1
|
Wu J, Zhou X, Tsang CY, Mei Q, Zhang Y. Bioengineered nanomaterials for dynamic diagnostics in vivo. Chem Soc Rev 2025. [PMID: 40289891 DOI: 10.1039/d5cs00136f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
In vivo diagnostics obtains real-time physiological information directly from the site of interest in a patient's body, providing more accurate disease diagnosis compared with ex vivo diagnostics. Particularly, in vivo dynamic diagnostics allows the continuous monitoring of physiological signals over a period of time, offering deeper insights into disease pathogenesis and progression. However, achieving in situ dynamic diagnostics in deep tissues presents challenges related to energy and signal penetration as well as dynamic monitoring. Bioengineered nanomaterials serve as an ideal platform for in vivo dynamic diagnostics, leveraging energy conversion and biofunctionalization to enable continuous acquisition of physiological information across temporal and spatial scales. In this review, with reference to the studies from the last five years, we summarize the fundamental components that are essential for dynamic diagnosis in vivo. Firstly, an input energy source with high tissue penetration is needed, such as near-infrared (NIR) light, X-rays, magnetic field and ultrasound. Secondly, a nanomaterial class that is responsive to such an energy source to provide a readable output signal is chosen. Thirdly, bioengineered nanoprobes are designed to exhibit spatial, temporal or spatiotemporal changes in the output signal. Finally, different methods are used to analyse the output signal of nanoprobes, such as detecting changes in optical, radiation, magnetic and ultrasound signals. This review also discusses the obstacles and potential solutions for advancing these bioengineered nanomaterials toward clinical translational applications.
Collapse
Affiliation(s)
- Jizhong Wu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Xinyu Zhou
- Department of Biomedical Engineering, College of Biomedicine, The City University of Hong Kong, Kowloon 999077, Hong Kong.
| | - Chung Yin Tsang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Yong Zhang
- Department of Biomedical Engineering, College of Biomedicine, The City University of Hong Kong, Kowloon 999077, Hong Kong.
| |
Collapse
|
2
|
Butt A, Bach H. Advancements in nanotechnology for diagnostics: a literature review, part II: advanced techniques in nuclear and optical imaging. Nanomedicine (Lond) 2025; 20:183-206. [PMID: 39670826 PMCID: PMC11730800 DOI: 10.1080/17435889.2024.2439778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024] Open
Abstract
Modern molecular imaging routes, such as nuclear imaging and optical imaging, derive significant advantages from nanoparticles, where multimodality use and multipurpose are key benefits. Nanoparticles also showcase benefits over traditional imaging agents in nuclear and optical imaging, including improved resolution, penetration, and specificity. The goal of this literature review was to explore recent advancements in nanomaterials within these molecular imaging techniques to expand on the current state of nanomedicine in these modalities. This review derives findings from relevant reviews, original research papers, in-human clinical trials, and patents in the literature. Au- and Fe oxide-based nanosystems are just as ubiquitous within more modern modalities due to their multimodal diagnostic and therapeutic potential. It is also repeatedly highlighted in the literature, patents, and clinical trials that the use of nanoparticles, specifically in multimodal imaging techniques and theranostics, present innovative methods in recent years, enabling researchers and clinicians to overcome the limitations of unimodal imaging modalities and further advancing accuracy in the diagnosis and treatment of important pathologies, particularly cancer. Overall, nanoparticle-based imaging represents a transformative approach in advanced imaging modalities, offering new approaches to limitations of conventional agents currently being applied in clinical settings.
Collapse
Affiliation(s)
- Ahmad Butt
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Horacio Bach
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- Division of Infectious Diseases, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Schorr K, Chen X, Sasaki T, Arias-Loza AP, Lang J, Higuchi T, Goepferich A. Rethinking Thin-Layer Chromatography for Screening Technetium-99m Radiolabeled Polymer Nanoparticles. ACS Pharmacol Transl Sci 2024; 7:2604-2611. [PMID: 39296255 PMCID: PMC11406700 DOI: 10.1021/acsptsci.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024]
Abstract
Thin-layer chromatography (TLC) is commonly employed to screen technetium-99m labeled polymer nanoparticle batches for unreduced pertechnetate and radio-colloidal impurities. Although this method is widely accepted, our findings applying radiolabeled PLGA/PLA-PEG nanoparticles underscore its lack of transferability between different settings and its limitations as a standalone quality control tool. While TLC profiles may appear similar for purified and radiocolloid containing nanoparticle formulations, their in vivo behavior can vary significantly, as demonstrated by discrepancies between TLC results and single-photon emission computed tomography (SPECT) and biodistribution data. This highlights the urgent need for a case-by-case evaluation of TLC methods for each specific nanoparticle type. Our study revealed that polymeric nanoparticles cannot be considered analytically uniform entities in the context of TLC analysis, emphasizing the complex interplay between nanoparticle composition, radiolabeling conditions, and subsequent biological behavior.
Collapse
Affiliation(s)
- Kathrin Schorr
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| | - Xinyu Chen
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Bavaria 86156, Germany
| | - Takanori Sasaki
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Bavaria 97080, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-0082, Japan
| | - Anahi Paula Arias-Loza
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Bavaria 97080, Germany
| | - Johannes Lang
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Bavaria 97080, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-0082, Japan
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| |
Collapse
|
4
|
Li J, Ji A, Lei M, Xuan L, Song R, Feng X, Lin H, Chen H. Hypsochromic Shift Donor-Acceptor NIR-II Dye for High-Efficiency Tumor Imaging. J Med Chem 2023. [PMID: 37294925 DOI: 10.1021/acs.jmedchem.3c00253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nowadays, second near-infrared window (NIR-II) dyes' development focuses on pursuing a longer absorption/emission wavelength and higher quantum yield, which usually means an extended π conjugation system, resulting in an enormous molecular weight and poor druggability. Most researchers thought that the reduced π conjugation system would bring on a blueshift spectrum that causes dim imaging qualities. Little efforts have been made to study smaller NIR-II dyes with a reduced π conjugation system. Herein, we synthesized a reduced π conjugation system donor-acceptor (D-A) probe TQ-1006 (Em = 1006 nm). Compared with its counterpart donor-acceptor-donor (D-A-D) structure TQT-1048 (Em = 1048 nm), TQ-1006 exhibited comparable excellent blood vessels, lymphatic drainage imaging performance, and a higher tumor-to-normal tissue (T/N) ratio. An RGD conjugated probe TQ-RGD showed an extra high contrast tumor imaging (T/N ≥ 10), further proving D-A dyes' excellent NIR-II biomedical imaging applications. Overall, the D-A framework provides a promising approach to designing next-generation NIR-II fluorophores.
Collapse
Affiliation(s)
- Jiafeng Li
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- College of Science, Shanghai University, Shanghai 200444, P.R. China
| | - Aiyan Ji
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Meiling Lei
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Liwen Xuan
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Ruihu Song
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| | - Haixia Lin
- College of Science, Shanghai University, Shanghai 200444, P.R. China
| | - Hao Chen
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|
5
|
Teranishi K. In vivo near-infrared fluorescence imaging of gastric cancer in an MKN-45 gastric cancer xenograft mouse model using intraoperative ureteral identification agent ASP5354. Photochem Photobiol Sci 2023:10.1007/s43630-023-00410-8. [PMID: 37010695 DOI: 10.1007/s43630-023-00410-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/18/2023] [Indexed: 04/04/2023]
Abstract
Accurate intraoperative identification of gastric cancer lesions and determination of the extent of resection are important for curability and function preservation. This study aimed to investigate the potential of the near-infrared fluorescence (NIRF) imaging agent ASP5354 for in vivo fluorescence imaging of gastric cancer. The capability of ASP5354 was evaluated using an MKN-45 human gastric cancer xenograft mouse model. A single dose of ASP5354 was intravenously administered to the mice at a concentration of 120 nmol (0.37 mg)/kg body weight. In vivo NIRF images of the mouse backs were obtained using an NIRF camera system. Moreover, the cancer tissues were dissected, and the NIRF intensity in the tissue sections was measured using the NIRF camera system. ASP5354 uptake in MKN-45 cells was assessed in vitro using the NIRF microscope. The NIRF signal of ASP5354 was selectively detected in gastric cancer tissues immediately after the intravenous administration of ASP5354. The cancer tissues emitted stronger NIRF signals than adjacent normal tissues. The difference in the NIRF intensity between the normal and cancer tissues was clearly observed at the boundary between them in the macrolevel NIRF images. Cancer tissues can be distinguished from normal tissues based on the measurement of the NIRF of ASP5354, using an NIRF camera system. ASP5354 is a promising agent for NIRF imaging of gastric cancer tissues.
Collapse
Affiliation(s)
- Katsunori Teranishi
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
6
|
Nanomaterials for fluorescent assay of bilirubin. Anal Biochem 2023; 666:115078. [PMID: 36754137 DOI: 10.1016/j.ab.2023.115078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
The accumulation of bilirubin in blood is associated with many diseases. Sensitive and accurate detection of bilirubin is of great significance for personal health care. The rapid development of fluorescent nanomaterials promotes rapid development in the bilirubin assay. In this review, traditional methods for detection of bilirubin are briefly presented to compare with fluorescent nanosensors. Subsequently, the recent progress of different types of fluorescent nanomaterials for determination of bilirubin is summarized. Further, the performance of fluorescent nanosensors and conventional techniques for sensing bilirubin are compared. To this end, the challenges and prospects concerning the topics are discussed. This review will provide some introductory knowledge for researchers to understand the status and importance of fluorescent nanosensors for sensing bilirubin.
Collapse
|
7
|
Practical Guidance for Developing Small-Molecule Optical Probes for In Vivo Imaging. Mol Imaging Biol 2023; 25:240-264. [PMID: 36745354 DOI: 10.1007/s11307-023-01800-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 02/07/2023]
Abstract
The WMIS Education Committee (2019-2022) reached a consensus that white papers on molecular imaging could be beneficial for practitioners of molecular imaging at their early career stages and other scientists who are interested in molecular imaging. With this consensus, the committee plans to publish a series of white papers on topics related to the daily practice of molecular imaging. In this white paper, we aim to provide practical guidance that could be helpful for optical molecular imaging, particularly for small molecule probe development and validation in vitro and in vivo. The focus of this paper is preclinical animal studies with small-molecule optical probes. Near-infrared fluorescence imaging, bioluminescence imaging, chemiluminescence imaging, image-guided surgery, and Cerenkov luminescence imaging are discussed in this white paper.
Collapse
|
8
|
Janrao C, Khopade S, Bavaskar A, Gomte SS, Agnihotri TG, Jain A. Recent advances of polymer based nanosystems in cancer management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-62. [PMID: 36542375 DOI: 10.1080/09205063.2022.2161780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is still one of the leading causes of death worldwide. Nanotechnology, particularly nanoparticle-based platforms, is at the leading edge of current cancer management research. Polymer-based nanosystems have piqued the interest of researchers owing to their many benefits over other conventional drug delivery systems. Polymers derived from both natural and synthetic sources have various biomedical applications due to unique qualities like porosity, mechanical strength, biocompatibility, and biodegradability. Polymers such as poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and polyethylene glycol (PEG) have been approved by the USFDA and are being researched for drug delivery applications. They have been reported to be potential carriers for drug loading and are used in theranostic applications. In this review, we have primarily focused on the aforementioned polymers and their conjugates. In addition, the therapeutic and diagnostic implications of polymer-based nanosystems have been briefly reviewed. Furthermore, the safety of the developed polymeric formulations is crucial, and we have discussed their biocompatibility in detail. This article also discusses recent developments in block co-polymer-based nanosystems for cancer treatment. The review ends with the challenges of clinical translation of polymer-based nanosystems in drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Chetan Janrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shivani Khopade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Bavaskar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
9
|
Perumal V, Ravula AR, Shao N, Chandra N. Effect of minocycline and its nano-formulation on central auditory system in blast-induced hearing loss rat model. J Otol 2023; 18:38-48. [PMID: 36820161 PMCID: PMC9937842 DOI: 10.1016/j.joto.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 01/25/2023] Open
Abstract
Blast injuries are common among the military service members and veterans. One of the devastating effects of blast wave induced TBI is either temporary or permanent hearing loss. Treating hearing loss using minocycline is restricted by optimal drug concentration, route of administration, and its half-life. Therefore, therapeutic approach using novel therapeutic delivery method is in great need. Among the different delivery methods, nanotechnology-based drug delivery is desirable, which can achieve longer systemic circulation, pass through some biological barriers and specifically targets desired sites. The current study aimed to examine therapeutic effect of minocycline and its nanoparticle formulation in moderate blast induced hearing loss rat model through central auditory system. The I.v. administered nanoparticle at reduced dose and frequency than regularly administered toxic dose. After moderate blast exposure, rats had hearing impairment as determined by ABR at 7- and 30-days post exposure. In chronic condition, free minocycline also showed the significant reduction in ABR threshold. In central auditory system, it is found in this study that minocycline nanoparticles ameliorate excitation in inferior colliculus; and astrocytes and microglia activation after the blast exposure is reduced by minocycline nanoparticles administration. The study demonstrated that in moderate blast induced hearing loss, minocycline and its nanoparticle formulation exhibited the optimal therapeutic effect on the recovery of the ABR impairment and a protective effect through central auditory system. In conclusion, targeted and non-targeted nanoparticle formulation have therapeutic effect on blast induced hearing loss.
Collapse
Key Words
- 5-HsT, 5-hydroxytryptamine
- ABR, auditory brainstem response
- AC, auditory cortex
- Blast injury and targeted drug delivery
- CAS, central auditory system
- DAI, (diffuse axonal injury)
- GABA, gamma-aminobutyric acid
- HL, (Hearing loss)
- Hearing loss
- Minocycline
- NMDAR1, N-methyl-D-aspartate receptor 1
- Nanoparticle
- PAS, peripheral auditory system
- bTBI, blast traumatic brain injury
Collapse
|
10
|
Zhan W, Zhao B, Cui X, Liu J, Xiao X, Xu Y, She S, Hou C, Guo H. PDA modified NIR-II NaEr 0.8Yb 0.2F 4nanoparticles with high photothermal effect. NANOTECHNOLOGY 2022; 33:385102. [PMID: 35609524 DOI: 10.1088/1361-6528/ac72b3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Polydopamine (PDA)-modified NaEr0.8Yb0.2 F4nanoparticles were synthesized, with strong NIR-II emission, quantum yield of 29.63%, and excellent photothermal performance. Crystal phases and microstructures are characterized. Optical properties such as absorption, NIR-II emission, and light stability are studied, and the luminescence mechanism is discussed in detail. Key factors in NIR-II imaging were evaluated in fresh pork tissue, including penetration depth, spatial resolution, and signal-to-noise ratio (SNR). A high penetration depth of 5 mm and a high spatial resolution of 1 mm were detected. Mice are imaged in vivo afterintravenousinjection. Due to the accumulation of nanoparticles in the liver, high image quality with an SNR of 5.2 was detected in the abdomen of KM mice with hair. The photothermal conversion effect of PDA-modified NPs was twice that of the reported material. These NIR-II nanoparticles have superior optical properties, high photothermal efficiency and low cytotoxicity, and are potential fluorescent probes for further disease diagnosis and treatment.
Collapse
Affiliation(s)
- Weifan Zhan
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bin Zhao
- Department of Sports Medicine, Fourth Medical Center, General Hospital of the Chinese People's Liberation Army, Chinese, Beijing, People's Republic of China
| | - Xiaoxia Cui
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Junsong Liu
- Xi'an Department of Otolaryngology, Head and Neck Surgery, First Affiliated Hospital of Jiaotong University, Xi'an Shanxi, People's Republic of China
| | - Xusheng Xiao
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yantao Xu
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shengfei She
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chaoqi Hou
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Haitao Guo
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
11
|
Guido C, Baldari C, Maiorano G, Mastronuzzi A, Carai A, Quintarelli C, De Angelis B, Cortese B, Gigli G, Palamà IE. Nanoparticles for Diagnosis and Target Therapy in Pediatric Brain Cancers. Diagnostics (Basel) 2022; 12:diagnostics12010173. [PMID: 35054340 PMCID: PMC8774904 DOI: 10.3390/diagnostics12010173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Pediatric brain tumors represent the most common types of childhood cancer and novel diagnostic and therapeutic solutions are urgently needed. The gold standard treatment option for brain cancers in children, as in adults, is tumor resection followed by radio- and chemotherapy, but with discouraging therapeutic results. In particular, the last two treatments are often associated to significant neurotoxicity in the developing brain of a child, with resulting disabilities such as cognitive problems, neuroendocrine, and neurosensory dysfunctions/deficits. Nanoparticles have been increasingly and thoroughly investigated as they show great promises as diagnostic tools and vectors for gene/drug therapy for pediatric brain cancer due to their ability to cross the blood–brain barrier. In this review we will discuss the developments of nanoparticle-based strategies as novel precision nanomedicine tools for diagnosis and therapy in pediatric brain cancers, with a particular focus on targeting strategies to overcome the main physiological obstacles that are represented by blood–brain barrier.
Collapse
Affiliation(s)
- Clara Guido
- Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy; (C.G.); (C.B.); (G.G.)
| | - Clara Baldari
- Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy; (C.G.); (C.B.); (G.G.)
| | - Gabriele Maiorano
- Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy;
| | - Angela Mastronuzzi
- Neuro-Oncology Unit, Department of Onco-Haematology, Cell Therapy, Gene Therapy and Haemopoietic Transplant, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Concetta Quintarelli
- Department Onco-Haematology, and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.Q.); (B.D.A.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Biagio De Angelis
- Department Onco-Haematology, and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.Q.); (B.D.A.)
| | - Barbara Cortese
- Nanotechnology Institute, CNR-NANOTEC, c/o La Sapienza University, Piazzale A. Moro, 00165 Rome, Italy;
| | - Giuseppe Gigli
- Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy; (C.G.); (C.B.); (G.G.)
- Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy;
| | - Ilaria Elena Palamà
- Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy;
- Correspondence:
| |
Collapse
|
12
|
Canetta E. Current and Future Advancements of Raman Spectroscopy Techniques in Cancer Nanomedicine. Int J Mol Sci 2021; 22:13141. [PMID: 34884946 PMCID: PMC8658204 DOI: 10.3390/ijms222313141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
Raman scattering is one of the most used spectroscopy and imaging techniques in cancer nanomedicine due to its high spatial resolution, high chemical specificity, and multiplexity modalities. The flexibility of Raman techniques has led, in the past few years, to the rapid development of Raman spectroscopy and imaging for nanodiagnostics, nanotherapy, and nanotheranostics. This review focuses on the applications of spontaneous Raman spectroscopy and bioimaging to cancer nanotheranostics and their coupling to a variety of diagnostic/therapy methods to create nanoparticle-free theranostic systems for cancer diagnostics and therapy. Recent implementations of confocal Raman spectroscopy that led to the development of platforms for monitoring the therapeutic effects of anticancer drugs in vitro and in vivo are also reviewed. Another Raman technique that is largely employed in cancer nanomedicine, due to its ability to enhance the Raman signal, is surface-enhanced Raman spectroscopy (SERS). This review also explores the applications of the different types of SERS, such as SERRS and SORS, to cancer diagnosis through SERS nanoprobes and the detection of small-size biomarkers, such as exosomes. SERS cancer immunotherapy and immuno-SERS (iSERS) microscopy are reviewed.
Collapse
Affiliation(s)
- Elisabetta Canetta
- Faculty of Sport, Applied Health and Performance Science, St Mary's University, Twickenham, London TW1 4SX, UK
| |
Collapse
|
13
|
Aung YY, Wibrianto A, Sianturi JS, Ulfa DK, Sakti SCW, Irzaman I, Yuliarto B, Chang JY, Kwee Y, Fahmi MZ. Comparison Direct Synthesis of Hyaluronic Acid-Based Carbon Nanodots as Dual Active Targeting and Imaging of HeLa Cancer Cells. ACS OMEGA 2021; 6:13300-13309. [PMID: 34056478 PMCID: PMC8158841 DOI: 10.1021/acsomega.1c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The present study explores the potential of carbon nanodots (CDs) synthesized from hyaluronic acid using microwave-assisted and furnace-assisted methods as bioimaging agents for cancer cells. The investigation on the effect of microwave-assisted and furnace-assisted times (2 min and 2 h) on determining CD character is dominantly discussed. Various CDs, such as HA-P1 and HA-P2 were, respectively, synthesized through the furnace-assisted method at 270 °C for 2 min and 2 h, whereas HA-M1 and HA-M2 were synthesized with the microwave-assisted method for 2 min and 2 h, respectively. Overall, various CDs were produced with an average diameter, with the maximum absorption of HA-P1, HA-P2, HA-M1, and HA-M2 at 234, 238, 221, and 217 nm, respectively. The photoluminescence spectra of these CDs showed particular emissions at 320 nm and excitation wavelengths from 340 to 400 nm. Several characterizations such as X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy reveal the CD properties such as amorphous structures, existence of D bands and G bands, and hydrophilic property supported with hydroxyl and carboxyl groups. The quantum yields of HA-M1, HA-M2, HA-P1, and HA-P2 were 12, 7, 9, and 23%, respectively. The cytotoxicity and in vitro activity were verified by a cell counting kit-8 assay and confocal laser scanning microscopy, which show a low toxicity with the percentage of living cells above 80%.
Collapse
Affiliation(s)
- Yu-Yu Aung
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Aswandi Wibrianto
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Jefry S. Sianturi
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Desita K. Ulfa
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Satya. C. W. Sakti
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
- Supra
Modification Nano-Micro Engineering Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Irzaman Irzaman
- Department
of Physics, IPB University, Bogor 16680, Indonesia
| | - Brian Yuliarto
- Department
of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40116, Indonesia
| | - Jia-yaw Chang
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei, Taiwan 10607, Republic of China
| | - Yaung Kwee
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mochamad Z. Fahmi
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
- Supra
Modification Nano-Micro Engineering Group, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
14
|
Bou S, Klymchenko AS, Collot M. Fluorescent labeling of biocompatible block copolymers: synthetic strategies and applications in bioimaging. MATERIALS ADVANCES 2021; 2:3213-3233. [PMID: 34124681 PMCID: PMC8142673 DOI: 10.1039/d1ma00110h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/04/2021] [Indexed: 05/27/2023]
Abstract
Among biocompatible materials, block copolymers (BCPs) possess several advantages due to the control of their chemistry and the possibility of combining various blocks with defined properties. Consequently, BCPs drew considerable attention as biocompatible materials in the fields of drug delivery, medicine and bioimaging. Fluorescent labeling of BCPs quickly appeared to be a method of choice to image and track these materials in order to better understand the nature of their interactions with biological media. However, incorporating fluorescent markers (FM) into BCPs can appear tricky; we thus intend to help chemists in this endeavor by reviewing recent advances made in the last 10 years. With the choice of the FM being of prior importance, we first reviewed their photophysical properties and functionalities for optimal labeling and imaging. In the second part the different chemical approaches that have been used in the literature to fluorescently label BCPs have been reviewed. We also report and discuss relevant applications of fluorescent BCPs in bioimaging.
Collapse
Affiliation(s)
- Sophie Bou
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg 74 route du Rhin 67401 Illkirch-Graffenstaden France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg 74 route du Rhin 67401 Illkirch-Graffenstaden France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg 74 route du Rhin 67401 Illkirch-Graffenstaden France
| |
Collapse
|
15
|
Li H, Wang X, Miao Y, Liu Q, Li K, Lin J, Xie M, Qiu L. Development of biotin-tagged near-infrared fluorescence probes for tumor-specific imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 217:112172. [PMID: 33713894 DOI: 10.1016/j.jphotobiol.2021.112172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/12/2021] [Accepted: 02/28/2021] [Indexed: 01/16/2023]
Abstract
Near-infrared (NIR) probes are applicable for tumor imaging due to deep tissue penetration and low background signal. And cyanine dyes with long emission wavelength are excellent fluorophores to develop NIR probes. However, the aggregation of cyanine dyes in aqueous solution reduces the utilization of light. To solve this problem, polyethylene glycol (PEG) was introduced into the probes to reduce their aggregation. In our work, two new NIR probes G1 and G2 were designed and prepared by conjugating the cyanine dye G0 with Biotin-PEG5-Azide. The conjugated biotin could enhance the target specificity of probes. And the photophysical and photochemical parameters demonstrated that G1 and G2 had a reduced aggregation tendency. In vitro fluorescence imaging proved that these two probes could be specifically taken up by HeLa cells, and in vivo imaging demonstrated that these two probes could specifically target tumors with large tumor-to-muscle (T/M) ratios. All these results indicated that G1 and G2 are promising NIR fluorescent contrast agents for tumor-specific imaging.
Collapse
Affiliation(s)
- Hang Li
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Xiuting Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Yinxing Miao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Minhao Xie
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China.
| | - Ling Qiu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China.
| |
Collapse
|
16
|
Improved photothermal therapy of brain cancer cells and photogeneration of reactive oxygen species by biotin conjugated gold photoactive nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 215:112102. [PMID: 33388605 DOI: 10.1016/j.jphotobiol.2020.112102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/15/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
Herein, we report on the design and development of functionalized acrylic polymeric nanoparticles with Spiropyrans (SPs) and imidazole moieties via superficial polymerizations. Then, Au3+ ions were immobilized and reduced on their surface to obtain photoresponsive gold-decorated polymer nanoparticles(Au-NPs). The synthesized Au-NPs were surface adapted with biotin as specific targeting tumor penetration cells and enhance the intercellular uptake through the endocytosis. FT-IR (Fourier-transform Infrared Spectroscopy), UV-Vis (Ultra Violet-Visible Spectrophotometer), EDS (Energy Dispersive X-Ray Spectroscopy), SEM (Scanning Electron Microscope) and HR-TEM (High-resolution transmission electron microscopy) descriptions were engaged to illustrate their spectral analysis and morphological examinations of Bt@Au-NPs. Fluorescence microscopy images of cellular uptake descriptions and ICP-MS (Inductively coupled plasma mass spectrometry) investigation established the cell lines labeling ability and enhanced targetting efficacy of biotin-conjugated Au-NPs (Bt@Au-NPs) toward C6 glioma cells (brain cancer cells) with 72.5% cellular uptake relative to 30.2% for non-conjugated lone. These were further established through intracellular ROS examinations and in vitro cytotoxicity investigation on the C6 glioma cell line. The solid surface plasmon absorptions of the Au-NPs and Bt@Au-NPs providing raised photothermal therapy under UV irradiation. The synthesized multifunctional Bt@Au-NPs with an inclusive combination of potential resources presented encouraging nanoprobe with targeting capability, improved photodynamic and photothermal cancer therapy.
Collapse
|
17
|
Xiao S, Chen L. The emerging landscape of nanotheranostic-based diagnosis and therapy for osteoarthritis. J Control Release 2020; 328:817-833. [PMID: 33176171 DOI: 10.1016/j.jconrel.2020.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a common degenerative disease involving numerous joint tissues and cells, with a growing rate in prevalence that ultimately results in a negative social impact. Early diagnosis, OA progression monitoring and effective treatment are of significant importance in halting OA process. However, traditional imaging techniques lack sensitivity and specificity, which lead to a delay in timely clinical intervention. Additionally, current treatments only slow the progression of OA but have not meet the largely medical need for disease-modifying therapy. In order to overcome the above-mentioned problems and improve clinical efficacy, nanotheranostics has been proposed on OA remedy, which has confirmed success in animal models. In this review, different imaging targets-based nanoprobe for early and timely OA diagnosis is first discussed. Second, therapeutic strategies delivered by nanosystem are summarized as much as possible. Their advantages and the potential for clinical translation are detailed discussed. Third, nanomedicine simultaneously combined with the imaging for OA treatment is introduced. Nanotheranostics dynamically tracked the OA treatment outcomes to timely and individually adjust therapy. Finally, future prospects and challenges of nanotechnology-based OA diagnosis, imaging and treatment are concluded and predicted. It is believed that nanoprobe and nanomedicine will become prospective in OA therapeutic revolution.
Collapse
Affiliation(s)
- Shuyi Xiao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Liang Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
18
|
Usman A. Nanoparticle enhanced optical biosensing technologies for Prostate Specific Antigen biomarker detection. IEEE Rev Biomed Eng 2020; 15:122-137. [PMID: 33136544 DOI: 10.1109/rbme.2020.3035273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostate Cancer (PCa) is one of the deadliest forms of Cancer among men. Early screening process for PCa is primarily conducted with the help of a FDA approved biomarker known as Prostate Specific Antigen (PSA). The PSA-based screening is challenged with the inability to differentiate between the cancerous PSA and Benign Prostatic Hyperplasia (BPH), resulting in high rates of false-positives. Optical techniques such as optical absorbance, scattering, surface plasmon resonance (SPR), and fluorescence have been extensively employed for Cancer diagnostic applications. One of the most important diagnostic applications involves utilization of nanoparticles (NPs) for highly specific, sensitive, rapid, multiplexed, and high performance Cancer detection and quantification. The incorporation of NPs with these optical biosensing techniques allow realization of low cost, point-of-care, highly sensitive, and specific early cancer detection technologies, especially for PCa. In this work, the current state-of-the-art, challenges, and efforts made by the researchers for realization of low cost, point-of-care (POC), highly sensitive, and specific NP enhanced optical biosensing technologies for PCa detection using PSA biomarker are discussed and analyzed.
Collapse
|
19
|
Han W, Liu X, Wang L, Zhou X. Engineering of lipid microbubbles-coated copper and selenium nanoparticles: Ultrasound-stimulated radiation of anticancer activity ian human ovarian cancer cells. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Fluksman A, Steinberg E, Orehov N, Shai E, Lahiani A, Katzhendler J, Marcinkiewicz C, Lazarovici P, Benny O. Integrin α 2β 1-Targeted Self-Assembled Nanocarriers for Tumor Bioimaging. ACS APPLIED BIO MATERIALS 2020; 3:6059-6070. [DOI: 10.1021/acsabm.0c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arnon Fluksman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Eliana Steinberg
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Natalie Orehov
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Ela Shai
- Department of Hematology, Coagulation Unit, Hadassah−Hebrew University Medical Center, Jerusalem 91121, Israel
| | - Adi Lahiani
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Jehoshua Katzhendler
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Cezary Marcinkiewicz
- Department of Biology, Temple University College of Science and Technology, Philadelphia, Pennsylvania 19122, United States
| | - Philip Lazarovici
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Ofra Benny
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| |
Collapse
|
21
|
Zhang Q, Wang L, Qian Q, Wang J, Cheng W, Han K. Target Area Extraction Algorithm for the In Vivo Fluorescence Imaging of Small Animals. ACS OMEGA 2020; 5:20100-20106. [PMID: 32832764 PMCID: PMC7439258 DOI: 10.1021/acsomega.0c01733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Bio-optical imaging can noninvasively describe specific biochemical reaction events in small animals using endogenous or exogenous imaging reagents to label cells, proteins, or DNA. The fluorescence optical bio-imaging system excites the fluorescent group to a high energy state by excitation light and then generates emission light. However, many substances in the organism will also emit fluorescence after being excited by the excitation light, and the nonspecific fluorescence generated will affect the detection sensitivity. This paper designs and develops a set of high-level biosafety in vivo fluorescence imaging system for small animals suitable for virology research and proposes a target area extraction algorithm for fluorescence images. The fluorescence image target extraction algorithm first maps the nonlinear separation data in the low-dimensional space to the high-dimensional space. Then, based on the analysis of the characteristics of the fluorescent region, a method for discriminating the target fluorescent region based on the two-step entropy function is proposed, and the real target fluorescent region is obtained according to the set connected region. Based on the experiment of collecting and analyzing the in vivo fluorescent images of mice, it is verified that the proposed algorithm can automatically extract the target fluorescent region better than the classical linear model. It shows that the proposed algorithm is less affected by background fluorescence, and the estimated separated spectrum based on this method is closer to the real target spectrum.
Collapse
Affiliation(s)
- Qiang Zhang
- Academy
for Engineering & Technology, Fudan
University, Shanghai 200433, P. R. China
- CAS
Key Laboratory of Bio-Medical
Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Lei Wang
- CAS
Key Laboratory of Bio-Medical
Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Qing Qian
- CAS
Key Laboratory of Bio-Medical
Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Jishuai Wang
- CAS
Key Laboratory of Bio-Medical
Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Wenbo Cheng
- CAS
Key Laboratory of Bio-Medical
Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Kun Han
- CAS
Key Laboratory of Bio-Medical
Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| |
Collapse
|
22
|
Cekanova M, Pandey S, Olin S, Ryan P, Stokes JE, Hecht S, Martin-Jimenez T, Uddin MJ, Marnett LJ. Pharmacokinetic characterization of fluorocoxib D, a cyclooxygenase-2-targeted optical imaging agent for detection of cancer. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200044R. [PMID: 32860356 PMCID: PMC7456637 DOI: 10.1117/1.jbo.25.8.086005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Fluorocoxib D, N-[(rhodamin-X-yl)but-4-yl]-2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetamide, is a water-soluble optical imaging agent to detect cyclooxygenase-2 (COX-2)-expressing cancer cells. AIM We evaluated the pharmacokinetic and safety properties of fluorocoxib D and its ability to detect cancer cells in vitro and in vivo. APPROACH Pharmacokinetic parameters of fluorocoxib D were assessed from plasma collected at designated time points after intravenous administration of 1 mg / kg fluorocoxib D in six research dogs using a high-performance liquid chromatography analysis. Safety of fluorocoxib D was assessed for 3 days after its administration using physical assessment, complete blood count, serum chemistry profile, and complete urinalysis in six research dogs. The ability of fluorocoxib D to detect COX-2-expressing cancer cells was performed using human 5637 cells in vitro and during rhinoscopy evaluation of specific fluorocoxib D uptake by canine cancer cells in vivo. RESULTS No evidence of toxicity and no clinically relevant adverse events were noted in dogs. Peak concentration of fluorocoxib D (114.8 ± 50.5 ng / ml) was detected in plasma collected at 0.5 h after its administration. Pretreatment of celecoxib blocked specific uptake of fluorocoxib D in COX-2-expressing human 5637 cancer cells. Fluorocoxib D uptake was detected in histology-confirmed COX-2-expressing head and neck cancer during rhinoscopy in a client-owned dog in vivo. Specific tumor-to-normal tissue ratio of detected fluorocoxib D signal was in an average of 3.7 ± 0.9 using Image J analysis. CONCLUSIONS Our results suggest that fluorocoxib D is a safe optical imaging agent used for detection of COX-2-expressing cancers and their margins during image-guided minimally invasive biopsy and surgical procedures.
Collapse
Affiliation(s)
- Maria Cekanova
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
- The University of Tennessee, UT-ORNL Graduate School of Genome, Science and Technology, Knoxville, Tennessee, United States
| | - Sony Pandey
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
| | - Shelly Olin
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
| | - Phillip Ryan
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
| | - Jennifer E. Stokes
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
| | - Silke Hecht
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
| | - Tomas Martin-Jimenez
- The University of Tennessee, College of Veterinary Medicine, Department of Biomedical and Diagnostic Sciences, Knoxville, Tennessee, United States
| | - Md. Jashim Uddin
- Vanderbilt University School of Medicine, Vanderbilt Institute of Chemical Biology, Center for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Nashville, Tennessee, United States
| | - Lawrence J. Marnett
- Vanderbilt University School of Medicine, Vanderbilt Institute of Chemical Biology, Center for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Nashville, Tennessee, United States
| |
Collapse
|
23
|
Misra R, Kandoi S, Varadaraj S, Vijayalakshmi S, Nanda A, Verma RS. Nanotheranostics: A tactic for cancer stem cells prognosis and management. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|