or significant histopathological changes after treatment with none of the MNPs (Cs 25, Cs 80 and Ob 25, Ob 80), at concentrations up to 500 µg/mL.
Collapse
Affiliation(s)
- Elena-Alina Moacă
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Claudia Watz
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Alexandra-Corina Faur
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Daniela Lazăr
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Vlad Socoliuc
- Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Romanian Academy—Timisoara Branch, 24 M. Viteazu Ave., RO-300223 Timisoara, Romania
- Research Center for Complex Fluids Systems Engineering, Politehnica University of Timisoara, 1 M. Viteazu Ave., RO-300222 Timisoara, Romania
| | - Cornelia Păcurariu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, 2 Victoriei Square, RO-300006 Timisoara, Romania
| | - Robert Ianoș
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, 2 Victoriei Square, RO-300006 Timisoara, Romania
| | - Cristiana-Iulia Rus
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, 2 Victoriei Square, RO-300006 Timisoara, Romania
| | - Daliana Minda
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Laboratory “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, RO-400006 Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for R & D of Isotopic and Molecular Technologies, 67-103 Donat Street, RO-400293 Cluj-Napoca, Romania
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| |
Collapse
|
22
|
Selvaraj R, Pai S, Vinayagam R, Varadavenkatesan T, Kumar PS, Duc PA, Rangasamy G. A recent update on green synthesized iron and iron oxide nanoparticles for environmental applications. CHEMOSPHERE 2022; 308:136331. [PMID: 36087731 DOI: 10.1016/j.chemosphere.2022.136331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Nanotechnology is considered the budding discipline in various fields of science and technology. In this review, the various synthesis methods of iron and iron oxide nanoparticles were summarised with more emphasis on green synthesis - a sustainable and eco-friendly method. The mechanism of green synthesis of these nanomaterials was reviewed in recent literature. The magnetic properties of these nanomaterials were briefed which makes them unique in the family of nanomaterials. An overview of various removal methods for the pollutants such as dye, heavy metals, and emerging contaminants using green synthesized iron and iron oxide nanoparticles is discussed. The mechanism of pollutant removal methods like Fenton-like degradation, photocatalytic degradation, and adsorption techniques was also detailed. The review is concluded with the challenges and possible future aspects of these nanomaterials for various environmental applications.
Collapse
Affiliation(s)
- Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shraddha Pai
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ponnusamy Senthil Kumar
- Green Technology and Sustainable Development in Construction Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Pham Anh Duc
- Faculty of Safety Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
23
|
Kobylinska N, Klymchuk D, Khaynakova O, Duplij V, Matvieieva N. Morphology-Controlled Green Synthesis of Magnetic Nanoparticles Using Extracts of 'Hairy' Roots: Environmental Application and Toxicity Evaluation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4231. [PMID: 36500853 PMCID: PMC9739509 DOI: 10.3390/nano12234231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Magnetic nanoparticles (MNPs) were "green" synthesized from a FeCl3/FeSO4/CoCl2 mixture using ethanolic extracts of Artemisia tilesii Ledeb 'hairy' roots. The effect of chemical composition and reducing power of ethanolic extracts on the morphology, size destribution and other features of obtained MNPs was evaluated. Depending on the extract properties, nanosized magnetic materials of spherical (8-11 nm), nanorod-like (15-24 nm) and cubic (14-24 nm) shapes were obtained via self-assembly. Microspherical MNPs composed of nanoclusters were observed when using extract of the control root line in the synthesis. Polyhedral magnetic nanoparticles with an average size of ~30 nm were formed using 'hairy' root ethanolic extract without any additive. Studied samples manifested excellent magnetic characteristics. Field-dependent magnetic measurements of most MNPs demonstrated a saturation magnetization of 42.0-72.9 emu/g with negligible coercivity (∼0.02-0.29 emu/g), indicating superparamagnetic behaviour only for solids with a magnetite phase. The synthesized MNPs were minimally aggregated and well-dispersed in aqueous medium, probably due to their stabilization by bioactive compounds in the initial extract. The nanoparticles were tested for magnetic solid-phase extraction of copper (Cu), cadmium (Cd) and arsenic (As) pollutants in aqueous solution, followed by ICP-OES analysis. The magnetic oxides, mainly magnetite, showed high adsorption capacity and effectively removed arsenic ions at pH 6.7. The maximum adsorption capacity was ~150 mg/g for As(III, V) on the selected MNPs with cubic morphology, which is higher than that of previously reported adsorbents. The best adsorption was achieved using Fe3O4-based nanomaterials with low crystallinity, non-spherical form and a large number of surface-localized organic molecules. The phytotoxicity of the obtained MNPs was estimated in vitro using lettuce and chicory as model plants. The obtained MNPs did not exhibit inhibitory activity. This work provides novel insights on the morphology of "green" synthesized magnetic nanoparticles that can be used for applications in adsorption technologies.
Collapse
Affiliation(s)
- Natalia Kobylinska
- Dumansky Institute of Colloid and Water Chemistry, National Academy of Science of Ukraine, 42 Akad. Vernadskoho Blvd., 03142 Kyiv, Ukraine
| | - Dmytro Klymchuk
- Kholodny Institute of Botany, National Academy of Science of Ukraine, 2 Tereshchenkivska Str., 02000 Kyiv, Ukraine
| | - Olena Khaynakova
- Faculty of Chemistry, University of Oviedo, 8 Julián Claveria Av., 33006 Oviedo, Spain
| | - Volodymyr Duplij
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, 148 Zabolotnogo Str., 03143 Kyiv, Ukraine
| | - Nadiia Matvieieva
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, 148 Zabolotnogo Str., 03143 Kyiv, Ukraine
| |
Collapse
|
24
|
Nickel Nanoparticles Decorated on Glucose-Derived Carbon Spheres as a Novel, Non-Palladium Catalyst for Epoxidation of Olefin. Catalysts 2022. [DOI: 10.3390/catal12101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Carbon spheres supporting nickel nanoparticles (NPs), generated by the integration of hydrothermal and microwave irradiation techniques, catalyzed the epoxidation of 1-octene, cyclooctene, styrene, allyl alcohol, and cyclohexene. The average particle sizes of the carbon spheres (CSs) and nickel oxide species immobilized on the CSs were 240 nm and 26 nm, respectively. The fabricated composites incorporating nickel NPs showed higher activity in the cyclohexene epoxidation process. The cyclohexene conversion was enhanced by raising the Ni loading to 10%. Within 14 h, the cyclohexene conversion had grown to 98%. This robust catalytic activity can be attributed to the efficient distribution of Ni species on the CSs, the facile lowering of the surface, and the development of uniformly nanosized species. The composite exhibited good recyclability across at least five cycles (which is not a simple task involving nickel-nanoparticle-based catalysts that are employed in water), and no nickel species leached into the solution, making the total system environmentally benign and cost-effective.
Collapse
|
25
|
Meghana Navada K, Nagaraja GK, Neetha D'Souza J, Kouser S, Ranjitha R, Ganesha A, Manasa DJ. Synthesis of Phyto-functionalized nano hematite for lung cancer suppressive activity and Paracetamol sensing by electrochemical studies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Kamarajan G, Anburaj DB, Porkalai V, Muthuvel A, Nedunchezhian G. Green synthesis of ZnO nanoparticles using Acalypha indica leaf extract and their photocatalyst degradation and antibacterial activity. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
K V, G P, S M, G R, S S. Echinochloa frumentacea grains extract mediated synthesis and characterization of iron oxide nanoparticles: A greener nano drug for potential biomedical applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Extraction Methods, Quantitative and Qualitative Phytochemical Screening of Medicinal Plants for Antimicrobial Textiles: A Review. PLANTS 2022; 11:plants11152011. [PMID: 35956489 PMCID: PMC9370299 DOI: 10.3390/plants11152011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Medicinal plants are the product of natural drug discoveries and have gained traction due to their pharmacological activities. Pathogens are everywhere, and they thrive in ideal conditions depending on the nutrients, moisture, temperature, and pH that increase the growth of harmful pathogens on surfaces and textiles. Thus, antimicrobial agents and finishes may be the solution to the destruction of pathogens. This review article presents an analysis of various aspects of producing antimicrobial finishings, the microorganisms, their mechanism of attachment to natural and synthetic fibre, the effect of microbial growth, and the principle and mechanism of the microbial activity of the medicinal plants. Furthermore, the extraction methods, qualitative and quantitative phytochemical evaluations of antimicrobial efficacy, and developments of antimicrobial treated textiles using various agents are covered in this review.
Collapse
|
29
|
Malaikozhundan B, Krishnamoorthi R, Vinodhini J, Sivalingam Nathiga Nambi K, Palanisamy S. Multifunctional iron oxide nanoparticles using Carica papaya fruit extract as antibacterial, antioxidant and photocatalytic agent to remove industrial dyes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Borah D, Saikia P, Sarmah P, Gogoi D, Rout J, Ghosh NN, Bhattacharjee CR. Composition controllable alga-mediated green synthesis of covellite CuS nanostructure: An efficient photocatalyst for degradation of toxic dye. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
31
|
Abstract
Dental caries is a major lifestyle concern as dental components affect the face of an individual. The issue of tooth decay occurs in every age group throughout the globe. Researchers are probing incipient implements and techniques to develop filling agents for decayed teeth. Zinc oxide (ZnO) powder is utilized mostly as a filling agent. Nanotechnology enhanced the efficiency of compounds of metal oxides utilized for dental caries. The present study aims to investigate the properties of ZnO nanoparticles (NPs) synthesized chemically (using ZnCl2 and NaOH) as well as biologically (using aqueous leaf extract of Murraya paniculata). The XRD patterns confirm that ZnO NPs have a hexagonal crystalline structure with particle sizes of 47 nm and 55 nm for chemically and biologically synthesized NPs, respectively. The FE-SEM data confirm the nanorod and spherical/cubical shape morphologies for the chemically and biologically synthesized ZnO NPs, respectively. FTIR data show the peaks between 4000 and 450 cm−1 of the functional groups of –OH, C-O, –C-H-, and Zn-O bonds. The UV–Vis absorption study indicates a peak around 370 nm and a hump around 360 nm corresponding to the chemically and biologically synthesized ZnO NPs, respectively. An antibacterial bioassay was performed and compared with commercially available ZnO bulk powder against tooth decaying pathogens, viz., Streptococcus mutans, Staphylococcus aureus, E. coli, and Lactobacillus fermentum, and found that both ZnO NPs had results closer to those of the standard drug (rifampicin). Thus, the synthesized ZnO NPs may be utilized as nano-drugs for the application of tooth decaying filling agents. Even biologically synthesized ZnO NPs may be considered more environmentally friendly and less toxic to human health concerns.
Collapse
|
32
|
Lu CH, Hsiao JK. Diagnostic and therapeutic roles of iron oxide nanoparticles in biomedicine. Tzu Chi Med J 2022; 35:11-17. [PMID: 36866343 PMCID: PMC9972926 DOI: 10.4103/tcmj.tcmj_65_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2022] [Accepted: 06/08/2022] [Indexed: 11/04/2022] Open
Abstract
Nanotechnology changed our understanding of physics and chemics and influenced the biomedical field. Iron oxide nanoparticles (IONs) are one of the first emerging biomedical applications of nanotechnology. The IONs are composed of iron oxide core exhibiting magnetism and coated with biocompatible molecules. The small size, strong magnetism, and biocompatibility of IONs facilitate the application of IONs in the medical imaging field. We listed several clinical available IONs including Resovist (Bayer Schering Pharma, Berlin, Germany) and Feridex intravenous (I.V.)/Endorem as magnetic resonance (MR) contrast agents for liver tumor detection. We also illustrated GastroMARK as a gastrointestinal contrast agent for MR imaging. Recently, IONs named Feraheme for treating iron-deficiency anemia have been approved by the Food and Drug Administration. Moreover, tumor ablation by IONs named NanoTherm has also been discussed. In addition to the clinical application, several potential biomedical applications of IONs including cancer-targeting capability by conjugating IONs with cancer-specific ligands, cell trafficking tools, or tumor ablation agents have also been discussed. With the growing awareness of nanotechnology, further application of IONs is still on the horizon that would shed light on biomedicine.
Collapse
Affiliation(s)
- Chia-Hung Lu
- Department of Medical Imaging, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Jong-Kai Hsiao
- Department of Medical Imaging, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan,School of Medicine, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Jong-Kia Hsiao, Department of Medical Imaging, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289, Jianguo Road, Xindian District, New Taipei, Taiwan. E-mail:
| |
Collapse
|
33
|
Sun light-assisted enhanced photocatalytic activity and cytotoxicity of green synthesized SnO2 nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Spirulina Based Iron Oxide Nanoparticles for Adsorptive Removal of Crystal Violet Dye. Top Catal 2022. [DOI: 10.1007/s11244-022-01640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Zong TX, Silveira AP, Morais JAV, Sampaio MC, Muehlmann LA, Zhang J, Jiang CS, Liu SK. Recent Advances in Antimicrobial Nano-Drug Delivery Systems. NANOMATERIALS 2022; 12:nano12111855. [PMID: 35683711 PMCID: PMC9182179 DOI: 10.3390/nano12111855] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Infectious diseases are among the major health issues of the 21st century. The substantial use of antibiotics over the years has contributed to the dissemination of multidrug resistant bacteria. According to a recent report by the World Health Organization, antibacterial (ATB) drug resistance has been one of the biggest challenges, as well as the development of effective long-term ATBs. Since pathogens quickly adapt and evolve through several strategies, regular ATBs usually may result in temporary or noneffective treatments. Therefore, the demand for new therapies methods, such as nano-drug delivery systems (NDDS), has aroused huge interest due to its potentialities to improve the drug bioavailability and targeting efficiency, including liposomes, nanoemulsions, solid lipid nanoparticles, polymeric nanoparticles, metal nanoparticles, and others. Given the relevance of this subject, this review aims to summarize the progress of recent research in antibacterial therapeutic drugs supported by nanobiotechnological tools.
Collapse
Affiliation(s)
- Tong-Xin Zong
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Ariane Pandolfo Silveira
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | | | - Marina Carvalho Sampaio
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | - Luis Alexandre Muehlmann
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220900, Brazil
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Shan-Kui Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| |
Collapse
|
36
|
Iron Oxide Nanoparticles-Plant Insignia Synthesis with Favorable Biomedical Activities and Less Toxicity, in the “Era of the-Green”: A Systematic Review. Pharmaceutics 2022; 14:pharmaceutics14040844. [PMID: 35456678 PMCID: PMC9026296 DOI: 10.3390/pharmaceutics14040844] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
In the era of favoring environment-friendly approaches for pharmaceutical synthesis, “green synthesis” is expanding. Green-based nanomedicine (NM), being less toxic and if having biomedical acceptable activities, thence, the chemical methods of synthesis are to be replaced by plants for reductive synthesis. Iron oxide nanoparticles (IONPs) exhibited remarkable anti-microbial and anti-cancer properties, besides being a drug delivery tool. However, owing to limitations related to the chemical synthetic method, plant-mediated green synthesis has been recognized as a promising alternative synthetic method. This systematic review (SR) is addressing plant-based IONPs green synthesis, characteristics, and toxicity studies as well as their potential biomedical applications. Furthermore, the plant-based green-synthesized IONPs in comparison to nanoparticles (NPs) synthesized via other conventional methods, characteristics, and efficacy or toxicity profiles would be mentioned (if available). Search strategy design utilized electronic databases including Science Direct, PubMed, and Google Scholar search. Selection criteria included recent clinical studies, available in the English language, published till PROSPERO registration. After screening articles obtained by first electronic database search, by title, abstract and applying the PICO criteria, the search results yielded a total of 453 articles. After further full text filtrations only 48 articles were included. In conclusion, the current SR emphasizes the perspective of the IONPs plant-mediated green synthesis advantage(s) when utilized in the biomedical pharmaceutical field, with less toxicity.
Collapse
|
37
|
Sehsah MD, El-Kot GA, El-Nogoumy BA, Alorabi M, El-Shehawi AM, Salama NH, El-Tahan AM. Efficacy of Bacillus subtilis, Moringa oleifera seeds extract and potassium bicarbonate on Cercospora leaf spot on sugar beet. Saudi J Biol Sci 2022; 29:2219-2229. [PMID: 35531157 PMCID: PMC9072934 DOI: 10.1016/j.sjbs.2021.11.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Cercospora leaf spot caused by Cercospora beticola are among the most dangerous plant diseases on sugar beet plants. It causes heavy economic losses, whether on the yield of roots, the percentage of sugar in them, or the quality of sugar produced. In addition to the economic cost caused by chemical control, these chemical pesticides cause an imbalance in the ecosystem and harm the health of humans and animals. In an attempt to search for a safer method than pesticides and environmentally friendly, an evaluation of using biocontrol agents, Bacillus subtilis as cell suspension (108 cell/ml), was conducted in this study. Seeds extract of Moringa oleifera with two concentrations (25 and 50 g/L) and potassium bicarbonate at (5 and10 g/L (compared to fungicide Montoro 30% EC (Propiconazole 15% + Difenoconazole 15%). The evaluation results for twenty-five sugar beet varieties showed a significant discrepancy between these varieties in the extent of their susceptibility to infection with the disease under investigation. In-Vitro, B. subtilis induced an antagonist to C. beticola, and both M. oleifera seeds extract and potassium bicarbonate significantly reduced the linear growth of this pathogen. Under field conditions, the treatments used have given positive results in controlling Cercospora leaf spots. They significantly decreased the severity of disease and prevented C. beticola from creating conidiophores and conidiospores, along with examining their cell walls with the formation of plasmolysis of the fungus cells and reducing both the number and diameter of the spots on the surface leaves; this was demonstrated using a scanning electron microscope (SEM). It is worth noting that the best results obtained were most often when treated with M. oleifera seeds extract, followed by potassium bicarbonate, then cell suspension of B. subtilis. In addition, the percentage of the content of beet roots from total soluble solids and sucrose has improved significantly due to spraying sugar beet plants with the substances mentioned earlier. These treatments also contributed to a significant improvement in the enzymes polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase.
Collapse
Affiliation(s)
- Mohamed D. Sehsah
- Maize and Sugar Crops Diseases Research Department, Plant Pathology Research Institution, Agricultural Research Center, Giza, Egypt
| | - Gabr A. El-Kot
- Agriculture Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Baher A. El-Nogoumy
- Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mohammed Alorabi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nagwa H. Salama
- Maize and Sugar Crops Diseases Research Department, Plant Pathology Research Institution, Agricultural Research Center, Giza, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
- Corresponding author.
| |
Collapse
|
38
|
Gupta P, Sonewane K, Chouhan S, Rajan M, Chauhan N, Rout O, Kumar A, Baghel G. Pharmacological, ethnomedicinal, and evidence-based comparative review of Moringa oleifera Lam. ( Shigru) and its potential role in the management of malnutrition in tribal regions of India, especially Chhattisgarh. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_69_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
39
|
Jadhav V, Bhagare A, Ali IH, Dhayagude A, Lokhande D, Aher J, Jameel M, Dutta M. Role of Moringa oleifera on Green Synthesis of Metal/Metal Oxide Nanomaterials. JOURNAL OF NANOMATERIALS 2022; 2022. [DOI: 10.1155/2022/2147393] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 10/22/2024]
Abstract
Being an environmentally benign method biosynthesis of nanomaterial paying much more attention to researchers, it has many advantages over other routes, such as one pot, facile synthesis, and cost‐effective; synthesized material can have good affinity due to surface modification and hence became a most attractive candidate for medicinal and biological applications. Moreover, biosynthesis creates a bridge of interdisciplinary research. Biosynthesis can be done by using bacteria, microbes, plant extracts, etc. In this study, we focus on the synthesis of some metal and metal oxide nanomaterials (M/MO NMs) by using an extract of parts from the Moringa oleifera plant. It is a natural source that can serve as a capping, stabilizing, and reducing/oxidizing agent due to the presence of some of the phytochemical parameters. Moreover, it is a rich source of antioxidants, including quercetin and chlorogenic acids, such as flavonoids, phenolics, astragalin, anthocyanins, cinnamates, and carotenoids, as well as a good source of carotene, iron, potassium, calcium, terpenes, quinines, saponins, alkaloids, proteins, tannins, and vitamin. These components produce smaller particles and give a compelling impact on the activities of M/MO NMs nanoparticles. Here, we discuss nanoparticles such as FeO, CuO, ZnO, NiO, MgO, Ag, and Au.
Collapse
|
40
|
Meng F, Yun Z, Yan G, Wang G, Lin C. Engineering of anticancer drugs entrapped polymeric nanoparticles for the treatment of colorectal cancer therapy. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Shalaby SM, Madkour FF, El-Kassas HY, Mohamed AA, Elgarahy AM. Green synthesis of recyclable iron oxide nanoparticles using Spirulina platensis microalgae for adsorptive removal of cationic and anionic dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65549-65572. [PMID: 34322819 DOI: 10.1007/s11356-021-15544-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Globally, organic dyes are major constituents in wastewater effluents due to their large-scale industrial applications. These persistent pollutants adversely impact the public health of different living entities. Thus, wastewater remediation has become an indispensable necessity. Herein, we greenly synthesized iron oxide nanoparticles (SP-IONPs) using Spirulina platensis microalgae to remove cationic crystal violet (CV) and anionic methyl orange (MO) dyes from their aqueous solution. The engineered sorbent was thoroughly scrutinized by different characterization techniques of FT-IR, BET surface area, SEM, EDX, TEM, VSM, UV/Vis spectroscopy, and pHPZC measurement. The proficiency of SP-IONPs was methodically appraised for its sorptive performance towards the target CV and MO dyes under variable technological parameters (batch scenario). Collectively, the outlined results inferred an amazing efficacy characterized to the SP-IONPs sorbent for the expulsion of relevant dyes from the aqueous media. Regarding the dynamic static sorption data, the kinetics profile was ascribed to the pseudo-second order model, whereas sorption isotherm was quantitatively dominated by the Langmuir theory with maximum sorption capacities of 256.4 mg g-1 and 270.2 mg g-1 for CV and MO, respectively. Thermodynamics findings conformed the endothermic nature of sorption process. Repeatability of the spent sorbent was successfully emphasized for 5 times of sorption/desorption cycles. The productive sorbent admirably sequestered CV and MO dyes from spiked tap water. The potency of SP-IONPs as color collecting material from real dyeing effluents was achieved.
Collapse
Affiliation(s)
- Shymaa M Shalaby
- Marine Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Fedekar F Madkour
- Marine Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Hala Y El-Kassas
- Marine Hydrobiology Department, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Adel A Mohamed
- Marine Chemistry Department, National Institute of Oceanography and Fisheries, Suez, Egypt
| | - Ahmed M Elgarahy
- Environmental Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt.
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt.
| |
Collapse
|
42
|
Antimicrobial Resistance and Inorganic Nanoparticles. Int J Mol Sci 2021; 22:ijms222312890. [PMID: 34884695 PMCID: PMC8657868 DOI: 10.3390/ijms222312890] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/10/2023] Open
Abstract
Antibiotics are being less effective, which leads to high mortality in patients with infections and a high cost for the recovery of health, and the projections that are had for the future are not very encouraging which has led to consider antimicrobial resistance as a global health problem and to be the object of study by researchers. Although resistance to antibiotics occurs naturally, its appearance and spread have been increasing rapidly due to the inappropriate use of antibiotics in recent decades. A bacterium becomes resistant due to the transfer of genes encoding antibiotic resistance. Bacteria constantly mutate; therefore, their defense mechanisms mutate, as well. Nanotechnology plays a key role in antimicrobial resistance due to materials modified at the nanometer scale, allowing large numbers of molecules to assemble to have a dynamic interface. These nanomaterials act as carriers, and their design is mainly focused on introducing the temporal and spatial release of the payload of antibiotics. In addition, they generate new antimicrobial modalities for the bacteria, which are not capable of protecting themselves. So, nanoparticles are an adjunct mechanism to improve drug potency by reducing overall antibiotic exposure. These nanostructures can overcome cell barriers and deliver antibiotics to the cytoplasm to inhibit bacteria. This work aims to give a general vision between the antibiotics, the nanoparticles used as carriers, bacteria resistance, and the possible mechanisms that occur between them.
Collapse
|
43
|
Sudhakar C, Poonkothai M, Selvankmuar T, Selvam K, Rajivgandhi G, Siddiqi MZ, Alharbi NS, Kadaikunnan S, Vijayakumar N. Biomimetic synthesis of iron oxide nanoparticles using Canthium coromandelicum leaf extract and its antibacterial and catalytic degradation of Janus green. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Rajendran A, Alsawalha M, Alomayri T. Biogenic synthesis of husked rice-shaped iron oxide nanoparticles using coconut pulp (Cocos nucifera L.) extract for photocatalytic degradation of Rhodamine B dye and their in vitro antibacterial and anticancer activity. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Suganya M, Baskaran R, Nagarethinam VS, Balu AR. Photoconductive and Antimicrobial Properties of Psidium guajava Leaf Extract Mediated Green Synthesized SnS 2–CdO and SnS 2–NiO Nanocomposites. INTERNATIONAL JOURNAL OF NANOSCIENCE 2021. [DOI: 10.1142/s0219581x21500344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper reports the photoconductive and antimicrobial properties of SnS2–CdO and SnS2-NiO nanocomposites green synthesized using Psidium guajava leaf extract. X-ray diffraction studies reveal that the SnS2–CdO nanocomposite exhibits hexagonal SnS2 and cubic CdO diffraction peaks; whereas the SnS2–NiO nanocomposite exhibits hexagonal SnS2 and cubic NiO diffraction peaks. SEM image of the bio-synthesized SnS2–CdO nanocomposite confirmed nanoneedles with grains being well distributed. Regular shaped grains with decreased sizes were observed for the SnS2–NiO nanocomposite. Nanosized grains were observed from the TEM images. The existence of elements Sn, S, Cd, O in SnS2–CdO nanocomposite; Sn, S, Ni, O in SnS2–NiO nanocomposite was confirmed from the EDX and XPS spectra. Increased photosensitivity value was realized for the SnS2–CdO nanocomposite. Both the composites showed good fungal inhibition property against Aspergillus terreus fungi not only by the physical, chemical and biological processes but also owing to phyto-constituents in the leaf extract.
Collapse
Affiliation(s)
- M. Suganya
- PG and Research Department of Physics, AVVM Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Tamilnadu, India
| | - R. Baskaran
- PG and Research Department of Physics, AVVM Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Tamilnadu, India
| | - V. S. Nagarethinam
- PG and Research Department of Physics, AVVM Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Tamilnadu, India
- SK College of Arts and Science, Mannargudi, Tamilnadu, India
| | - A. R. Balu
- PG and Research Department of Physics, AVVM Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Tamilnadu, India
| |
Collapse
|
46
|
Almessiere M, Slimani Y, Auwal I, Shirsath S, Gondal M, Sertkol M, Baykal A. Biosynthesis effect of Moringa oleifera leaf extract on structural and magnetic properties of Zn doped Ca-Mg nano-spinel ferrites. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
47
|
El-Gendy NS, Nassar HN. Biosynthesized magnetite nanoparticles as an environmental opulence and sustainable wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145610. [PMID: 33609818 DOI: 10.1016/j.scitotenv.2021.145610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
This review emphasizes the win-win one-pot valorization process of different waste biomass that composed of many biological macromolecules (e.g. polysaccharides, polyphenols, carbohydrates, lipids, enzymes, proteins, etc.) and other biomolecules (e.g. alkaloids, terpenoids, tannins, phenolics, carotenoids, amino acids, sugars, vitamins, etc.) into biofunctionalized magnetite (Fe3O4) nanoparticles (BMNPs). It illustrates the sustainable recruitment of microbial intra- and extra-cellular metabolites, proteins, and/or enzymes in the biosynthesis of BMNPs. It elucidates the environmental affluence of such sustainable, cost-effective, and ecofriendly BMNPs as an antimicrobial agent for water disinfection, photo-degrader, and adsorbent for different xenobiotics, organic and inorganic water pollutants. It confers the future environmental aspects of BMNPs in biofuels production from lipids and lignocellulosic wastes, biosensors manufacturing and bio-upgrading of petroleum fractions, etc. It discusses the circular economy, challenges, and opportunities for scaling up the zero-waste green synthesis of MNPs. Nevertheless, imminent investigations are still needed to elucidate the exact rule of biological macro- and micro- molecules in BMNPs synthesis and mechanisms involved in its microbicidal and photodegradation activities. Accentuated researches are more required on the toxicity and/or biosafety of the green synthesized BMNPs to humans and other non-target organisms to ensure its eco-safety upon environmental applications.
Collapse
Affiliation(s)
- Nour Sh El-Gendy
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO 11727, Egypt; Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza PO 12566, Egypt; Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza PO 12588, Egypt.
| | - Hussein N Nassar
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO 11727, Egypt; Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza PO 12588, Egypt; Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza PO 12566, Egypt
| |
Collapse
|
48
|
Parrey S, Maseet M, Ahmad R, Khan AB. Deciphering the Kinetic Study of Sodium Dodecyl Sulfate on Ag Nanoparticle Synthesis Using Cassia siamea Flower Extract as a Reducing Agent. ACS OMEGA 2021; 6:12155-12167. [PMID: 34056369 PMCID: PMC8154150 DOI: 10.1021/acsomega.1c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (Ag NPs) were synthesized using Cassia siamea flower petal extract (CSFE) as a reducing agent for the first time. In its presence and absence, the correlative effects of the anionic surface-active agent sodium dodecyl sulfate (SDS) were studied with respect to the development and texture of Ag NPs. Under different reagent compositions, the Ag NPs were inferred by localized surface plasmon resonance peaks between 419 and 455 nm. In the absence of SDS, there was a small eminence at 290 and around 350 nm, pointing toward the possibility of irregular polytope Ag NPs, which was confirmed in the transmission electron microscopy images. This elevation vanished beyond the cmc of [SDS], resulting in spherical and oval shaped Ag NPs. The effects of reagent concentrations were studied at 25 °C and around 7 and 9 pH in the absence and presence of SDS, respectively. Also, kinetic studies were performed by UV-visible spectrophotometry. Prodigious effects on shape and size were found under different synthesis conditions in terms of hexagonal, rod-, irregular-, and spherical shaped Ag NPs. Furthermore, the antimycotic activity of the synthesized Ag NPs was established on different Candida strains, and best results were found pertaining Candida tropicalis. The ensuing study impels the control of texture and dispersity for Ag NPs by CSFE and SDS, and the resultant polytope Ag NPs could be a future solution for drug-resistant pathogenic fungi.
Collapse
Affiliation(s)
| | - Mohsin Maseet
- Department
of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rabia Ahmad
- Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Abbul Bashar Khan
- Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
49
|
Silver Nanoparticles (AgNPs) Biosynthesized by Aspergillus flavus KF946095; their Characterization and Antibacterial Activity. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antimicrobial agents of silver nanoparticles (AgNPs) have been applied a little while back in diverse therapeutic studies. In this analysis, AgNPs were biosynthesized using an ecologically welcomed and cost-effective simple of bio-reduction. An isolate of Aspergillus flavus KF946095 (A. flavus) was found to biosynthesize AgNPs; the size of AgNPs was (56nm) and detected by UV-Vis analysis at (400 nm). The reducing properties for biosynthesis of AgNPs are mainly due to the protein functional surface reactive groups detected by Fourier Transform Infrared spectroscopy (FTIR).Whereas, FTIR for AgNPs showed different peaks at 3994.5, 3201.6, 1801.4, 1643.2 and 1604.7 cm-1 that shared with the biosynthesize and stability of AgNPs as protein capping agents. Transmission Electron Microscope (TEM) confirmed the scattering of biosynthesized AgNPs within a sol with oval and round shapes. The antibiotic susceptibility test was studied for some pathogenic bacteria. Staphylococcus aureus DSM 1104 (S. aureus) appeared to be the more resistant strain; it resisted the action of 6 antibiotics out of 8 ones tested. MIC value of AgNPs was 20µg/mL and antibiotic ciprofloxacin was 30µg/mL. Mixture of MIC values or double MIC values distinctively inhibited the multidrug resistant (MDR) S.aureus.
Collapse
|
50
|
Bhatia P, Sharma A, George AJ, Anvitha D, Kumar P, Dwivedi VP, Chandra NS. Antibacterial activity of medicinal plants against ESKAPE: An update. Heliyon 2021; 7:e06310. [PMID: 33718642 PMCID: PMC7920328 DOI: 10.1016/j.heliyon.2021.e06310] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/28/2020] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Antibiotic resistance has emerged as a threat to global health, food security, and development today. Antibiotic resistance can occur naturally but mainly due to misuse or overuse of antibiotics, which results in recalcitrant infections and Antimicrobial Resistance (AMR) among bacterial pathogens. These mainly include the MDR strains (multi-drug resistant) of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). These bacterial pathogens have the potential to “escape” antibiotics and other traditional therapies. These bacterial pathogens are responsible for the major cases of Hospital-Acquired Infections (HAI) globally. ESKAPE Pathogens have been placed in the list of 12 bacteria by World Health Organisation (WHO), against which development of new antibiotics is vital. It not only results in prolonged hospital stays but also higher medical costs and higher mortality. Therefore, new antimicrobials need to be developed to battle the rapidly evolving pathogens. Plants are known to synthesize an array of secondary metabolites referred as phytochemicals that have disease prevention properties. Potential efficacy and minimum to no side effects are the key advantages of plant-derived products, making them suitable choices for medical treatments. Hence, this review attempts to highlight and discuss the application of plant-derived compounds and extracts against ESKAPE Pathogens.
Collapse
Affiliation(s)
- Priya Bhatia
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Anushka Sharma
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Abhilash J George
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - D Anvitha
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Pragya Kumar
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Nidhi S Chandra
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|