1
|
Purohit SS, Biswal A, Mohapatra P, Khamari O, Dash K, Mishra M, Biswal SB, Nayak S, Swain SK. Lysozyme/N-GQD loaded carboxymethyl cellulose hydrogels for healing of excision wounds in Drosophila and Sprague Dawley rats. Int J Biol Macromol 2025; 306:141638. [PMID: 40037441 DOI: 10.1016/j.ijbiomac.2025.141638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Delayed healing and fibrosis at the wound site present significant challenges in the wound care industry, often leading to complications such as infections, chronic wounds, and impaired tissue regeneration. Therefore, there is a critical need for advanced wound dressing materials that promote faster healing, prevent bacterial infections, and support effective tissue repair. This study aims to develop a Lysozyme (Lys)-based wound dressing with enhanced wound closure rates by incorporating nitrogen-doped graphene quantum dots (N-GQDs) as a functionalized nanofiller to strengthen its antibacterial properties. The wound dressing, formulated with a carboxymethyl cellulose (CMC) crosslinked polyvinylpyrrolidone (PVP) matrix, creates a porous structure that enhances swelling capacity and water vapor transmission rates (WVTR), while cytotoxicity studies confirm its biocompatibility, showing 100 % cell viability in HCT 116 and MCF7 cell lines. The in vivo wound healing performance of the designed nanocomposite hydrogel reflects complete wound closure in 5 h for Drosophila Melanogaster, aided by the shorter life span and faster metabolic processes in Drosophila, and 14 days in Sprague Dawley rat models. These results qualify the material as a promising candidate for wound dressing applications, bridging the gap between material science and medical science for effective wound management.
Collapse
Affiliation(s)
- Shuvendu Shuvankar Purohit
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Anuradha Biswal
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Priyaranjan Mohapatra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Ojaswini Khamari
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Kalpanarani Dash
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Sashi Bhusan Biswal
- Department of Pharmacology, Veer Surendra Sai Institute of Medical Science and Research, Burla, Sambalpur 768018, Odisha, India
| | - Sunanda Nayak
- Department of Phathology, Veer Surendra Sai Institute of Medical Science and Research, Burla, Sambalpur 768018, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India.
| |
Collapse
|
2
|
Javanmard Z, Pourhajibagher M, Bahador A. New strategies to enhance antimicrobial photo-sonodynamic therapy based on nanosensitizers against bacterial infections. Folia Microbiol (Praha) 2025; 70:55-70. [PMID: 39367131 DOI: 10.1007/s12223-024-01206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The rapid evolution and spread of multidrug resistance among bacterial pathogens has significantly outpaced the development of new antibiotics, underscoring the urgent need for alternative therapies. Antimicrobial photodynamic therapy and antimicrobial sonodynamic therapy have emerged as promising treatments. Antimicrobial photodynamic therapy relies on the interaction between light and a photosensitizer to produce reactive oxygen species, which are highly cytotoxic to microorganisms, leading to their destruction without fostering resistance. Antimicrobial sonodynamic therapy, a novel variation, substitutes ultrasound for light to activate the sonosensitizers, expanding the therapeutic reach. To increase the efficiency of antimicrobial photodynamic therapy and antimicrobial sonodynamic therapy, the combination of these two methods, known as antimicrobial photo-sonodynamic therapy, is currently being explored and considered a promising approach. Recent advances, particularly in the application of nanomaterials, have further enhanced the efficacy of these therapies. Nanosensitizers, due to their improved reactive oxygen species generation and targeted delivery, offer significant advantages in overcoming the limitations of conventional sensitizers. These breakthroughs provide new avenues for treating bacterial infections, especially multidrug-resistant strains and biofilm-associated infections. Continued research, including comprehensive clinical studies, is crucial to optimizing nanomaterial-based antimicrobial photo-sonodynamic therapy for clinical use, ensuring their effectiveness in real-world applications.
Collapse
Affiliation(s)
- Zahra Javanmard
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
3
|
Mousavi SM, Kalashgrani MY, Javanmardi N, Riazi M, Akmal MH, Rahmanian V, Gholami A, Chiang WH. Recent breakthroughs in graphene quantum dot-enhanced sonodynamic and photodynamic therapy. J Mater Chem B 2024; 12:7041-7062. [PMID: 38946657 DOI: 10.1039/d4tb00767k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Water-soluble graphene quantum dots (GQDs) have recently exhibited considerable potential for diverse biomedical applications owing to their exceptional optical and chemical properties. However, the pronounced heterogeneity in the composition, size, and morphology of GQDs poses challenges for a comprehensive understanding of the intricate correlation between their structural attributes and functional properties. This variability also introduces complexities in scaling the production processes and addressing safety considerations. Light and sound have firmly established their role in clinical applications as pivotal energy sources for minimally invasive therapeutic interventions. Given the limited penetration depth of light, photodynamic therapy (PDT) predominantly targets superficial conditions such as dermatological disorders, head and neck malignancies, ocular ailments, and early-stage esophageal cancer. Conversely, ultrasound-based sonodynamic therapy (SDT) capitalizes on its superior ability to propagate and focus ultrasound within biological tissues, enabling a diverse range of therapeutic applications, including the management of gliomas, breast cancer, hematological tumors, and modulation of the blood-brain barrier (BBB). Considering the advancements in theranostic and precision therapies, reevaluating these conventional energy sources and their associated sensitizers is imperative. This review introduces three prevalent treatment modalities that harness light and sound stimuli: PDT, SDT, and a synergistic approach that integrates PDT and SDT. This study delineated the therapeutic dynamics and contemporary designs of sensitizers tailored to these modalities. By exploring the historical context of the field and elucidating the latest design strategies, this review underscores the pivotal role of GQDs in propelling the evolution of PDT and SDT. This aspires to stimulate researchers to develop "multimodal" therapies integrating both light and sound stimuli.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | | | - Negar Javanmardi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mohsen Riazi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Muhammad Hussnain Akmal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Vahid Rahmanian
- Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Drummondville, Quebec, J2C 0R5, Canada.
- Centre national intégré du manufacturier intelligent (CNIMI), Université du Québec à Trois-Rivières, Drummondville, QC, Canada
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan
- Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan
| |
Collapse
|
4
|
Zarouki MA, Tamegart L, Hejji L, El Hadj Ali YA, Ayadi AE, Villarejo LP, Mennane Z, Souhail B, Azzouz A. Graphene quantum dots based on cannabis seeds for efficient wound healing in a mouse incisional wound model: Link with stress and neurobehavioral effect. Int J Pharm 2024; 649:123658. [PMID: 38042382 DOI: 10.1016/j.ijpharm.2023.123658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Graphene quantum dots (GQDs) are promising biomaterials with potential applicability in several areas due to their many useful and unique features. Among different applications, GQDs are photodynamic therapy agents that generate single oxygen and improve antimicrobial activity. In the present study, and for the first time, GQD were isolated from the Cannabis sativa L. seeds to generate C-GQDs as a new biomaterial for antibacterial and wound healing applications. Detailed characterization was performed using FTIR, UV-vis, Raman spectra, photoluminescence, TEM examination, HRTEM, ζ-potential, and XRD. Our results revealed in vitro and in vivo antibacterial activity of C-GQDs against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with reduced minimal inhibitory concentration of 236 µg/mL for both strains. In addition, the C-GQDs confirmed the in vitro analysis and exhibited anti-inflammatory activity by reducing the level of neutrophils in blood and skin tissue. C-GQDs act by accelerating re-epithelization and granulation tissue formation. In addition, C-GQDs restored neurobehavioral alteration induced by incisional wounds by reducing oxidative stress, decreasing cortisol levels, increasing anxiolytic-like effect, and increasing vertical locomotor activity. The wound-healing effects of C-GQDs support its role as a potential therapeutic agent for diverse skin injuries.
Collapse
Affiliation(s)
- Mohamed Amine Zarouki
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaâdi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco
| | - Lahcen Tamegart
- Department of Biology, Faculty of Science, University of Abdelmalek Essaâdi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaâdi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco; Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur s/n, 23700 Linares (Jaén), Spain
| | - Youssef Aoulad El Hadj Ali
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaâdi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco
| | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Luis Pérez Villarejo
- Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur s/n, 23700 Linares (Jaén), Spain
| | - Zakaria Mennane
- Department of Biology, Faculty of Science, University of Abdelmalek Essaâdi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco
| | - Badredine Souhail
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaâdi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco
| | - Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaâdi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco.
| |
Collapse
|
5
|
Milenković M, Ciasca G, Bonasera A, Scopelliti M, Marković O, Verbić T, Marković BT, Jovanović S. Blue-light-driven photoactivity of L-cysteine-modified graphene quantum dots and their antibacterial effects. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 250:112818. [PMID: 38041931 DOI: 10.1016/j.jphotobiol.2023.112818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
The widespread abuse of traditional antibiotics has led to a global rise in antibiotic-resistant bacteria, which give in return unprecedented health risks. Therefore, there is a large and urgent need for the development of new, smart antibacterial agents able to efficiently kill or inhibit bacterial growth. In this study, we investigated the antibacterial activity of S, N-doped Graphene Quantum Dots (GQDs) as a light-triggered antibacterial agent. Gamma irradiation was employed as a tool to achieve one-step modification of GQDs in the presence of L-cysteine amino acid as a source of heteroatoms. X-ray Photoelectron Spectroscopy (XPS), nuclear magnetic resonance (NMR), and zeta potential measurements provided the necessary data to clarify the structure of modified dots and verify the introduction of both S- and N-atoms in GQDs structure, but also severe changes in the aromatic, sp2 domains. Namely, γ-irradiation caused a bonding of S atoms in 1.14 at.% mainly as thiol groups, and N in 1.81 at.% as amino groups, but sp2 contribution in GQD structure was lowered from 63.00 to 4.86 at.%, as measured in dots irradiated at a dose of 200 kGy. Fluorescence quenching measurements showed that L-cysteine-modified dots are able to bind to human serum albumin. The antibacterial activity of GQDs combined with 1 and 6 h of blue light (470 nm) irradiation was tested against 8 bacterial strains. GQD-cys-25 sample provided the best results, with minimum inhibitory concentration (MIC) as low as 125 μg/mL against S. aureus, E. faecalis, and E. coli after only 1 h of blue light exposure.
Collapse
Affiliation(s)
- Mila Milenković
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia.
| | - Gabriele Ciasca
- Istituti Biologici - Istituto di Fisica, Università Cattolica del Sacro Cuore, largo Francesco Vito 1, 00168 Roma, Italy
| | - Aurelio Bonasera
- Department of Physics and Chemistry, Emilio Segrè, University of Palermo, viale delle Scienze 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Palermo Research Unit, viale delle Scienze 17, 90128 Palermo, Italy
| | - Michelangelo Scopelliti
- Department of Physics and Chemistry, Emilio Segrè, University of Palermo, viale delle Scienze 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Palermo Research Unit, viale delle Scienze 17, 90128 Palermo, Italy; Laboratorio Superfici, Film Sottili e Dispositivi, ATeN Center, University of Palermo, viale delle Scienze 18/A, 90128 Palermo, Italy
| | - Olivera Marković
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Tatjana Verbić
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Biljana Todorović Marković
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Svetlana Jovanović
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Kauser A, Parisini E, Suarato G, Castagna R. Light-Based Anti-Biofilm and Antibacterial Strategies. Pharmaceutics 2023; 15:2106. [PMID: 37631320 PMCID: PMC10457815 DOI: 10.3390/pharmaceutics15082106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilm formation and antimicrobial resistance pose significant challenges not only in clinical settings (i.e., implant-associated infections, endocarditis, and urinary tract infections) but also in industrial settings and in the environment, where the spreading of antibiotic-resistant bacteria is on the rise. Indeed, developing effective strategies to prevent biofilm formation and treat infections will be one of the major global challenges in the next few years. As traditional pharmacological treatments are becoming inadequate to curb this problem, a constant commitment to the exploration of novel therapeutic strategies is necessary. Light-triggered therapies have emerged as promising alternatives to traditional approaches due to their non-invasive nature, precise spatial and temporal control, and potential multifunctional properties. Here, we provide a comprehensive overview of the different biofilm formation stages and the molecular mechanism of biofilm disruption, with a major focus on the quorum sensing machinery. Moreover, we highlight the principal guidelines for the development of light-responsive materials and photosensitive compounds. The synergistic effects of combining light-triggered therapies with conventional treatments are also discussed. Through elegant molecular and material design solutions, remarkable results have been achieved in the fight against biofilm formation and antibacterial resistance. However, further research and development in this field are essential to optimize therapeutic strategies and translate them into clinical and industrial applications, ultimately addressing the global challenges posed by biofilm and antimicrobial resistance.
Collapse
Affiliation(s)
- Ambreen Kauser
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, LV-1048 Riga, Latvia
| | - Emilio Parisini
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giulia Suarato
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, CNR-IEIIT, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Rossella Castagna
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
7
|
Shivam K, Selvam A, Sangam S, Majood M, Pahari S, Patra R, Sharma AK, Mukherjee M. Graphene quantum dots-hybrid hydrogel as an avant-garde biomimetic scaffold for diabetic wound healing. BIOMATERIALS ADVANCES 2023; 149:213395. [PMID: 36990023 DOI: 10.1016/j.bioadv.2023.213395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
In the age of fathoming biomedical predicaments, ardently emerged the field of materiobiology to effectively counter the archetypal and outdated therapies. Correspondingly, the subpar activity of the over-the-counter wound dressing pharmaceuticals have been dominated with the implementation of biocompatible, water-retaining exotic hydrogels to facilitate accelerated diabetic wound healing. Considering a strategy to develop a pragmatic biomimetic scaffold having the ability of dynamic wound healing with diminutive inflammation, we investigated the creation of graphene quantum dot (GQD)-polyacrylic acid (PAA) hybrid hydrogel. We observe appropriate percentage of GQD incorporation in PAA to demonstrate lower pro-inflammatory cytokines, interleukin (IL-6), and tumour necrosis factor (TNF-α) along with higher anti-inflammatory (IL-10) expressions in contrast to natural and standard controls. Likewise, histological examinations corresponding to the in-vitro and in-vivo toxicological analysis of GQD-PAA manifested to be a non-toxic, biocompatible saviour of diabetic wounds. This hybrid hydrogel reports the quickest diabetic wound healing of 13 days. Additionally, the hybrid hydrogel also demonstrates salient antibacterial activity against E. coli. We explore a multifaceted mechanistic approach attributed by the hybrid framework as an avant-garde solution in materiobiology and diabetic wound healing nexus. We believe the GQD-hybrid hydrogel reveals an advancement that could portray a new horizon against diabetic wounds.
Collapse
Affiliation(s)
- Kumar Shivam
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India
| | - Abhyavartin Selvam
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India; Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh 201313, India
| | - Sujata Sangam
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India
| | - Siddhartha Pahari
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India
| | - Ranjan Patra
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India
| | - Arun K Sharma
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India.
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India; Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India.
| |
Collapse
|
8
|
Elkodous MA, Olojede SO, Sahoo S, Kumar R. Recent advances in modification of novel carbon-based composites: Synthesis, properties, and biotechnological/ biomedical applications. Chem Biol Interact 2023; 379:110517. [PMID: 37149208 DOI: 10.1016/j.cbi.2023.110517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/12/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Nowadays, carbon-based materials owing to great interest in biomedical science/biotechnology and applied for effective diagnosis and treatment of disease. To enhance the effectiveness of carbon nanotubes (CNTs)/graphene-based materials for bio-medical science/technology applications, different kinds of surface modification/functionalization were developed for the attachment of metal oxides nanostructures, biomolecules and polymers. The attachment of pharmaceutical agents with CNTs/graphene, make it a favorable candidate in research field of bio-medical science/technology applications. Surface modified/functionalized CNTs and graphene derivatives materials integrated with pharmaceutical agents has been developed for the purpose of cancer therapy, antibacterial action, pathogens bio detection, drug and gene delivery. Surface modification or functionalization of CNT/graphene materials provides good platform for pharmaceutical agents attachment with improved surface Raman scattering, fluorescence and its quenching capability. Graphene-based biosensing and bioimaging technologies are widely applied to identify numerous trace level analytes. These fluorescent and electrochemical sensors are utilized primarily for detecting organic, inorganic, and biomolecules. In this article, we highlights and summarized overview of the current research progress concerned on the CNTs/graphene-based materials as a new generation materials for detection and treatment of diseases.
Collapse
Affiliation(s)
- M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan; Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza, 16453, Egypt
| | - Samuel Oluwaseun Olojede
- Nanotechnology Platforms, Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Rajesh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India.
| |
Collapse
|
9
|
Hada V, Chaturvedi K, Singhwane A, Siraj N, Gupta A, Sathish N, Chaurasia JP, Srivastava AK, Verma S. Nanoantibiotic effect of carbon-based nanocomposites: epicentric on graphene, carbon nanotubes and fullerene composites: a review. 3 Biotech 2023; 13:147. [PMID: 37124988 PMCID: PMC10140225 DOI: 10.1007/s13205-023-03552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Carbon in many different forms especially, Graphene, Carbon nanotubes (CNTs), and Fullerene is emerging as an important material in the areas of the biomedical field for various applications. This review comprehensively describes the nano antibiotic effect of carbon-based nanocomposites: epicenter on graphene, carbon nanotubes, and fullerene Composites. It summarises the studies conducted to evaluate their antimicrobial applications as they can disrupt the cell membrane of bacteria resulting in cell death. The initial section gives a glimpse of both "Gram"-positive and negative bacteria, which have been affected by Graphene, CNTs, and Fullerene-based nanocomposites. These bacteria include Staphylococcus Aureus, Bacillus Thuringiensis, Enterococcus faecalis, Enterococcus faecium, Bacillus subtilis, Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeroginosa, Pseudomonas syringae , Shigella flexneri,Candida Albicans, Mucor. Another section is dedicated to the insight of Graphene, and its types such as Graphene Oxide (GO), Reduced graphene oxide (rGO), Graphene Nanoplatelets (GNPs), Graphene Nanoribbons (GNRs), and Graphene Quantum Dots (GQDs). Insight into CNT, including both the types SWCNT and MWCNT, studied, followed by understanding fullerene is also reported. Another section is dedicated to the antibacterial mechanism of Graphene, CNT, and Fullerene-based nanocomposites. Further, an additional section is dedicated to a comprehensive review of the antibacterial characteristics of Graphene, CNT, and nanocomposites based on fullerene. Future perspectives and recommendations have also been highlighted in the last section.
Collapse
Affiliation(s)
- Vaishnavi Hada
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
| | - Kamna Chaturvedi
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - Anju Singhwane
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
| | - Naved Siraj
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - Ayush Gupta
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bhopal, MP 462026 India
| | - N. Sathish
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - J. P. Chaurasia
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - A. K. Srivastava
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - Sarika Verma
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| |
Collapse
|
10
|
Jovanović S, Marković Z, Budimir M, Prekodravac J, Zmejkoski D, Kepić D, Bonasera A, Marković BT. Lights and Dots toward Therapy-Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy. Pharmaceutics 2023; 15:pharmaceutics15041170. [PMID: 37111655 PMCID: PMC10145889 DOI: 10.3390/pharmaceutics15041170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The large number of deaths induced by carcinoma and infections indicates that the need for new, better, targeted therapy is higher than ever. Apart from classical treatments and medication, photodynamic therapy (PDT) is one of the possible approaches to cure these clinical conditions. This strategy offers several advantages, such as lower toxicity, selective treatment, faster recovery time, avoidance of systemic toxic effects, and others. Unfortunately, there is a small number of agents that are approved for usage in clinical PDT. Novel, efficient, biocompatible PDT agents are, thus, highly desired. One of the most promising candidates is represented by the broad family of carbon-based quantum dots, such as graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs), and carbonized polymer dots (CPDs). In this review paper, these new smart nanomaterials are discussed as potential PDT agents, detailing their toxicity in the dark, and when they are exposed to light, as well as their effects on carcinoma and bacterial cells. The photoinduced effects of carbon-based quantum dots on bacteria and viruses are particularly interesting, since dots usually generate several highly toxic reactive oxygen species under blue light. These species are acting as bombs on pathogen cells, causing various devastating and toxic effects on those targets.
Collapse
Affiliation(s)
- Svetlana Jovanović
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Zoran Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Milica Budimir
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Jovana Prekodravac
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Danica Zmejkoski
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Dejan Kepić
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aurelio Bonasera
- Palermo Research Unit, Department of Physics and Chemistry-Emilio Segrè, University of Palermo and Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 90128 Palermo, Italy
| | - Biljana Todorović Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Antibacterial nanophotosensitizers in photodynamic therapy: An update. Drug Discov Today 2023; 28:103493. [PMID: 36657636 DOI: 10.1016/j.drudis.2023.103493] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/18/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Bacterial infections constitute a major challenge of clinical medicine, particularly in specialties such as dermatology and dental medicine. Antiseptics and antibiotics are the main adjunctive therapies to anti-infective procedures in these specialties. However, antibacterial photodynamic therapy (PDT) has been introduced as a novel and promising alternative to conventional antibacterial approaches. PDT relies on the formation of reactive oxygen species (ROS) by a photosensitizer (PS) after activation by a specific light source. Nanotechnology was later introduced to enhance the antibacterial efficacy of PS during PDT. In this review, we describe the different nanoparticles (NPs) used in PDT and their properties. Recent in vivo data of NPs in antibacterial PDT in dermatology and dental medicine and their safety concerns are also reviewed.
Collapse
|
12
|
Wu W, Qin Y, Fang Y, Zhang Y, Shao S, Meng F, Zhang M. Based on multi-omics technology study the antibacterial mechanisms of pH-dependent N-GQDs beyond ROS. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129954. [PMID: 36116315 DOI: 10.1016/j.jhazmat.2022.129954] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Currently, graphene quantum dots (GQDs) are widely used as antibacterial agents, and their effects are dependent on the reactive oxygen species (ROS) generated by photodynamic and peroxidase activities. Nevertheless, the supply of substrates or light greatly limits GQDs application. Besides, due to compensatory mechanisms in bacteria, comprehensive analysis of the molecular mechanism underlying the effects of GQDs based on cellular-level experiments is insufficient. Therefore, N-GQDs with inherent excellent, broad-spectrum antibacterial efficacy under acidic conditions were successfully synthesized. Then, via multi-omics analyses, the antibacterial mechanisms of the N-GQDs were found to not only involve generation ROS but also be associated with changes in osmotic pressure, interference with nucleic acid synthesis and inhibition of energy metabolism. More surprisingly, the N-GQDs could destroy intracellular acid-base homeostasis, causing bacterial cell death. In conclusion, this study provides important insights into the antibacterial mechanism of GQDs, offering a basis for the engineering design of antibacterial nanomaterials.
Collapse
Affiliation(s)
- Wanfeng Wu
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Yan Fang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Yukun Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Shuxuan Shao
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Fanxing Meng
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China.
| |
Collapse
|
13
|
Wang X, He K, Hu Y, Tang M. A review of pulmonary toxicity of different types of quantum dots in environmental and biological systems. Chem Biol Interact 2022; 368:110247. [DOI: 10.1016/j.cbi.2022.110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
14
|
Liu H, Jiang Y, Wang Z, Zhao L, Yin Q, Liu M. Nanomaterials as carriers to improve the photodynamic antibacterial therapy. Front Chem 2022; 10:1044627. [PMID: 36505736 PMCID: PMC9732008 DOI: 10.3389/fchem.2022.1044627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
The main treatment for bacterial infections is antibiotic therapy, but the emergence of bacterial resistance has severely limited the efficacy of antibiotics. Therefore, another effective means of treating bacterial infections is needed to alleviate the therapeutic pressure caused by antibiotic resistance. Photodynamic antibacterial therapy (PDAT) has gradually entered people's field of vision as an infection treatment method that does not depend on antibiotics. PDAT induces photosensitizers (PS) to produce reactive oxygen species (ROS) under light irradiation, and kills bacteria by destroying biological macromolecules at bacterial infection sites. In recent years, researchers have found that some nanomaterials delivering PS can improve PDAT through targeted delivery or synergistic therapeutic effect. Therefore, in this article, we will review the recent applications of several nanomaterials in PDAT, including metal nanoclusters, metal-organic frameworks, and other organic/inorganic nanoparticles, and discuss the advantages and disadvantage of these nanomaterials as carriers for delivery PS to further advance the development of PDAT.
Collapse
Affiliation(s)
- Houhe Liu
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Yuan Jiang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhen Wang
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Linping Zhao
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianqian Yin
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Qianqian Yin, ; Min Liu,
| | - Min Liu
- College of Agriculture and Forestry, Linyi University, Linyi, China,*Correspondence: Qianqian Yin, ; Min Liu,
| |
Collapse
|
15
|
Erythromycin Formulations—A Journey to Advanced Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14102180. [PMID: 36297615 PMCID: PMC9608461 DOI: 10.3390/pharmaceutics14102180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Erythromycin (ERY) is a macrolide compound with a broad antimicrobial spectrum which is currently being used to treat a large number of bacterial infections affecting the skin, respiratory tract, intestines, bones and other systems, proving great value from a clinical point of view. It became popular immediately after its discovery in 1952, due to its therapeutic effect against pathogens resistant to other drugs. Despite this major advantage, ERY exhibits several drawbacks, raising serious clinical challenges. Among them, the very low solubility in water and instability under acidic conditions cause a limited efficacy and bioavailability. Apart from this, higher doses promote drug resistance and undesirable effects. In order to overcome these disadvantages, during the past decades, a large variety of ERY formulations, including nanoparticles, have emerged. Despite the interest in ERY-(nano)formulations, a review on them is lacking. Therefore, this work was aimed at reviewing all efforts made to encapsulate ERY in formulations of various chemical compositions, sizes and morphologies. In addition, their preparation/synthesis, physico-chemical properties and performances were carefully analysed. Limitations of these studies, particularly the quantification of ERY, are discussed as well.
Collapse
|
16
|
Rhew K, Chae YJ, Chang JE. Progress and recent trends in photodynamic therapy with nanoparticles. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Koohi Moftakhari Esfahani M, Alavi SE, Cabot PJ, Islam N, Izake EL. Application of Mesoporous Silica Nanoparticles in Cancer Therapy and Delivery of Repurposed Anthelmintics for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081579. [PMID: 36015204 PMCID: PMC9415106 DOI: 10.3390/pharmaceutics14081579] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
This review focuses on the biomedical application of mesoporous silica nanoparticles (MSNs), mainly focusing on the therapeutic application of MSNs for cancer treatment and specifically on overcoming the challenges of currently available anthelmintics (e.g., low water solubility) as repurposed drugs for cancer treatment. MSNs, due to their promising features, such as tunable pore size and volume, ability to control the drug release, and ability to convert the crystalline state of drugs to an amorphous state, are appropriate carriers for drug delivery with the improved solubility of hydrophobic drugs. The biomedical applications of MSNs can be further improved by the development of MSN-based multimodal anticancer therapeutics (e.g., photosensitizer-, photothermal-, and chemotherapeutics-modified MSNs) and chemical modifications, such as poly ethyleneglycol (PEG)ylation. In this review, various applications of MSNs (photodynamic and sonodynamic therapies, chemotherapy, radiation therapy, gene therapy, immunotherapy) and, in particular, as the carrier of anthelmintics for cancer therapy have been discussed. Additionally, the issues related to the safety of these nanoparticles have been deeply discussed. According to the findings of this literature review, the applications of MSN nanosystems for cancer therapy are a promising approach to improving the efficacy of the diagnostic and chemotherapeutic agents. Moreover, the MSN systems seem to be an efficient strategy to further help to decrease treatment costs by reducing the drug dose.
Collapse
Affiliation(s)
- Maedeh Koohi Moftakhari Esfahani
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia;
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia;
| | - Nazrul Islam
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Emad L. Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Correspondence: ; Tel.: +61-7-3138-2501
| |
Collapse
|
18
|
Dual-mode antibacterial core-shell gold nanorod@mesoporous-silica/curcumin nanocomplexes for efficient photothermal and photodynamic therapy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Rastegari E, Hsiao YJ, Lai WY, Lai YH, Yang TC, Chen SJ, Huang PI, Chiou SH, Mou CY, Chien Y. An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine. Pharmaceutics 2021; 13:1067. [PMID: 34371758 PMCID: PMC8309088 DOI: 10.3390/pharmaceutics13071067] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
The efficient and safe delivery of therapeutic drugs, proteins, and nucleic acids are essential for meaningful therapeutic benefits. The field of nanomedicine shows promising implications in the development of therapeutics by delivering diagnostic and therapeutic compounds. Nanomedicine development has led to significant advances in the design and engineering of nanocarrier systems with supra-molecular structures. Smart mesoporous silica nanoparticles (MSNs), with excellent biocompatibility, tunable physicochemical properties, and site-specific functionalization, offer efficient and high loading capacity as well as robust and targeted delivery of a variety of payloads in a controlled fashion. Such unique nanocarriers should have great potential for challenging biomedical applications, such as tissue engineering, bioimaging techniques, stem cell research, and cancer therapies. However, in vivo applications of these nanocarriers should be further validated before clinical translation. To this end, this review begins with a brief introduction of MSNs properties, targeted drug delivery, and controlled release with a particular emphasis on their most recent diagnostic and therapeutic applications.
Collapse
Grants
- MOST 108-2320-B-010 -019 -MY3; MOST 109-2327-B-010-007 Ministry of Science and Technology
- MOHW108-TDU-B-211-133001, MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1, VTA108-V1-5-3, VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan. and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan.
Collapse
Affiliation(s)
- Elham Rastegari
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yun-Hsien Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Tien-Chun Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Pin-I Huang
- Department of Oncology, Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| |
Collapse
|
20
|
Jampilek J, Kralova K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1059. [PMID: 33668271 PMCID: PMC7956197 DOI: 10.3390/ma14051059] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Carbon is one of the most abundant elements on Earth. In addition to the well-known crystallographic modifications such as graphite and diamond, other allotropic carbon modifications such as graphene-based nanomaterials and carbon nanotubes have recently come to the fore. These carbon nanomaterials can be designed to help deliver or target drugs more efficiently and to innovate therapeutic approaches, especially for cancer treatment, but also for the development of new diagnostic agents for malignancies and are expected to help combine molecular imaging for diagnosis with therapies. This paper summarizes the latest designed drug delivery nanosystems based on graphene, graphene quantum dots, graphene oxide, reduced graphene oxide and carbon nanotubes, mainly for anticancer therapy.
Collapse
Affiliation(s)
- Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|