1
|
Yadav S, Chander S, Gupta A, Kataria N, Khoo KS. Biogenic engineered zinc oxide nanoparticle for sulfur black dye removal from contaminated wastewater: comparative optimization, simulation modeling, and isotherms. Bioengineered 2024; 15:2325721. [PMID: 38465722 PMCID: PMC10936635 DOI: 10.1080/21655979.2024.2325721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/27/2024] [Indexed: 03/12/2024] Open
Abstract
This research work aimed to isolate and culture the bacterium Bacillus paramycoides for biogenic fabrication of zinc oxide nanoparticles, specifically ZnO and ZnO-ME nanoparticles (nanoparticles fabricated from bacterial extracts only - ZnO, and from bacterial cell mass including extract - ZnO-ME). SEM investigation revealed the spherical-shaped NPs with 22.33 and 39 nm in size for ZnO and ZnO-ME, respectively. The Brunauer, Emmett, and Teller (BET) studies revealed mesoporous structure with pore diameters of 13.839 and 13.88 nm and surface area of 7.617 and 33.635 m2/gm for ZnO and ZnO-ME, respectively. Various parameters for the adsorption of sulfur black dye onto both ZnO and ZnO-ME were screened and optimized using Plackett-Burman Design (PBD), Full Factorial Design (FFD) and Central Composite Design (CCD). The results of the optimization modeling study revealed that FFD yielded the most predictable and best-fitting results among all the models studied, with R2 values of 0.998 for ZnO and 0.993 for ZnO-ME. Notably, ZnO-ME exhibited a greater dye removal efficiency 80% than ZnO i.e., 71%, it may be due to the presence of amorphous carbon on the surface of ZnO-ME. Among the various isothermal models, the Freundlich model displayed the strongest correlation with the dye removal data, confirming the multilayer adsorption of dye on both nanoparticles and supporting physisorption. Therefore, ZnO and ZnO-ME nanoparticles have been proven as potential tools for mitigating environmental impacts associated with dye-containing wastewater.
Collapse
Affiliation(s)
- Sangita Yadav
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Subhash Chander
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Asha Gupta
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Navish Kataria
- Department of Environmental Science and Engineering, J. C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
2
|
Assad N, Abbas A, Fayyaz Ur Rehman M, Naeem-Ul-Hassan M. Photo-catalytic and biological applications of phyto-functionalized zinc oxide nanoparticles synthesized using a polar extract of Equisetum diffusum D. RSC Adv 2024; 14:22344-22358. [PMID: 39010906 PMCID: PMC11247436 DOI: 10.1039/d4ra03573a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024] Open
Abstract
In this study, zinc oxide nanoparticles (ZnO NPs) were fabricated using Equisetum diffusum D extract and their diverse properties and applications were studied. Phytochemical analysis confirmed the presence of phenols and flavonoids in the plant extract, playing a crucial role in the stabilization and reduction of the synthesized nanoparticles. The greenly synthesized ZnO NPs were characterized through a range of analytical techniques. UV-visible spectrophotometry has been employed to investigate their optical characteristics. FTIR spectroscopy was employed to identify the functional groups responsible for the synthesis of the ZnO NPs. The structural properties were evaluated using XRD. The morphology and size distribution of the synthesized NPs were examined using SEM, DLS, and elemental spectra evaluated using EDX. The charge that develops at the interface was analyzed using zeta potential which accounts for stability of the NPs. The ZnO NPs exhibited excellent photocatalytic degradation of cationic (methylene blue), anionic (methyl orange), and nonionic (p-nitrophenol) dyes under sunlight exposure with photocatalytic degradation of 85.61%, 79.10%, and 89.95% respectively. Additionally, the nanoparticles displayed antimicrobial activity against Gram-positive and Gram-negative bacteria, and noteworthy antioxidant potential. The anti-inflammatory activity of the ZnO NPs, attributed to their ability to inhibit protein denaturation, was dose-dependent. Overall, our findings highlight the versatile properties of the greenly synthesized ZnO NPs, showcasing their potential in environmental remediation, and antimicrobial formulations, and as promising candidates for further exploration in the biomedical fields, including drug delivery and therapeutics.
Collapse
Affiliation(s)
- Nasir Assad
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan +923338967518
| | - Azhar Abbas
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan +923338967518
- Department of Chemistry, Government Ambala Muslim College Sargodha 40100 Pakistan
| | | | | |
Collapse
|
3
|
Maheswaran H, Djearamane S, Tanislaus Antony Dhanapal AC, Wong LS. Cytotoxicity of green synthesized zinc oxide nanoparticles using Musa acuminata on Vero cells. Heliyon 2024; 10:e31316. [PMID: 38868065 PMCID: PMC11167271 DOI: 10.1016/j.heliyon.2024.e31316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) have become a highly regarded substance in various industries especially biologically synthesized ZnO NPs due to their adherence to the principles of green chemistry. However, concerns have been raised regarding the potential cytotoxic effects of ZnO NPs on biological systems. This study aimed to investigate and compare the cytotoxicity of ZnO NPs that were synthesized through chemical (C-ZnO NPs) and green approach using Musa acuminata leaf aqueous extract (Ma-ZnO NPs) on Vero cells. Characterization of ZnO NPs through Uv-Vis, FESEM, EDX, XRD, FTIR and XPS confirmed the successful synthesis of C- and Ma-ZnO NPs. MTT and ROS assays revealed that C- and Ma-ZnO NPs induced a concentration- and time-dependent cytotoxic effect on Vero cells. Remarkably, Ma-ZnO NPs showed significantly higher cell viability compared to C-ZnO NPs. The corelation of ROS and vell viability suggest that elevated ROS levels can lead to cell damage and even cell death. Flow cytometry analysis indicated that Ma-ZnO NPs exposed cells had more viable cells and a smaller cell population in the late and early apoptotic stage. Furthermore, more cells were arrested in the G1 phase upon exposure to C-ZnO NPs, which is associated with oxidative stress and DNA damage caused by ROS generation, proving its higher cytotoxicity than Ma-ZnO NPs. Similarly, time-dependent cytotoxicity and morphological alterations were observed in C- and Ma-ZnO NPs treated cells, indicating cellular damage. Furthermore, fluorescence microscopy also demonstrated a time-dependent increase in ROS formation in cells exposed to C- and Ma-ZnO NPs. In conclusion, the findings suggest that green ZnO NPs possess a favourable biocompatibility profile, exhibiting reduced cytotoxicity compared to chemically synthesized ZnO NPs on Vero cells. These results emphasize the potential of green synthesis methods for the development of safer and environmentally friendly ZnO NPs.
Collapse
Affiliation(s)
- Harshyini Maheswaran
- Department of Biomedical Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Sinouvassane Djearamane
- Department of Biomedical Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
- Biomedical Research Unit and Lab Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602 105, India
| | - Anto Cordelia Tanislaus Antony Dhanapal
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
4
|
Cimen A, Bilgic A, Bayrak M. Fabrication and characterization of new Fe 3O 4@SiO 2@TiO 2-CPTS-HBAP (FST-CH) nanoparticles for photocatalytic degradation and adsorption removal of rhodamine B dye in the aquatic environment. Heliyon 2024; 10:e29355. [PMID: 38623186 PMCID: PMC11016715 DOI: 10.1016/j.heliyon.2024.e29355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
In this study, Fe3O4@SiO2@TiO2-CPTS-HBAP (FST-CH) nanoparticle was prepared for the simultaneous adsorption and photocatalytic degradation of aromatic chemical pollutants (Rhodamine B dye) in aqueous solution. FST-CH nanoparticle was characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Energy Dispersive X-Ray (EDX) Fluorescence Spectrometer and X-Ray Diffraction (XRD) spectroscopy. The photocatalytic activity of rhodamine B dye (RhB) was evaluated with a Kerman UV 8/18 vertical roller photoreactor. About 56% of RhB in aqueous medium was adsorbed by FST-CH nanoparticles with only 45 min of stirring in the dark, and about 77.01% was degraded or converted to other structures under the photoreactor for 120 min. The photocatalytic degradation of RhB (apparent rate constant: 0.0026 mg dm-3 min-1) occurred by a pseudo-second order reaction. In addition, the recovery of the prepared magnetic FST-CH nanoparticle by an external magnetic field, exhibiting good magnetic response and reusability, shows that the obtained magnetic FST-CH nanoparticle is stable and maintains high degradation ratio and catalyst recovery even after four cycles. Thus, the prepared FST-CH nanoparticle can be highly recommended for its use in potential applications of water decontamination.
Collapse
Affiliation(s)
- Aysel Cimen
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Ali Bilgic
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Melike Bayrak
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
5
|
Subramani K, Incharoensakdi A. Physicochemical and photocatalytic properties of biogenic ZnO and its chitosan nanocomposites for UV-protection and antibacterial activity on coated textiles. Int J Biol Macromol 2024; 263:130391. [PMID: 38417746 DOI: 10.1016/j.ijbiomac.2024.130391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
The textiles for medical use and the purification of textile factory effluents have become the most crucial part of the human healthcare sector. In this study bioactive compounds produced by four distinct plant extracts were used for the synthesis of zinc oxide nanoparticles. The four different ZnO nanoparticles were comprehensively characterized by different analytical techniques. XRD analysis revealed the crystalline nature and phase purity of the ZnO nanoparticles. FTIR spectra provided information on the function of plant extracts in the stabilization or capping process. The size distribution and morphological diversity of the nanoparticles were further clarified by SEM and TEM images. The photocatalytic degradation activity of the four ZnO nanoparticles on two different dyes showed that ZnO nanoparticles prepared from A. indica were most effective for the degradation of 98 % and 91 % of Rhodamine B and Alizarin red dye respectively. The selected ZnO nanoparticles from A. indica were used to prepare ZnO-chitosan nanocomposites before coating on cotton fabrics. The hydrophobicity, UV protection factor, and antibacterial activity of ZnO-chitosan nanocomposites, when coated on cotton fabrics, were also examined. The overall results demonstrated the ZnO and ZnO-chitosan nanocomposite prepared in the present study as a promising material for environmental remediation application.
Collapse
Affiliation(s)
- Karthik Subramani
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand.
| |
Collapse
|
6
|
Chemingui H, Moulahi A, Missaoui T, Al-Marri AH, Hafiane A. A novel green preparation of zinc oxide nanoparticles with Hibiscus sabdariffa L.: photocatalytic performance, evaluation of antioxidant and antibacterial activity. ENVIRONMENTAL TECHNOLOGY 2024; 45:926-944. [PMID: 36170044 DOI: 10.1080/09593330.2022.2130108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
This study investigates the eco-friendly synthesis of zinc oxide nanoparticles (ZnO NPs) utilizing an aqueous solution of Hibiscus sabdariffa L. flower extract, which is acts as reducing agent as well as capping agent. The Fourier transform infrared spectroscopy (FTIR) results revealed the presence of flavonoids and phenols in the plant extract, indicating that they were the major agents capable of reducing zinc nitrate salt. According to our x-ray diffraction (XRD) results, ZnO-NPs exhibit a particular phase wurtzite structure. The ZnO-NPs are spherical in shape and have an average size of 15 nm, according to the measurements of electron microscope (SEM) and transmission electron microscope (TEM) measurements. Energy dispersion (EDX) analysis demonstrates that the NPs are mainly composed of zinc and oxygen. The zeta potential of these nanoparticles shows that they are very stable. The antibacterial activity of ZnO-NPs was tested using agar dilutions with a variety of gram-positive and gram-negative microorganisms. According to the research results, ZnO-NPs can be established as an extremely specific antibacterial agent for a wide variety of organisms to prevent bacterial growth. Furthermore, the antioxidant properties of ZnO-NPs were determined using the 2,2 diphenyl-1-picrylhydrazyl hydrate (DPPH) radical scavenging approach, and the IC50 value of 38 μg/mL was measured for ZnO-NPs. Furthermore, the biosynthesized ZnO-NPs showed significant catalytic performance of methyl orange (MO) under UV irradiation. Overall, ZnO-NPs in their produced state have excellent potential in biomedical and wastewater treatment applications. Radical scavengers were used to evaluate the role of radicals in the reaction mechanism.
Collapse
Affiliation(s)
- Hajer Chemingui
- Laboratory of water, Membrane and Environmental Biotechnology, CERTE, Soliman, Tunisia
| | - Ali Moulahi
- Chemistry Department, College of Al Wajh, Tabuk University, Al Wajh, Saudi Arabia
| | - Takwa Missaoui
- Laboratory of water, Membrane and Environmental Biotechnology, CERTE, Soliman, Tunisia
| | - Abdelhadi H Al-Marri
- Chemistry Department, College of Al Wajh, Tabuk University, Al Wajh, Saudi Arabia
| | - Amor Hafiane
- Laboratory of water, Membrane and Environmental Biotechnology, CERTE, Soliman, Tunisia
| |
Collapse
|
7
|
Alshehri A, Alharbi L, Wani AA, Malik MA. Biogenic Punica granatum Flower Extract Assisted ZnFe 2O 4 and ZnFe 2O 4-Cu Composites for Excellent Photocatalytic Degradation of RhB Dye. TOXICS 2024; 12:77. [PMID: 38251032 PMCID: PMC10821476 DOI: 10.3390/toxics12010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
Globally, the textile industry contributes to pollution through accidental discharges or discharge of contaminated wastewater into waterways, significantly affecting water quality. These pollutants, including dye molecules, are environmental hazards for aquatic and terrestrial life. The field of visible light-mediated photocatalysis has experienced rapid growth, driven by the utilization of photocatalysts that can absorb low-energy visible light and effectively degrade dyes. In the present study, we report a simple method to controllably synthesize Fe2O3, ZnO, and ZnFe2O4 using the one-pot synthesis method. In the subsequent step, copper (Cu) was deposited on the surface of ZnFe2O4 (forming ZnFe2O4-Cu) using a facile, green, and cost-effective method. The synthesized samples were characterized using various techniques, including XRD, UV-Vis DRS, FT-IR, SEM-EDX, HR-TEM, XPS, PL, and BET analysis. These techniques were employed to investigate the composition, morphology, structure, and photophysical properties of as-prepared samples. The ZnFe2O4-Cu nanocomposite demonstrated efficient photocatalytic activity for degrading RhB dye pollutants under visible light. The photocatalyst was successfully reused for three consecutive cycles without significantly decreasing performance. Furthermore, during the study, the radical scavenging test emphasized the role of different radicals in the degradation of dye pollutants. This research has the potential to enable the efficient production of high-performance photocatalysts that can rapidly eliminate ecologically harmful dyes from aqueous solutions.
Collapse
Affiliation(s)
- Amal Alshehri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.); (L.A.)
- Chemistry Department, Faculty of Sciences and Arts in Baljurashi, Albaha University, Albaha 65779, Saudi Arabia
| | - Laila Alharbi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.); (L.A.)
| | - Aiyaz Ahmad Wani
- Department of Chemistry, Faculty of Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Maqsood Ahmad Malik
- Department of Chemistry, Faculty of Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
8
|
Gong X, Jadhav ND, Lonikar VV, Kulkarni AN, Zhang H, Sankapal BR, Ren J, Xu BB, Pathan HM, Ma Y, Lin Z, Witherspoon E, Wang Z, Guo Z. An overview of green synthesized silver nanoparticles towards bioactive antibacterial, antimicrobial and antifungal applications. Adv Colloid Interface Sci 2024; 323:103053. [PMID: 38056226 DOI: 10.1016/j.cis.2023.103053] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Present review emphatically introduces the synthesis, biocompatibility, and applications of silver nanoparticles (AgNPs), including their antibacterial, antimicrobial, and antifungal properties. A comprehensive discussion of various synthesis methods for AgNPs, with a particular focus on green chemistry mediated by plant extracts has been made. Recent research has revealed that the optical properties of AgNPs, including surface plasmon resonance (SPR), depend on the particle size, as well as the synthesis methods, preparation synthesis parameters, and used reducing agents. The significant emphasis on the use of synthesized AgNPs as antibacterial, antimicrobial, and antifungal agents in various applications has been reviewed. Furthermore, the application areas have been thoroughly examined, providing a detailed discussion of the underlying mechanisms, which aids in determining the optimal control parameters during the synthesis process of AgNPs. Furthermore, the challenges encountered while utilizing AgNPs and the corresponding advancements to overcome them have also been addressed. This review not only summarizes the achievements and current status of plant-mediated green synthesis of AgNPs but also explores the future prospects of these materials and technology in diverse areas, including bioactive applications.
Collapse
Affiliation(s)
- Xianyun Gong
- School of Food Engineering, Department of Chemistry, Harbin University, Harbin 150086, China
| | - Nilesh D Jadhav
- Department of Physics, NTVS's G. T. Patil Arts, Commerce and Science College, Nandurbar 425412 (M.S.), India
| | - Vishal V Lonikar
- Department of Physics, MET's Bhujbal Academy of Science and Commerce, Nashik 422003 (M.S.), India
| | - Anil N Kulkarni
- Department of Physics, NTVS's G. T. Patil Arts, Commerce and Science College, Nandurbar 425412 (M.S.), India.
| | - Hongkun Zhang
- School of Food Engineering, Department of Chemistry, Harbin University, Harbin 150086, China
| | - Babasaheb R Sankapal
- Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440010 (M.S.), India
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China; Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Ben Bin Xu
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Habib M Pathan
- Department of Physics, Savitribai Phule Pune University, Pune 411 007, India.
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhiping Lin
- College of Materials Science and Engineering, Taizhou University, Taizhou, Zhejiang 318000, China
| | | | - Zhe Wang
- Chemistry Department, Oakland University, Rochester 48309, USA.
| | - Zhanhu Guo
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
9
|
Kader DA. Green approach for the fabrication of a ternary nanocatalyst (Ag-ZnONPs@Cy) for visible light-induced photocatalytic reduction of nitroarenes to aminoarenes. RSC Adv 2023; 13:34904-34915. [PMID: 38035233 PMCID: PMC10687522 DOI: 10.1039/d3ra06448d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
In recent times, the incorporation of metal oxide nanoparticles with organic dyes has piqued the interest of numerous researchers due to their diverse applications under visible light instead of UV radiation. This investigation employed a three-step methodology to fabricate cyanidin-sensitized silver-doped zinc oxide nanoparticles (Ag-ZnO@Cy). Initially, cyanidin dye was extracted from fresh black mulberry fruit, followed by the eco-friendly synthesis of Ag-ZnO nanoparticles (Ag-ZnONPs). The successful integration of the prepared cyanidin dye with Ag-ZnONPs was achieved through a straightforward, environmentally benign, and cost-efficient procedure. The resultant ternary composite underwent comprehensive characterization and confirmation utilizing various techniques, such as SEM, FT-IR, EDX, DRS, elemental mapping, and XRD. The experimental results for Ag-ZnONPs@Cy demonstrated that the nanocrystalline wurtzite exhibited spherical shapes with an average crystal size of 27.42 nm. Moreover, the photocatalytic activity of the synthesized Ag-ZnONPs@Cy was meticulously investigated under blue LED light irradiation. This inquiry encompassed examinations of catalyst amount, regeneration, stability, reusability, and the influence of light source on the hydrogenation of nitroarenes to the corresponding aminoarenes. The findings shed light on the potential of this composite for diverse photocatalytic applications.
Collapse
Affiliation(s)
- Dana A Kader
- Department of Chemistry, College of Education, University of Sulaimani Old Campus, Kurdistan Region 46001 Iraq
- Pharmacy Department, Komar University of Science and Technology Kurdistan Region Sulaimani 46001 Iraq
| |
Collapse
|
10
|
Wary RR, Narzary M, Brahma BB, Brahma D, Kalita P, Buzar Baruah M. Nanostructural Design of ZnO Using an Agro-Waste Extract for a Sustainable Process and Its Photocatalytic Activity. ACS APPLIED BIO MATERIALS 2023; 6:4645-4661. [PMID: 37938913 DOI: 10.1021/acsabm.3c00412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The use of agro-waste extracts (AWEs) as a sustainable medium for developing cost-effective and ecologically friendly nanomaterials has piqued the interest of current researchers. Herein, waste extracts from papaya barks, banana peels, thumba plants, and snail shells were used for synthesizing ZnO nanostructures via a hydrothermal method, followed by calcination at 400 °C. The crystallinity and pure wurtzite phase formation of ZnO nanostructures were confirmed via X-ray diffraction. ZnO nanostructures with various morphologies such as tight sheet-like, spherical, porous sheet-like, and bracket-shaped, comprising small interconnected particles with a highly catalytically active exposed (0001) facet, were observed via field emission scanning electron microscopy and transmission electron microscopy. The formation mechanism of the various morphologies of the ZnO nanostructures was proposed. Ultraviolet-visible spectra showed different absorption band edges of ZnO nanostructures with a bandgap in the range of 3.17-3.27 eV. Photoluminescence studies showed the presence of various defect states such as oxygen and zinc vacancies and oxygen and zinc interstitials on ZnO nanostructures, which are usually observed in traditionally prepared ZnO. The photocatalytic activity of ZnO nanostructures was evaluated under direct sunlight using rhodamine B (RhB) and Congo red (CR) dyes as probe pollutants. Furthermore, prepared ZnO nanostructures could potentially adsorb anionic dyes (e.g., CR) in the absence of light. Superoxide and hydroxide radicals played a vital role in the photocatalytic activity of ZnO. The photocatalyst could be reused for up to three cycles, indicating its stability. Therefore, this study reports the diverse use of AWEs as cost-effective media for nanomaterial synthesis.
Collapse
Affiliation(s)
- Riu Riu Wary
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Mousumi Narzary
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Bidhu Bhusan Brahma
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Dulu Brahma
- Department of Chemistry, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Pranjal Kalita
- Department of Chemistry, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Manasi Buzar Baruah
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| |
Collapse
|
11
|
Sukhadeve GK, Gedam RS. Visible light assisted photocatalytic degradation of mixture of reactive ternary dye solution by Zn-Fe co-doped TiO 2 nanoparticles. CHEMOSPHERE 2023; 341:139990. [PMID: 37648162 DOI: 10.1016/j.chemosphere.2023.139990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
The current study deals with the synthesis of novel Zn, and Fe co-doped TiO2 photocatalyst by the sol-gel method at room temperature. The prepared photocatalysts are characterized by several standard analytical tools. X-ray diffraction (XRD) and Raman analysis verifies the tetragonal anatase phase of TiO2 in all synthesized nanoparticles. The morphology and chemical composition of ZFT_2.5 were confirmed using the Field-Emission Scanning Electron Microscope (FE-SEM) and energy dispersive X-ray (EDAX) analysis respectively. X-ray photoelectron spectroscopy (XPS) measurements verify the binding energies of a host and dopant material. The High resolution transmission electron microscopy (HR-TEM) reveals the presence of spherical nanoparticles in ZFT_2.5 photocatalyst with a diameter ranging from 8 to 20 nm. The absorption spectra of the prepared nanoparticles exhibit strong absorption in visible light. The synergistic effect created by Zn and Fe blocked the light induced charge carriers and delayed the recombination probability. The photocatalyst ZFT_2.5 was tested for photocatalytic degradation against the mixture of the three cationic dyes [rhodamine B (RhB), malachite green (MG), and methylene blue (MB)] under exposure of visible light. Total organic carbon (TOC) study was performed to evaluate the organic character of the photodegradate dye solution.
Collapse
Affiliation(s)
- G K Sukhadeve
- Department of Physics, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - R S Gedam
- Department of Physics, Visvesvaraya National Institute of Technology, Nagpur, 440010, India.
| |
Collapse
|
12
|
Kumar DSRS, Puthiran SH, Selvaraju GD, Matthew PA, Senthilkumar P, Kuppusamy S, Mani RR, Hatamleh AA, Ai-Dosary MA, Chang SW, Ravindran B. Preparation and Characterization of Magnetite-Polyvinyl Alcohol Hybrid Nanoparticles (As-PVA-MNPs) Using Acanthophora spicifera Marine Algae Extract for Enhanced Antimicrobial Activity Against Pathogenic Microorganisms. Mol Biotechnol 2023:10.1007/s12033-023-00903-y. [PMID: 37907811 DOI: 10.1007/s12033-023-00903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/28/2023] [Indexed: 11/02/2023]
Abstract
The present study focused on preparing and characterizing magnetite-polyvinyl alcohol (PVA) hybrid nanoparticles using Acanthophora spicifera marine algae extract as a reducing agent. Various analytical techniques, including UV-Visible spectrometry, Fourier-transform infrared (FTIR) analysis, energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis, were used to characterize the nanoparticles. The results showed the successful synthesis of nanoparticles with a characteristic color change and absorption peak at 400 nm in UV-Visible spectrometry. FTIR analysis indicated an interaction between the carboxyl group and magnetite-polyvinyl alcohol hybrid ions. SEM analysis revealed spherical nanoparticles with sizes ranging from 20 to 100 nm. EDX analysis confirmed the presence of strong magnetite peaks in Acanthophora spicifera, validating successful preparation. XRD analysis indicated the crystalline nature of the nanoparticles. Furthermore, the antimicrobial potential of As-PVA-MNPs was evaluated, demonstrating a significant zone of inhibition against tested bacterial and fungal samples at a concentration of 100 µg. These findings suggest the promising antimicrobial activity of the synthesized nanoparticles for potential applications in combating pathogenic microorganisms.
Collapse
Affiliation(s)
| | - S Hari Puthiran
- School of Biotechnology, Dr. G. R. Damodaran College of Science, Coimbatore, Tamil Nadu, 641014, India
| | - Gayathri Devi Selvaraju
- Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, 641402, India
| | - Paul A Matthew
- School of Bioscience and Technology, VIT- Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - P Senthilkumar
- School of Biotechnology, Dr. G. R. Damodaran College of Science, Coimbatore, Tamil Nadu, 641014, India
| | - Sowmya Kuppusamy
- PG and Research Department of Biotechnology & Bioinformatics, Holy Cross College, Tiruchirappalli, Tamil Nadu, 620002, India
| | - Ravishankar Ram Mani
- Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 1155, Riyadh, Saudi Arabia
| | - Munirah Abdullah Ai-Dosary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 1155, Riyadh, Saudi Arabia
| | - Soon Woong Chang
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Balasubramani Ravindran
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602105, India.
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea.
| |
Collapse
|
13
|
Zheng S, Chen Z, Duley WW, Wu YA, Peng P, Zhou YN. Engineering the defect distribution in ZnO nanorods through laser irradiation. NANOTECHNOLOGY 2023; 34:495703. [PMID: 37643586 DOI: 10.1088/1361-6528/acf4a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
In recent years, defect engineering has shown great potential to improve the properties of metal oxide nanomaterials for various applications thus received extensive investigations. While traditional techniques mostly focus on controlling the defects during the synthesis of the material, laser irradiation has emerged as a promising post-deposition technique to further modulate the properties of defects yet there is still limited information. In this article, defects such as oxygen vacancies are tailored in ZnO nanorods through nanosecond (ns) laser irradiation. The relation between laser parameters and the temperature rise in the ZnO due to laser heating was established based on the observation in the SEM and the simulation. Raman spectra indicated that the concentration of the oxygen vacancies in the ZnO is temperature-dependent and can be controlled by changing the laser fluence and exposure time. This is also supported by the absorption spectra and the photoluminescence spectra of ZnO NRs irradiated under these conditions. On the other hand, the distribution of the oxygen vacancies was studied by XPS depth profiling, and it was confirmed that the surface-to-bulk ratio of the oxygen vacancies can be modulated by varying the laser fluence and exposure time. Based on these results, four distinctive regimes containing different ratios of surface-to-bulk oxygen vacancies have been identified. Laser-processed ZnO nanorods were also used as the catalyst for the photocatalytic degradation of rhodamine B (RhB) dye to demonstrate the efficacy of this laser engineering technique.
Collapse
Affiliation(s)
- Shuo Zheng
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Zuolong Chen
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Waterloo Institute of Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Walter W Duley
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Waterloo Institute of Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Peng Peng
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Y Norman Zhou
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
14
|
Azad A, Zafar H, Raza F, Sulaiman M. Factors Influencing the Green Synthesis of Metallic Nanoparticles Using Plant Extracts: A Comprehensive Review. PHARMACEUTICAL FRONTS 2023; 05:e117-e131. [DOI: 10.1055/s-0043-1774289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
AbstractMethods for nanoparticle (NP) synthesis of the past were costly, generating toxic compounds, which necessitates a reduction in toxic contamination associated with chemical and physical syntheses. Green nano synthesis using plant extracts has emerged as a sustainable alternative in nanotechnology with applications in various fields. Factors such as pH, extract and salt concentrations, temperature, solvent, biomolecules in plants, and reaction time significantly influence the quality and quantity of metallic NPs synthesized via green nanotechnology. This review highlights crucial factors affecting the size and shape of metallic NPs as the overall properties of the NPs are size- and shape-dependent. Current and future research in green nano synthesis holds promise for expanding our understanding of the parameters that control the synthesis, size, and shape of NPs. Further investigation is necessary to comprehend the impact of these parameters on the synthesis of metallic NPs using plant extracts, which is considered the most sustainable approach for large-scale production.
Collapse
Affiliation(s)
- Aisha Azad
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Muhammad Sulaiman
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
15
|
Khamis M, Gouda GA, Nagiub AM. Biosynthesis approach of zinc oxide nanoparticles for aqueous phosphorous removal: physicochemical properties and antibacterial activities. BMC Chem 2023; 17:99. [PMID: 37587477 PMCID: PMC10428629 DOI: 10.1186/s13065-023-01012-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
In this study, phosphorus (PO43--P) is removed from water samples using zinc oxide nanoparticles (ZnO NPs). These nanoparticles are produced easily, quickly, and sustainably using Onion extracts (Allium cepa) at an average crystallite size of 8.13 nm using the Debye-Scherrer equation in the hexagonal wurtzite phase. The characterization and investigation of bio-synthesis ZnO NPs were carried out. With an initial concentration of 250 mg/L of P, the effects of the adsorbent dose, pH, contact time, and temperature were examined. At pH = 3 and T = 300 K, ZnO NPs achieved the optimum sorption capacity of 84 mg/g, which was superior to many other adsorbents. The isothermal study was found to fit the Langmuir model at a monolayer capacity of 89.8 mg/g, and the kinetic study was found to follow the pseudo-second-order model. The adsorption process was verified to be endothermic and spontaneous by thermodynamic characteristics. As a result of their low cost as an adsorbent and their high metal absorption, ZnO NPs were found to be the most promising sorbent in this investigation and have the potential to be used as effective sorbents for the removal of P from aqueous solutions. The antimicrobial activity results showed that ZnO NPs concentration had greater antibacterial activity than conventional Cefotaxime, which was utilized as a positive control in the inhibitory zone. However, no inhibitory zone was visible in the controlled wells that had been supplemented with onion extract and DMSO.
Collapse
Affiliation(s)
- Mona Khamis
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Gamal A Gouda
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt.
| | - Adham M Nagiub
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
16
|
Maro CAG, Gálvez HEG, Olivas ODJN, Morales ML, Hernández DV, Flores HG, Carmona VMO, Chinchillas MDJC. Peumus boldus Used in the Synthesis of ZnO Semiconductor Nanoparticles and Their Evaluation in Organic Contaminants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4344. [PMID: 37374529 DOI: 10.3390/ma16124344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023]
Abstract
The high demand for nanomaterials in the field of industry and science has forced researchers to develop new synthesis methods that are more efficient, economical, and environmentally friendly. At present, the application of green synthesis has taken a great advantage over conventional synthesis methods because it helps with the control of the characteristics and properties of the resulting nanomaterials. In this research, ZnO nanoparticles (NPs) were synthesized by biosynthesis using dried boldo (Peumus boldus) leaves. The resulting biosynthesized NPs had a high purity, quasi-spherical shape with average sizes ranging from 15 to 30 nm and a band gap of ~2.8-3.1 eV. These NPs were used in the photocatalytic activity of three organic dyes. The results showed degradation of 100% methylene blue (MB) in 180 min, 92% methyl orange (MO) in 180 min, and 100% Rhodamine B (RhB) in 30 min of exposure. These results show that the Peumus boldus leaf extract is effective in the biosynthesis of ZnO NPs with good photocatalytic properties.
Collapse
Affiliation(s)
- Caree Abigail García Maro
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel Flores S/N, Los Mochis C.P. 81223, Mexico
| | - Horacio Edgardo Garrafa Gálvez
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel Flores S/N, Los Mochis C.P. 81223, Mexico
| | | | - Mizael Luque Morales
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada C.P. 22860, Mexico
- Instituto Tecnológico Nacional, Campus Guasave, Guasave C.P. 81149, Mexico
| | - Diana Vargas Hernández
- Departamento de Investigación en Polímeros y Materiales, CONACYT-Universidad de Sonora, Blvd. Luis Encinas Johnson y Rosales S/N, Hermosillo 83000, Mexico
| | - Hugo Galindo Flores
- Departamento de Ingeniería y Tecnología, Universidad Autónoma de Occidente (UAdeO), Guasave 81048, Mexico
| | - Víctor Manuel Orozco Carmona
- Departamento de Metalurgia e Integridad Estructural, Centro de Investigación en Materiales Avanzados (CIMAV), Av. Miguel de Cervantes Saavedra 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| | | |
Collapse
|
17
|
Roy N, Kannabiran K, Mukherjee A. Integrated adsorption and photocatalytic degradation based removal of ciprofloxacin and sulfamethoxazole antibiotics using Fc@rGO-ZnO nanocomposite in aqueous systems. CHEMOSPHERE 2023; 333:138912. [PMID: 37182714 DOI: 10.1016/j.chemosphere.2023.138912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Ferrocene functionalized rGO-ZnO nanocomposite was synthesized via the facile hydrothermal method. ZnO was reduced over the 3-dimensional rGO framework (3D-Fc@rGO) using Camellia sinensis extract. The Fc@rGO-ZnO nanocomposite was employed for pharmaceutical degradation (sulfamethoxazole (SMX) and ciprofloxacin (CIP)) in an aqueous solution under UV C light. The physicochemical properties of the as-prepared photocatalyst were characterized using FTIR, XRD, FESEM, EDS mapping, HR-TEM, XPS, and DR-UV Vis. The as-synthesized Fc@rGO-ZnO photocatalyst performed remarkably against pristine ZnO, with a fivefold increase in removal efficiency. This superior activity was attributed to its improved light harvesting, charge carrier interface, and enhanced charge separation. Additionally, the photocatalyst obeyed the Lagergen model for pseudo-first-order kinetics. Congruously, the integrated approach of Fc@rGO and ZnO as oxidizing agents was proficient in removing >95% of antibiotics (CIP and SMX) within 180 min. Furthermore, the heterostructure configuration developed between Fc@rGO and ZnO helps in charge migration and generation of abundant •OH and •O2- radicals for photodegradation activities. The toxicity assessment of the treated solutions showed improved cell viability in the algal strains of Scenedesmus and Chlorella sp. Moreover, this novel approach for the synthesis of a photoactive nanocomposite is found to be low-cost and reusable for three cycles. The nanocomposite is environmentally sustainable paving the way for practical applications in the treatment of different classes of antibiotics.
Collapse
Affiliation(s)
- Namrata Roy
- Centre for Nanobiotechnology, VIT, Vellore, India; School of Biosciences and Technology, VIT, India
| | | | | |
Collapse
|
18
|
Govindappa M, Vishaka A, Akshatha BS, Popli D, Sunayana N, Srinivas C, Pugazhendhi A, Raghavendra VB. An endophytic fungus, Penicillium simplicissimum conjugated with C60 fullerene for its potential antimitotic, anti-inflammatory, anticancer and photodegradation activities. ENVIRONMENTAL TECHNOLOGY 2023; 44:817-831. [PMID: 34559029 DOI: 10.1080/09593330.2021.1985621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
In the present study, endophytic fungus, Penicillium simplicissimum isolated from Loranthus micranthus was used to analyze phytochemical studies by qualitative and GC-MS methods. The endophytic fungus P. simplicissimum yielded novel compound penisimplicissin identified through GC-MS studies. Further, P. simplicissimum was conjugated with C60 fullerene nanoparticles (Ps-FNPs) were verified using UV-vis spectra, XRD, FTIR, DLS, EDX and SEM. Ps-FNPs was confirmed using UV-visible spectra with a peak at 260 nm. The IR bands were recorded at 2085, 1428, 1181, 661, 652, 644, 628, and 604 cm-1. The Ps-FNPs treated cells showed a nucleolar shrinkage and cell arrest atprophase, binuclear and multinucleolar cells, a chromosomal bridge and diversion at anaphase was observed, whereas, chromosomal fragment and abnormal distribution at metaphase stage. The Ps-FNPs exhibited a noteworthy anticancer activity on lung cancer cell line H1975 through cytotoxicity. The cytotoxicity was induced by increasing caspase-3, 7, and 9 activities and also showed highest inhibition in xanthine oxidase and COX-II assay proved good anti-inflammatory activity. Ps-FNPs have been extensively studied for photocatalytic activity test against Rhodamine B, Methylene blue and nigrosine showed potential dye degradation in the presence of sunlight proved to be novel photocatalysts. With all the results recorded, Ps-FNPs also have a synergetic effect having on anti-mitotic, anticancer, anti-inflammation potential and photocatalytic degradation of dyes. Hence, the conjugated Ps-FNPs could be one of the potent nano-drug formulations in future. Thus, the present study gives a clear idea of the multifaceted therapeutic and photocatalytic applications.
Collapse
Affiliation(s)
- M Govindappa
- Department of Studies in Botany, Davanagere University, Davanagere, India
| | - A Vishaka
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India
| | - B S Akshatha
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India
| | - Dimple Popli
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India
| | - N Sunayana
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - C Srinivas
- Department of Biotechnology and Microbiology, Bangalore University, Bengaluru, India
| | | | | |
Collapse
|
19
|
Mondal US, Das S, Somu P, Paul S. Silica sand-supported nano zinc oxide-graphene oxide composite induced rapid photocatalytic decolorization of azo dyes under sunlight and improved antimicrobial activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17226-17244. [PMID: 36194330 DOI: 10.1007/s11356-022-23248-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Here, silica sand-supported heterojunction composite of nano zinc oxide (nZnO) and graphene oxide nanosheet (nZnO-GO@SS) was prepared, and its potential as an efficient photocatalyst for the degradation of methylene blue (MB) and Rhodamine-B (Rh-B) under sunlight was demonstrated. Transmission electron microscopy confirmed the uniform distribution of spherically shaped nZnO of average size of approximately 8 nm over graphene oxide nanosheet (GO) in the composites. Photodegradation yields of 95.3% and 97.5% for 100 ppm of MB and Rh-B dye within 150 and 220 min, respectively, were achieved under sunlight by the prepared nanocatalyst (nZnO-GO), while sand microparticle-supported nanocatalyst (nZnO-GO@SS) demonstrated faster degradation of MB and Rh-B, i.e., within 120 and 160 min, respectively. Furthermore, when the recyclability of the photocatalyst was studied, the nZnO-GO exhibited more than 80% degradation efficiency after five cycles for both the dyes and nZnO-GO@SS demonstrated 10% higher (~90%) removal capability after five cycles of reuse. Furthermore, the antibacterial assay showed complete inactivation of Escherichia coli and Staphylococcus aureus bacterial strain by nZnO-GO@SS. Hence, our proposed strategy for the removal of toxic dyes from the aquatic environment under sunlight proved that sand microparticle-supported nanocatalyst (nZnO-GO@SS) might be a superior, cost-effective, and suitable photocatalytic system for industrial applications toward toxic dye removal and decontamination from industrial wastewater.
Collapse
Affiliation(s)
- Uma Sankar Mondal
- Structural Biology and Nanomedicine Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Sohel Das
- Structural Biology and Nanomedicine Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Prathap Somu
- Structural Biology and Nanomedicine Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Subhankar Paul
- Structural Biology and Nanomedicine Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
20
|
Khan MA, Ahmad S, Batool SA, Noor S, Rashid S. Biosynthesis of zinc oxide nanoparticles by using Lallemantia royleana seed extract, characterization and evaluation of their hemolytic, and catalytic degradative properties. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2172043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Maria Anwar Khan
- Department of Chemistry, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Salman Ahmad
- Department of Biotechnology, Gulab Devi Educational Complex, Lahore, Punjab, Pakistan
| | - Syeda Amna Batool
- Department of Microbiology & Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Sadia Noor
- Department of Chemistry, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Samina Rashid
- Department of Chemistry, Lahore College for Women University, Lahore, Punjab, Pakistan
| |
Collapse
|
21
|
Ismail SMM, Ahmed SM, Abdulrahman AF, Almessere MA. Characterization of Green Synthesized of ZnO Nanoparticles by using Pinus Brutia Leaves Extracts. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Sanjeev NO, Vallabha MS, Valsan AE. Adsorptive removal of pharmaceutically active compounds from multicomponent system using Azadirachta indica induced zinc oxide nanoparticles: analysis of competitive and cooperative adsorption. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:284-303. [PMID: 36640038 DOI: 10.2166/wst.2022.428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this research, zinc oxide (ZnO) nanoparticles synthesized using neem leaf (Azadirachta indica) extract were used as an adsorbent for removing two widely used pharmaceutical compounds acetaminophen (AMP) and sulfadiazine (SDZ). The synthesized ZnO nanoparticles were characterized using SEM-EDS, FTIR, TEM, BET, and XRD analysis. The synthesized ZnO nanoparticles were found to be in the size range of 10 nm with a surface area of 48.551 m2/g. The adsorptive performance of ZnO nanoparticles in both mono-component (MoS) and multi-component system (MuS) was investigated under various operational parameters viz. contact time, temperature, pH, concentration of pharmaceutical compound and ZnO nanoparticles dose. It was observed that the maximum adsorption capacity of ZnO nanoparticles was 7.87 mg/g and 7.77 mg/g for AMP and SDZ, respectively, under the optimum conditions of 7 pH and 2 g/L adsorbent dosage. The experimental data best-fitted with the pseudo-second-order model and Langmuir model, indicating monolayer chemisorption. Further investigation on removal of AMP and SDZ from multicomponent system was modelled using a Langmuir competitive model. The desorption study has shown 25.28% and 22.4% removal of AMP and SDZ from the surface of ZnO nanoparticles. In general, green synthesized ZnO nanoparticles can be utilized effectively as adsorbent for removal of pharmaceutically active compounds from wastewater.
Collapse
Affiliation(s)
- Nayanathara O Sanjeev
- Department of Civil Engineering, National Institute of Technology, Calicut, Kerala, India E-mail:
| | | | - Aswathy E Valsan
- Department of Civil Engineering, National Institute of Technology, Calicut, Kerala, India E-mail:
| |
Collapse
|
23
|
Abu Nayem S, Shah SS, Chaity SB, Biswas BK, Nahar B, Aziz MA, Hossain MZ. Jute stick extract assisted hydrothermal synthesis of zinc oxide nanoflakes and their enhanced photocatalytic and antibacterial efficacy. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
24
|
Rani M, Yadav J, Shanker U, Sillanpää M. Green Synthesized Zinc Derived Nanocomposites with Enhanced Photocatalytic Activity: An Updated Review on Structural Modification, Scientific Assessment and Environmental Applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Sodeinde KO, Olusanya SO, Lawal OS, Sriariyanun M, Adediran AA. Enhanced adsorptional-photocatalytic degradation of chloramphenicol by reduced graphene oxide-zinc oxide nanocomposite. Sci Rep 2022; 12:17054. [PMID: 36224225 PMCID: PMC9556521 DOI: 10.1038/s41598-022-21266-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/26/2022] [Indexed: 12/30/2022] Open
Abstract
Improper discharge of waste dry cell batteries and untreated antibiotics laden effluents to the environment pose serious threat to the sustenance of the ecosystem. In this study, synthesis of reduced graphene oxide-ZnO (rGO-ZnO) nanocomposite was achieved via a bioreduction process using waste dry cell battery rod as graphene oxide (GO) precursor. The nanocomposite was applied in the ultraviolet photocatalytic degradation of chloramphenicol (CAP) at 290 nm in the presence of hydrogen peroxide. RGO-ZnO nanocomposite was characterized by SEM, TEM, XRD, BET and FTIR. TEM image of the nanocomposite revealed a polydispersed, quasi-spherical zinc oxide on a coarse reduced graphene oxide surface. XRD patterns showed sharp, prominent crystalline wurtzite hexagonal phases of ZnO and rGO. BET surface area of the nanocomposite was 722 m2/g with pore size of 2 nm and pore volume of 0.4 cc/g. % photo-removal efficiency increased with increasing irradiation time but diminished at higher pH, temperature and CAP concentration. Photocatalytic adsorption process fitted more accurately into the Freundlich model (R2 = 0.99) indicating a multilayer adsorption mechanism. 92.74% reduction in chemical oxygen demand (COD) level of veterinary effluent was obtained after treatment with the nanocomposite thus affirming its effectiveness in real waste water samples.
Collapse
Affiliation(s)
- K. O. Sodeinde
- grid.448729.40000 0004 6023 8256Materials and Nanoresearch Unit, Department of Industrial Chemistry, Federal University, Oye-Ekiti, Ekiti State Nigeria
| | - S. O. Olusanya
- grid.448729.40000 0004 6023 8256Materials and Nanoresearch Unit, Department of Industrial Chemistry, Federal University, Oye-Ekiti, Ekiti State Nigeria
| | - O. S. Lawal
- grid.448729.40000 0004 6023 8256Materials and Nanoresearch Unit, Department of Industrial Chemistry, Federal University, Oye-Ekiti, Ekiti State Nigeria
| | - M. Sriariyanun
- grid.443738.f0000 0004 0617 4490Biorefinery and Process Automation Engineering Center, The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - A. A. Adediran
- grid.448923.00000 0004 1767 6410Materials Design and Structural Integrity Group, Department of Mechanical Engineering, Landmark University, Omu-Aran, Kwara State Nigeria
| |
Collapse
|
26
|
Kamarajan G, Anburaj DB, Porkalai V, Muthuvel A, Nedunchezhian G. Green synthesis of ZnO nanoparticles using Acalypha indica leaf extract and their photocatalyst degradation and antibacterial activity. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
In Situ Biosynthesis of Reduced Alpha Hematite (α-Fe2O3) Nanoparticles by Stevia Rebaudiana L. Leaf Extract: Insights into Antioxidant, Antimicrobial, and Anticancer Properties. Antibiotics (Basel) 2022; 11:antibiotics11091252. [PMID: 36140030 PMCID: PMC9495369 DOI: 10.3390/antibiotics11091252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
In the present study, we utilized Stevia rebaudiana L. (SRLe) extract to in situ biosynthesize nanoscale alpha hematite (α-Fe2O3) nanoparticles (NPs) with potent antioxidant, antimicrobial, and anticancer properties. SRLe-α-Fe2O3 was characterized using physiochemical analyses, including UV/Vis, FTIR, XRD, DLS, EDX, SEM, and TEM studies. Among tested solvents, CHCl3/MeOH (2:1 v/v) SRL extract (least polar solvent) contained the highest EY, TPC, and antioxidant capacity of ~3.5%, ~75 mg GAE/g extract, and IC50 = 9.87 ± 0.7 mg/mL, respectively. FTIR confirmed the engagement of coating operation to the colloidal α-Fe2O3 NPs. TEM, SEM, and DLS revealed that SRLe-α-Fe2O3 has a spherical shape, uniform size distribution with aggregation for an average size of ~18.34 nm, and ζ = −19.4 mV, forming a repulsive barrier that helped to improve stability. The synthesized nanoparticles displayed considerable antibacterial activity against E. coli and S. aureus bacterial growth, and exhibited superior activity against the A549 lung cancer cell lines. These findings indicate that the increased availability of bioactive substances with antioxidant properties of SRLe makes it a potentially interesting material for the preparation of biologically active compounds and green synthesis of nanoparticles.
Collapse
|
28
|
Krishna PG, Chandra Mishra P, Naika MM, Gadewar M, Ananthaswamy PP, Rao S, Boselin Prabhu SR, Yatish KV, Nagendra HG, Moustafa M, Al-Shehri M, Jha SK, Lal B, Stephen Santhakumari SM. Photocatalytic Activity Induced by Metal Nanoparticles Synthesized by Sustainable Approaches: A Comprehensive Review. Front Chem 2022; 10:917831. [PMID: 36118313 PMCID: PMC9479337 DOI: 10.3389/fchem.2022.917831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/06/2022] [Indexed: 12/29/2022] Open
Abstract
Nanotechnology is a fast-expanding area with a wide range of applications in science, engineering, health, pharmacy, and other fields. Among many techniques that are employed toward the production of nanoparticles, synthesis using green technologies is the simplest and environment friendly. Nanoparticles produced from plant extracts have become a very popular subject of study in recent decades due to their diverse advantages such as low-cost synthesis, product stability, and ecofriendly protocols. These merits have prompted the development of nanoparticles from a variety of sources, including bacteria, fungi, algae, proteins, enzymes, etc., allowing for large-scale production with minimal contamination. However, nanoparticles obtained from plant extracts and phytochemicals exhibit greater reduction and stabilization and hence have proven the diversity of properties, like catalyst/photocatalyst, magnetic, antibacterial, cytotoxicity, circulating tumor deoxy ribo nucleic acid (CT-DNA) binding, gas sensing, etc. In the current scenario, nanoparticles can also play a critical role in cleaning wastewater and making it viable for a variety of operations. Nano-sized photocatalysts have a great scope toward the removal of large pollutants like organic dyes, heavy metals, and pesticides in an eco-friendly and sustainable manner from industrial effluents. Thus, in this review article, we discuss the synthesis of several metal nanoparticles using diverse plant extracts, as well as their characterization via techniques like UV–vis (ultraviolet–visible), XRD (X-ray diffraction), SEM (scanning electron microscopy), TEM (transmission electron microscopy), FTIR (Fourier transform infrared spectroscopy), etc., and catalytic activity on various hazardous systems.
Collapse
Affiliation(s)
- Prashanth Gopala Krishna
- Department of Chemistry, Sir M. Visvesvaraya Institute of Technology, Affiliated to Visvesvaraya Technological University, Bengaluru, India
- *Correspondence: Prashanth Gopala Krishna, , ; Saurabh Kumar Jha,
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Mutthuraju Mahadev Naika
- Department of Chemistry, Sai Vidya Institute of Technology, Affiliated to Visvesvaraya Technological University, Bengaluru, India
| | - Manoj Gadewar
- Department of Pharmacology, School of Medical and Allied Sciences, KR Mangalam University, Gurgaon, India
| | | | - Srilatha Rao
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Affiliated to Visvesvaraya Technological University, Bengaluru, India
| | | | | | - Holenarasipura Gundurao Nagendra
- Department of Bio Technology, Sir M. Visvesvaraya Institute of Technology, Affiliated to Visvesvaraya Technological University, Bengaluru, India
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Mohammed Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- *Correspondence: Prashanth Gopala Krishna, , ; Saurabh Kumar Jha,
| | - Bharat Lal
- Department of Pharmaceutics, School of Medical and Allied Sciences, KR Mangalam University, Gurgaon, India
| | | |
Collapse
|
29
|
ZnO/NiO heterostructures with enhanced photocatalytic activity obtained by ultrasonic spraying of a NiO shell onto ZnO nanorods. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Em S, Yedigenov M, Khamkhash L, Atabaev S, Molkenova A, Poulopoulos SG, Atabaev TS. Uncovering the Role of Surface-Attached Ag Nanoparticles in Photodegradation Improvement of Rhodamine B by ZnO-Ag Nanorods. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2882. [PMID: 36014747 PMCID: PMC9412419 DOI: 10.3390/nano12162882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
ZnO nanorods decorated with metal nanoparticles have sparked considerable interest in recent years thanks to their suitability for a wide range of applications, such as photocatalysis, photovoltaics, antibacterial activity, and sensing devices. In this study, we prepared and investigated the improved solar-light-assisted photocatalytic activity of ZnO nanorods (NRs) decorated with Ag nanoparticles (NPs) using a conventional rhodamine B (RB) dye as a model water pollutant. We showed that the presence of Ag NPs on the surface of ZnO NRs significantly increases the degradation rate of RB dye (~0.2432 min-1) when compared to bare ZnO NRs (~0.0431 min-1). The improved photocatalytic activity of ZnO-Ag was further experimentally tested using radical scavengers. The obtained results reveal that ˙OH and ˙O2- radicals are main active species involved in the RB dye photodegradation by ZnO-Ag NRs. It was concluded that efficient charge separation plays a major role in photocatalytic activity improvement.
Collapse
Affiliation(s)
- Svetlana Em
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Mussa Yedigenov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Laura Khamkhash
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Shanazar Atabaev
- Department of Professional Disciplines, Academy of the Ministry of Emergency Situations, Tashkent 100102, Uzbekistan
| | - Anara Molkenova
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- Institute of Advanced Organic Materials, Pusan National University, Busan 46241, Korea
| | - Stavros G. Poulopoulos
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Timur Sh. Atabaev
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
31
|
Zhang S, Malik S, Ali N, Khan A, Bilal M, Rasool K. Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration. Top Curr Chem (Cham) 2022; 380:44. [PMID: 35951126 PMCID: PMC9372017 DOI: 10.1007/s41061-022-00397-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/07/2022] [Indexed: 12/07/2022]
Abstract
Nanotechnology has emerged as an extraordinary and rapidly developing discipline of science. It has remolded the fate of the whole world by providing diverse horizons in different fields. Nanomaterials are appealing because of their incredibly small size and large surface area. Apart from the naturally occurring nanomaterials, synthetic nanomaterials are being prepared on large scales with different sizes and properties. Such nanomaterials are being utilized as an innovative and green approach in multiple fields. To expand the applications and enhance the properties of the nanomaterials, their functionalization and engineering are being performed on a massive scale. The functionalization helps to add to the existing useful properties of the nanomaterials, hence broadening the scope of their utilization. A large class of covalent and non-covalent functionalized nanomaterials (FNMs) including carbons, metal oxides, quantum dots, and composites of these materials with other organic or inorganic materials are being synthesized and used for environmental remediation applications including wastewater treatment. This review summarizes recent advances in the synthesis, reporting techniques, and applications of FNMs in adsorptive and photocatalytic removal of pollutants from wastewater. Future prospects are also examined, along with suggestions for attaining massive benefits in the areas of FNMs.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Sumeet Malik
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 5824, Doha, Qatar.
| |
Collapse
|
32
|
Malaikozhundan B, Krishnamoorthi R, Vinodhini J, Sivalingam Nathiga Nambi K, Palanisamy S. Multifunctional iron oxide nanoparticles using Carica papaya fruit extract as antibacterial, antioxidant and photocatalytic agent to remove industrial dyes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Thakare Y, Kore S, Sharma I, Shah M. A comprehensive review on sustainable greener nanoparticles for efficient dye degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55415-55436. [PMID: 35672632 DOI: 10.1007/s11356-022-20127-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
The effluents released from textile industries mainly consist of dyes, metals and other pollutants. Dyes often are discharged in wastewater streams causing adverse effect on the environment. To eliminate these harmful dyes, various techniques are emerging out of which nanotechnology is the most reliable and safer. Nanotechnology offers convincing applications in case of environmental and economic concerns. The bio-synthesis of nanoparticles has several advantages over conventional methods and approach towards environment concern as well. Biological method of nanoparticles synthesis is concluded to be the most promising and efficient in action. Bio-synthesised nanoparticles could be used for treatment and decolourisation of dyes in an efficient manner. This review comprises the study of number of bio-synthesised nanoparticles utilised for degradation of various dyes present as pollutants in wastewater. Bio-synthesised nanoparticles such as gold, silver, iron, cobalt, zinc, titanium and molybdenum used for degradation of various dyes have been discussed in this review.
Collapse
Affiliation(s)
- Yash Thakare
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Sujay Kore
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Ishanee Sharma
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Manan Shah
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India.
| |
Collapse
|
34
|
Bahadur Singh K, Gautam N, Upadhyay DD, Abbas G, Rizvi M, Pandey G. Morphology Controlled Biogenic Fabrication Of Metal/Metal Oxide Nanostructures Using Plant Extract And Their Application In Organic Transformations. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Guleria A, Sachdeva H, Saini K, Gupta K, Mathur J. Recent trends and advancements in synthesis and applications of plant‐based green metal nanoparticles: A critical review. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anjali Guleria
- Department of Chemistry University of Rajasthan Jaipur India
| | | | - Kirti Saini
- Department of Chemistry University of Rajasthan Jaipur India
| | - Komal Gupta
- Department of Chemistry University of Rajasthan Jaipur India
| | - Jaya Mathur
- Department of Chemistry University of Rajasthan Jaipur India
| |
Collapse
|
36
|
Djearamane S, Loh ZC, Lee JJ, Wong LS, Rajamani R, Luque PA, Gupta PK, Liang SXT. Remedial Aspect of Zinc Oxide Nanoparticles Against Serratia Marcescens and Enterococcus Faecalis. Front Pharmacol 2022; 13:891304. [PMID: 35747753 PMCID: PMC9209744 DOI: 10.3389/fphar.2022.891304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) have been widely used in biomedical applications due to their high biocompatibility and low toxicity to humans. The present work aimed to investigate the antibacterial effects of different concentrations of ZnO NPs on two opportunistic pathogens, Serratia marcescens and Enterococcus faecalis. The surface interaction between nanoparticles and bacterial cell wall, and the subsequent morphological alterations on the bacterial surface, were examined through Fourier transform infrared spectroscopy and scanning electron microscope. The energy dispersive X-ray analysis was used to confirm the elemental composition of ZnO NPs and the cellular accumulation of ZnO NPs in bacteria. The growth-inhibitory test demonstrated a dose-dependent growth inhibitory effect of ZnO NPs against both the test bacteria, as the higher concentration of nanoparticles caused the higher bacterial growth inhibition. The results showed that ZnO NPs caused a higher growth inhibition (63.50 ± 2.50%) on the Gram-positive bacterium E. faecalis compared to the Gram-negative bacterium S. marcescens (51.27 ± 4.56%). Fourier transform infrared spectrum revealed the possible involvement of hydroxyl, carboxyl, amides, methylene, and phosphate groups from the biomolecules of bacterial cell wall such as proteins, carbohydrates, lipids, and phospholipids in the interaction of ZnO NPs on bacterial cell surface. Energy dispersive X-ray analysis showed the higher accumulation of ZnO NPs in E. faecalis than S. marcescens analogous to the bacterial growth inhibition. Scanning electron microscopy images confirmed the antibacterial properties of ZnO NPs, showing the loss of integrity of cell membrane and distortion of bacterial cells. Hence, the potential of ZnO NP as an antibacterial agent against S. marcescens and E. faecalis has been confirmed.
Collapse
Affiliation(s)
- Sinouvassane Djearamane
- Department of Biomedical Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia
- *Correspondence: Sinouvassane Djearamane,
| | - Zhe Chi Loh
- Department of Biomedical Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia
| | - Jun Jie Lee
- Department of Biomedical Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | | | - Priscy Alfredo Luque
- Faculty of Engineering, Architecture, and Design, Autonomous University of Baja California, Mexicali, Mexico
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | | |
Collapse
|
37
|
Jasrotia R, Prakash J, Kumar G, Verma R, Kumari S, Kumar S, Singh VP, Nadda AK, Kalia S. Robust and sustainable Mg 1-xCe xNi yFe 2-yO 4 magnetic nanophotocatalysts with improved photocatalytic performance towards photodegradation of crystal violet and rhodamine B pollutants. CHEMOSPHERE 2022; 294:133706. [PMID: 35066082 DOI: 10.1016/j.chemosphere.2022.133706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
This study aims at manufacturing Ce3+/Ni2+ ions doped Mg nanoferrites by the sol-gel method for the photocatalytic degradation of rhodamine B and crystal violet pollutants under visible natural sunlight. The particle size of synthesized nanoferrites was calculated through XRD, Hall-William plots, and TEM analysis, which perfectly agree with each other. FTIR study investigated the existence of stretching vibrations in M - O (metal-oxygen) complexes at the tetrahedral (A-site) and octahedral sites (B-site). The Raman spectra of synthesized nanophotocatalysts show the presence of four vibrational modes (Eg + 2T2g + A1g), providing suitable information of occupancy of Mg2+, Ce3+, Ni2+, and Fe3+ ions at the interstitial sites of undoped and Ce3+/Ni2+ doped MgFe2O4 crystal structure. The synthesized MGF3 nanophotocatalyst performs well with degradation of 97.674% crystal violet (CV) and 90.05% rhodamine B (RhB) under natural sunlight in 60 min. The experimental results showed that doped MgFe2O4 nanoferrites have a high tendency to photodegrade the RhB and CV dyes in an aqueous form. The pseudo-first-order equation reflects the best photocatalytic process kinetics and studied the feasibility of RhB and CV dyes adsorption on the doped and undoped MgFe2O4 nanoferrites. The results show good support for adsorption by the spontaneous photodegradation process. The excellent photocatalytic activity of synthesized nanoferrites under natural sunlight verifies them as a potential candidate for the photodegradation of organic dyes. Finally, the antibacterial activity of magnetic nanoferrites was examined against S. aureus and E. Coli. The studies demonstrated that synthesized magnetic nanoferrites were more effective against S. aureus.
Collapse
Affiliation(s)
- Rohit Jasrotia
- School of Physics and Materials Science, Shoolini University, Bajhol, Solan, H.P, India; Himalayan Centre of Excellence in Nanotechnology, Shoolini University, Bajhol, Solan, H.P, India.
| | - Jyoti Prakash
- School of Physics and Materials Science, Shoolini University, Bajhol, Solan, H.P, India
| | - Gagan Kumar
- Department of Physics, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Ritesh Verma
- School of Physics and Materials Science, Shoolini University, Bajhol, Solan, H.P, India; Himalayan Centre of Excellence in Nanotechnology, Shoolini University, Bajhol, Solan, H.P, India
| | - Swati Kumari
- School of Biotechnology, Shoolini University, Bajhol, Solan, H.P., India
| | - Sachin Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005 India
| | - Virender Pratap Singh
- Department of Physics, Govt. Degree College, Nadaun, Hamirpur, Himachal Pradesh, India
| | - Ashok K Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, India
| | - Susheel Kalia
- Department of Chemistry, ACC Wing, Indian Military Academy, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
38
|
Ashraf A, Liu G, Yousaf B, Arif M, Ahmed R, Rashid A, Riaz L, Rashid MS. Phyto-mediated photocatalysis: a critical review of in-depth base to reactive radical generation for erythromycin degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32513-32544. [PMID: 35190984 DOI: 10.1007/s11356-022-19119-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Erythromycin (ERY), designated as a risk-prioritized macrolide antibiotic on the 2015 European Union watch list, is the third most commonly used antibiotic, most likely due to its ability to inhibit the protein. ERY has revealed record-high aquatic concentrations threatening the entire ecosystem and hence demands priority remedial measures. The inefficiency of various conventional ERY degradation methodologies opened up a gateway to advanced technologies. The conventional approach comprising of a chemically formulated, single photocatalyst has a major drawback of creating multiple environmental stresses. In this context, photocatalysis is grabbing tremendous attention as an efficient and cost-effective antibiotic treatment approach. Several studies have ascertained that ZnO, TiO2, Fe3O4, and rGO nanoparticles possess remarkable pollution minimizing operational capabilities. Additionally, composites are found much more effective in antibiotic removal than single nanoparticles. In this review, an attempt has been made to provide a comprehensive baseline for efficient reactive radical production by a phyto-mediated composite kept under a certain source of irradiation. Considerable efforts have been directed towards the in-depth investigation of rGO-embedded, phyto-mediated ZnO/TiO2/Fe3O4 photocatalyst fabrication for efficient ERY degradation, undergoing green photocatalysis. This detailed review provides photocatalytic nanocomposite individualities along with a hypothetical ERY degradation mechanism. It is assumed that derived information presented here will provoke innovative ideas for water purification incorporating green photocatalysis, initiating the construction of high-performance biogenic hierarchical nanocatalysts.
Collapse
Affiliation(s)
- Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Muhammad Arif
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Audil Rashid
- Botany Department, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Luqman Riaz
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Saqib Rashid
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| |
Collapse
|
39
|
Anjali K, Raghunathan R, Devi G, Dutta S. Photocatalytic degradation of methyl red using seaweed mediated zinc oxide nanoparticles. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Singh AR, Dhumal PS, Bhakare MA, Lokhande KD, Bondarde MP, Some S. In-situ synthesis of metal oxide and polymer decorated activated carbon-based photocatalyst for organic pollutants degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Composition controllable green synthesis of manganese dioxide nanoparticles using an edible freshwater red alga and its photocatalytic activity towards water soluble toxic dyes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Fouladi-Fard R, Aali R, Mohammadi-Aghdam S, Mortazavi-derazkola S. The surface modification of spherical ZnO with Ag nanoparticles: A novel agent, biogenic synthesis, catalytic and antibacterial activities. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
43
|
Muktaridha O, Adlim M, Suhendrayatna S, Ismail I. Highly reusable chitosan-stabilized Fe-ZnO immobilized onto fiberglass cloth and the photocatalytic degradation properties in batch and loop reactors. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Khan F, Shariq M, Asif M, Siddiqui MA, Malan P, Ahmad F. Green Nanotechnology: Plant-Mediated Nanoparticle Synthesis and Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:673. [PMID: 35215000 PMCID: PMC8878231 DOI: 10.3390/nano12040673] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 01/09/2023]
Abstract
The key pathways for synthesizing nanoparticles are physical and chemical, usually expensive and possibly hazardous to the environment. In the recent past, the evaluation of green chemistry or biological techniques for synthesizing metal nanoparticles from plant extracts has drawn the attention of many researchers. The literature on the green production of nanoparticles using various metals (i.e., gold, silver, zinc, titanium and palladium) and plant extracts is discussed in this study. The generalized mechanism of nanoparticle synthesis involves reduction, stabilization, nucleation, aggregation and capping, followed by characterization. During biosynthesis, major difficulties often faced in maintaining the structure, size and yield of particles can be solved by monitoring the development parameters such as temperature, pH and reaction period. To establish a widely accepted approach, researchers must first explore the actual process underlying the plant-assisted synthesis of a metal nanoparticle and its action on others. The green synthesis of NPs is gaining attention owing to its facilitation of the development of alternative, sustainable, safer, less toxic and environment-friendly approaches. Thus, green nanotechnology using plant extract opens up new possibilities for the synthesis of novel nanoparticles with the desirable characteristics required for developing biosensors, biomedicine, cosmetics and nano-biotechnology, and in electrochemical, catalytic, antibacterial, electronics, sensing and other applications.
Collapse
Affiliation(s)
- Faryad Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (M.S.); (M.A.S.)
| | - Mohammad Shariq
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (M.S.); (M.A.S.)
| | - Mohd Asif
- Regional Ayurveda Research Institute, CCRAS, Ranikhet 263645, India;
| | - Mansoor Ahmad Siddiqui
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (M.S.); (M.A.S.)
| | - Pieter Malan
- Unit for Environmental Sciences and Management, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa;
| | - Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (M.S.); (M.A.S.)
| |
Collapse
|
45
|
Roy N, Alex SA, Chandrasekaran N, Kannabiran K, Mukherjee A. Studies on the removal of acid violet 7 dye from aqueous solutions by green ZnO@Fe 3O 4 chitosan-alginate nanocomposite synthesized using Camellia sinensis extract. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114128. [PMID: 34823906 DOI: 10.1016/j.jenvman.2021.114128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
In the present study, ZnO-Fe3O4 nanoparticles were synthesized using the leaves of Camellia sinensis and immobilized in crosslinked alginate-chitosan polymer beads and tested for their photocatalytic applications. The prepared nanocomposite was used for the simultaneous adsorption and photocatalytic degradation of acid violet 7 (AV7) dye. The optimization of reaction conditions ensured higher dye removal efficacy up to 94.21 ± 1.02% using the nanocomposite under UV-C irradiation of 365 nm. The kinetics of the adsorption study fitted well with the pseudo-first-order reaction. The Langmuir model fitted better to the adsorption isotherms compared to the Freundlich and Temkin models. The mechanism of degradation was studied by analyzing the treated AV7 solution. The removal efficiency in tap water, groundwater, and lake water was 83.23 ± 0.4%, 69.13 ± 1.6%, and 67.89 ± 0.3%, respectively. The residual toxicity of the degraded AV7 solution was tested on model organisms like freshwater algae, Scenedesmus sp., and plant model, Allium cepa, demonstrating the lower toxicity of the degraded AV7 product. Finally, a cost-benefit analysis of the experiments was also carried out.
Collapse
Affiliation(s)
- Namrata Roy
- School of Biosciences and Technology, VIT, Vellore, India; Centre for Nano Science and Technology, Anna University, Chennai, India
| | - Sruthi Ann Alex
- Centre for Nano Science and Technology, Anna University, Chennai, India
| | | | | | | |
Collapse
|
46
|
Patar M, Moyon NS, Sinha T. Biogenic Fabrication of Silver Nanoparticles: A Potent and Ideal Candidate for Wastewater Treatment and Water Disinfection. ChemistrySelect 2022. [DOI: 10.1002/slct.202103374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Madhumita Patar
- Department Of Chemistry National Institute Of Technology Silchar Assam 788010 India
| | | | - Tanur Sinha
- School of Chemistry University of Bristol Cantock's close Bristol BS81TS UK
| |
Collapse
|
47
|
Dabhane H, Zate M, Bharsat R, Jadhav G, Medhane V. A novel bio-fabrication of ZnO nanoparticles using cow urine and study of their photocatalytic, antibacterial and antioxidant activities. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Gangwar J, Sebastian JK. Unlocking the potential of biosynthesized zinc oxide nanoparticles for degradation of synthetic organic dyes as wastewater pollutants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3286-3310. [PMID: 34850728 DOI: 10.2166/wst.2021.430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The azo dyes released into water from different industries are accumulating in the water bodies and bioaccumulating within living systems thereby affecting environmental health. This is a major concern in developing countries where stringent regulations are not followed for the discharge of industrial waste into water bodies. This has led to the accumulation of various pollutants including dyes. As these developing countries also face acute water shortages and due to the lack of cost-effective systems to remove these pollutants, it is essential to remove these toxic dyes from water bodies, eradicate dyes, or generate fewer toxic derivatives. The photocatalysis mechanism of degradation of azo dyes has gained importance due to its eco-friendly and non-toxic roles in the environment. The zinc nanoparticles act as photocatalysts in combination with plant extracts. Plant-based nanoparticles over the years have shown the potential to degrade dyes efficiently. This is carried out by adjusting the dye and nanoparticle concentrations and combinations of nanoparticles. Our review article considers increasing the efficiency of degradation of dyes using zinc oxide (ZnO) nanoparticles and understanding the photocatalytic mechanisms in the degradation of dyes and the toxic effects of these dyes and nanoparticles in different tropic levels.
Collapse
Affiliation(s)
- Jaya Gangwar
- Department of Life Sciences, Christ University, Bangalore, Karnataka, India E-mail:
| | | |
Collapse
|
49
|
Abomuti MA, Danish EY, Firoz A, Hasan N, Malik MA. Green Synthesis of Zinc Oxide Nanoparticles Using Salvia officinalis Leaf Extract and Their Photocatalytic and Antifungal Activities. BIOLOGY 2021; 10:1075. [PMID: 34827068 PMCID: PMC8614830 DOI: 10.3390/biology10111075] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022]
Abstract
The facile bio-fabrication of zinc oxide (ZnO) nanoparticles (NPs) is described in this study using an aqueous leaf extract of Salvia officinalis L. as an efficient stabilizing/capping agent. Biosynthesis of nanomaterials using phytochemicals present in the plants has received great attention and is gaining significant importance as a possible alternative to the conventional chemical methods. The properties of the bio-fabricated ZnONPs were examined by different techniques, such as UV-visible spectroscopy, X-ray diffraction spectroscopy (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric/differential scanning calorimetry analysis (TGA/DTG). The photocatalytic activity of ZnONPs was investigated against methyl orange (MO) under UV light irradiation. Under optimum experimental conditions, ZnONPs exhibited 92.47% degradation of MO. Furthermore, the antifungal activity of bio-fabricated ZnONPs was determined against different clinical Candida albicans isolates following standard protocols of broth microdilution and disc diffusion assay. The susceptibility assay revealed that ZnONPs inhibit the growth of all the tested fungal isolates at varying levels with MIC values ranging from 7.81 to 1.95 µg/mL. Insight mechanisms of antifungal action appeared to be originated via inhibition of ergosterol biosynthesis and the disruption of membrane integrity. Thus, it was postulated that bio-fabricated ZnONPs have sustainable applications in developing novel antifungal agents with multiple drug targets. In addition, ZnONPs show efficient photocatalytic efficiency without any significant catalytic loss after the catalyst was recycled and reused multiple times.
Collapse
Affiliation(s)
- May Abdullah Abomuti
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.A.A.); (E.Y.D.)
| | - Ekram Y. Danish
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.A.A.); (E.Y.D.)
| | - Ahmad Firoz
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, P.O. Box. 2097, Jazan, Saudi Arabia;
| | - Maqsood Ahmad Malik
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.A.A.); (E.Y.D.)
| |
Collapse
|
50
|
D’Souza JN, Nagaraja G, Meghana Navada K, Kouser S, Nityasree B, Manasa D. An ensuing repercussion of solvent alteration on biological and photocatalytic efficacy of Emilia sonchifolia (L.) phytochemicals capped zinc oxide nanoparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|