1
|
Özdemir N, Karslıoğlu B, Bankoğlu Yola B, Atar N, Yola ML. A Novel Molecularly Imprinted Quartz Crystal Microbalance Sensor Based on Erbium Molybdate Incorporating Sulfur-Doped Graphitic Carbon Nitride for Dimethoate Determination in Apple Juice Samples. Foods 2024; 13:810. [PMID: 38472923 DOI: 10.3390/foods13050810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Dimethoate (DIM) as an organophosphorus pesticide is widely utilized especially in the cultivation of vegetables and fruits due to its killing effect on harmful insects. However, unconscious use of DIM in large amounts can also cause serious health problems. For these reasons, rapid and reliable detection of DIM from food samples is significant. In this study, a novel quartz crystal microbalance (QCM) sensor based on erbium molybdate incorporating sulfur-doped graphitic carbon nitride (EM/S-g-C3N4) and a molecularly imprinting polymer (MIP) was designed for DIM detection in apple juice samples. Firstly, an EM/S-g-C3N4 nanocomposite with high purity was prepared under hydrothermal conditions at high temperatures over a long period of time. After the modification of the EM/S-g-C3N4 nanocomposite on a QCM chip, the polymerization solution including N,N'-azobisisobutyronitrile (AIBN) as an initiator, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, methacryloylamidoglutamic acid (MAGA) as a monomer, and DIM as an analyte was prepared. Then, the polymerization solution was dropped on an EM/S-g-C3N4 nanocomposite modified QCM chip and an ultraviolet polymerization process was applied for the formation of the DIM-imprinted polymers on the EM/S-g-C3N4 nanocomposite modified QCM chip. After the polymerization treatment, some characterization studies, including electrochemical, microscopic, and spectroscopic methods, were performed to illuminate the surface properties of the nanocomposite and the prepared QCM sensor. The values of the limit of quantification (LOQ) and the detection limit (LOD) of the prepared QCM sensor were as 1.0 × 10-9 M and 3.3 × 10-10 M, respectively. In addition, high selectivity, stability, reproducibility, and repeatability of the developed sensor was observed, providing highly reliable analysis results. Finally, thanks to the prepared sensor, it may be possible to detect pesticides from different food and environmental samples in the future.
Collapse
Affiliation(s)
- Neslihan Özdemir
- Department of Machinery and Metal Technologies, Merzifon Vocational School, Amasya University, Amasya 05300, Turkey
| | - Betül Karslıoğlu
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Hasan Kalyoncu University, Gaziantep 27000, Turkey
| | - Bahar Bankoğlu Yola
- Department of Engineering Basic Sciences, Faculty of Engineering and Natural Sciences, Gaziantep Islam Science and Technology University, Gaziantep 27000, Turkey
| | - Necip Atar
- Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli 20160, Turkey
| | - Mehmet Lütfi Yola
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey
| |
Collapse
|
2
|
Zamenraz S, Jafarpour M, Eskandari A, Rezaeifard A. Vitamin B5 copper conjugated triazine dendrimer improved the visible-light photocatalytic activity of TiO 2 nanoparticles for aerobic homocoupling reactions. Sci Rep 2024; 14:2691. [PMID: 38302498 PMCID: PMC10834398 DOI: 10.1038/s41598-024-52339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
In this work, Cu-vitamin B5 (pantothenic acid) bonded to 2,4,6-trichloro-1,3,5-triazine produced a bioconjugated dendrimer giving rise to the visible-light photocatalytic activity of nanocrystalline TiO2. XPS spectra uncovered the coexistence of Cu(II)/Cu(I) oxidation states with a predominant contribution of Cu(I). The new heterogeneous bio-relevant Cu-photocatalyst (Cu(I) Cu(II) [PTAPA G2-B5] @TiO2) revealed a band gap value [Eg = (2.8 eV)] less than those of Cu free components [PTAPA G1-B5]@TiO2 (3.04) and [PTAPA G2-B5]@TiO2 (3.06) and particularly the bare TiO2 (3.15 eV). The reactions showed to be light-dependent with the best performance under room light bulbs. The photocatalytic efficiency of the as-prepared heterojunction photocatalyst was exploited in the aerobic Csp2-Csp2 homocoupling of phenylboronic acid and Csp-Csp homocoupling of phenyl acetylenes under visible-light irradiation to prepare structurally and electronically different biaryls. A radical pathway relying on the photogenerated e- and h+ and involving the Cu(I)-Cu(II) synergistic cooperation was postulated. The reusability and stability of the catalyst were verified by the recycling test, FT-IR spectra, and ICP-OES analysis.
Collapse
Affiliation(s)
- Samira Zamenraz
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand, 97179-414, Iran
| | - Maasoumeh Jafarpour
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand, 97179-414, Iran.
| | - Ameneh Eskandari
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand, 97179-414, Iran
| | - Abdolreza Rezaeifard
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand, 97179-414, Iran.
| |
Collapse
|
3
|
Li Z, Pu H, Wei Q. Ti 3C 2T x MXene-Based Fluorescent Aptasensor for Detection of Dimethoate Pesticide. BIOSENSORS 2024; 14:69. [PMID: 38391988 PMCID: PMC10886722 DOI: 10.3390/bios14020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Dimethoate contaminants in food pose a threat to human health. Rapid and sensitive trace detection methods are required to keep food safe. In this study, a novel fluorescent aptasensor was developed for the sensitive detection of dimethoate based on carbon quantum dots labeled with double-stranded DNA (CQDs-apt-cDNA) and Ti3C2Tx flakes. Under optimal conditions, the aptasensor showed a good linear range of 1 × 10-9 to 5 × 10-5 M for dimethoate with a coefficient of determination (R2) of 0.996. Besides, a low detection limit of 2.18 × 10-10 M was obtained. The aptasensor showed high selectivity in interference samples and good reproducibility with an RSD of 3.06% (<5%) for dimethoate detection. Furthermore, the proposed aptasensor was applied to the detection of dimethoate in apple juice and tap water with satisfactory recoveries from 96.2 to 104.4%. Because of these benefits, this aptasensor has the potential and promise for detecting food contaminants in the food industry.
Collapse
Affiliation(s)
- Zhichao Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.L.); (H.P.)
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.L.); (H.P.)
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.L.); (H.P.)
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
4
|
Ruderman A, Oviedo MB, Paz SA, Leiva EPM. Diversity of Behavior after Collisions of Sn and Si Nanoparticles Found Using a New Density Functional Tight-Binding Method. J Phys Chem A 2023; 127:8955-8965. [PMID: 37831543 DOI: 10.1021/acs.jpca.3c05534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
We present a new approach to studying nanoparticle collisions using density functional based tight binding (DFTB). A novel DFTB parametrization has been developed to study the collision process of Sn and Si clusters (NPs) using molecular dynamics (MD). While bulk structures were used as training sets, we show that our model is able to accurately reproduce the cohesive energy of the nanoparticles using density functional theory (DFT) as a reference. A surprising variety of phenomena are revealed for the Si/Sn nanoparticle collisions, depending on the size and velocity of the collision: from core-shell structure formation to bounce-off phenomena.
Collapse
Affiliation(s)
- Andrés Ruderman
- Facultad de Matemática, Astronomía Física y Computación, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Consejo Nacional de Investigaciones Cientıficas y Técnicas (CONICET), Instituto de Física Enrique Gaviola (IFEG), Córdoba X5000HUA, Argentina
| | - María Belén Oviedo
- Facultad de Ciencias Quımicas, Departamento de Quımica Teórica y Computacional, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Consejo Nacional de Investigaciones Cientıficas y Técnicas (CONICET), Instituto de Fisicoquımica de Córdoba (INFIQC), Córdoba X5000HUA, Argentina
| | - Sergio Alexis Paz
- Facultad de Ciencias Quımicas, Departamento de Quımica Teórica y Computacional, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Consejo Nacional de Investigaciones Cientıficas y Técnicas (CONICET), Instituto de Fisicoquımica de Córdoba (INFIQC), Córdoba X5000HUA, Argentina
| | - Ezequiel P M Leiva
- Facultad de Ciencias Quımicas, Departamento de Quımica Teórica y Computacional, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Consejo Nacional de Investigaciones Cientıficas y Técnicas (CONICET), Instituto de Fisicoquımica de Córdoba (INFIQC), Córdoba X5000HUA, Argentina
| |
Collapse
|
5
|
Manikandan DB, Arumugam M, Sridhar A, Perumalsamy B, Ramasamy T. Sustainable fabrication of hybrid silver-copper nanocomposites (Ag-CuO NCs) using Ocimum americanum L. as an effective regime against antibacterial, anticancer, photocatalytic dye degradation and microalgae toxicity. ENVIRONMENTAL RESEARCH 2023; 228:115867. [PMID: 37044164 DOI: 10.1016/j.envres.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/16/2023]
Abstract
In this study, a sustainable fabrication of hybrid silver-copper oxide nanocomposites (Ag-CuO NCs) was accomplished utilizing Ocimum americanum L. by one pot green chemistry method. The multifarious biological and environmental applications of the green fabricated Ag-CuO NCs were evaluated through their antibacterial, anticancer, dye degradation, and microalgae growth inhibition activities. The morphological features of the surface functionalized hybrid Ag-CuO NCs were confirmed by FE-SEM and HR-TEM techniques. The surface plasmon resonance λmax peak appeared at 441.56 nm. The average hydrodynamic size distribution of synthesized nanocomposite was 69.80 nm. Zeta potential analysis of Ag-CuO NCs confirmed its remarkable stability at -21.5 mV. XRD and XPS techniques validated the crystalline structure and electron binding affinity of NCs, respectively. The Ag-CuO NCs demonstrated excellent inhibitory activity against Vibrio cholerae (19.93 ± 0.29 mm) at 100 μg/mL. Anticancer efficacy of Ag-CuO NCs was investigated against the A549 lung cancer cell line, and Ag-CuO NCs exhibited outstanding antiproliferative activity with a low IC50 of 2.8 ± 0.05 μg/mL. Furthermore, staining and comet assays substantiated that the Ag-CuO NCs hindered the progression of the A549 cells and induced apoptosis as a result of cell cycle arrest at the G0/G1 phase. Concerning the environmental applications, the Ag-CuO NCs displayed efficient photocatalytic activity against eosin yellow degradation up to 80.94% under sunlight irradiation. Microalgae can be used as an early bio-indicator/prediction of environmental contaminants and toxic substances. The treatment of the Ag-CuO NCs on the growth of marine microalgae Tetraselmis suecica demonstrated the dose and time-dependent growth reduction and variations in the chlorophyll content. Therefore, the efficient multifunctional properties of hybrid Ag-CuO NCs could be exploited as a regime against infective diseases and cancer. Further, the findings of our investigation witness the remarkable scope and potency of Ag-CuO NCs for environmental applications.
Collapse
Affiliation(s)
- Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Balaji Perumalsamy
- National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
6
|
Zhou FZ, Chang YH, Hu CC, Chiu TC. Sodium-Alginate-Functionalized Silver Nanoparticles for Colorimetric Detection of Dimethoate. BIOSENSORS 2022; 12:1086. [PMID: 36551053 PMCID: PMC9775393 DOI: 10.3390/bios12121086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Sodium alginate (SA) was used to functionalize the surfaces of silver nanoparticles (AgNPs) to form SA-AgNPs for sensing dimethoate with a rapid and sensitive visual readout. UV-Vis spectrophotometry, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and zeta potential measurements were used to characterize SA-AgNPs that were synthesized under the ideal conditions. SA-AgNPs were spherical with an average size of 14.6 nm. The stability of SA-AgNPs was investigated with changes in pH, salinity, and storage time. This colorimetric assay of dimethoate relied on the change in the absorption ratio (A475/A400) of SA-AgNPs, resulting in their aggregation caused by dimethoate, leading to a visual change for SA-AgNPs from yellow to pale yellow. As a result, the absorption ratio (A475/A400) of SA-AgNPs showed good linearity in the range of 0.05 to 2.0 ppm (R2 = 0.9986) with a limit of detection (LOD) of 30 ppb. Adding other pesticides did not significantly change the absorption ratio of SA-AgNPs, indicating its high selectivity as a colorimetric assay. The sensor was successfully used to detect dimethoate in actual water samples.
Collapse
Affiliation(s)
- Feng-Zuo Zhou
- Department of Applied Science, National Taitung University, Taitung 950309, Taiwan
| | - Yung-Hsiang Chang
- Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Cho-Chun Hu
- Department of Applied Science, National Taitung University, Taitung 950309, Taiwan
| | - Tai-Chia Chiu
- Department of Applied Science, National Taitung University, Taitung 950309, Taiwan
| |
Collapse
|
7
|
Chinnappa K, Karuna Ananthai P, Srinivasan PP, Dharmaraj Glorybai C. Green synthesis of rGO-AgNP composite using Curcubita maxima extract for enhanced photocatalytic degradation of the organophosphate pesticide chlorpyrifos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58121-58132. [PMID: 35364789 DOI: 10.1007/s11356-022-19917-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In this study, Curcubita maxima leaves are used as a novel source for green synthesis of reduced graphene oxide - silver nanoparticle composite in a single pot. Characterization of the novel phyto source-driven composite was performed by UV-visible spectroscopy, Fourier transform infrared analysis, X-ray diffraction analysis, and field emission scanning electron microscopic methods. The assessment of degradation effect of chlorpyrifos by the synthesized nanocomposite was performed. The photocatalytic activity of the composite was demonstrated through two different processes as adsorption under room temperature and photocatalysis in the presence of sunlight. Different parameters such as pH, time, photocatalyst dose and pesticide concentration were optimized. The adsorption isotherms governing the photocatalytic adsorption process were investigated to predict the adsorption capacity of the synthesized nanocomposite. In addition, the results of antimicrobial activity of the nanocomposite against gram-positive, gram-negative bacteria and antifungal activity were also been found to be highly promising to utilize this composite for the removal of microbial contaminations in wastewater treatment.
Collapse
Affiliation(s)
- Karthik Chinnappa
- Department of Biotechnology, St. Joseph's College of Engineering, OMR, Chennai, - 600119, Tamil Nadu, India.
| | | | - Pandi Prabha Srinivasan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, - 602117, Chennai, Tamil Nadu, India
| | | |
Collapse
|
8
|
Feng D, Zhang R, Zhang M, Fang A, Shi F. Synthesis of Eco-Friendly Silver Nanoparticles Using Glycyrrhizin and Evaluation of Their Antibacterial Ability. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2636. [PMID: 35957066 PMCID: PMC9370730 DOI: 10.3390/nano12152636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
Abstract
In the present study, the biosynthesis of silver nanoparticles (AgNPs) and their antibacterial activity against gram-positive and gram-negative bacteria were investigated. Glycyrrhizin (GL) was used as a reducing agent and stabilizer to rapidly prepare the AgNPs. The distinctive absorption peak at 419 nm confirmed the formation of GL-reduced AgNPs. The TEM and particle size analysis shows that the prepared GL-reduced AgNPs were mostly circular with good dispersion and a relatively uniform particle size of 35 nm on average. Fourier transform infrared spectroscopy analysis was performed to identify the possible biomolecules in the capping and active stabilization of the GL-reduced AgNPs. The antibacterial activity of the GL-reduced AgNPs was analyzed with the Oxford cup diffusion method and filter paper diffusion method. The experimental results show that these properties endowed the GL-reduced AgNPs with high antibacterial activity against Escherichia coli and Staphylococcus aureus and lay a foundation for the use of colloidal silver in antibacterial applications. The GL-reduced AgNPs also had stronger antibacterial activity than sodium citrate-reduced AgNPs, which indicates the advantages of GL-reduced AgNPs compared with sodium citrate-reduced AgNPs in inducing bacteriostasis. The cytotoxicity of GL-reduced AgNPs on human kidney epithelial 293A (HEK293) cells was evaluated via the MTT assay. The results show that GL-reduced AgNPs had lower toxicity to HEK293 cells than sodium citrate-AgNPs, which indicates that the as-prepared GL-reduced AgNPs are environmentally friendly.
Collapse
Affiliation(s)
| | | | | | | | - Feng Shi
- College of Life Science, Shihezi University, Shihezi 832003, China; (D.F.); (R.Z.); (M.Z.); (A.F.)
| |
Collapse
|
9
|
Patel S, Shrivas K, Sinha D, Monisha, Kumar Patle T, Yadav S, Thakur SS, Deb MK, Pervez S. Smartphone-integrated printed-paper sensor designed for on-site determination of dimethoate pesticide in food samples. Food Chem 2022; 383:132449. [DOI: 10.1016/j.foodchem.2022.132449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/04/2022]
|
10
|
Biosynthesis of Bimetallic Cu-Ag Nanocomposites and Evaluation of their Electrocatalytic, Antibacterial and Anti-Cancerous Activity. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bimetallic nanocomposites have evolved into a significant smart material in the recent past. Owing to the growing interest, we herein report the biosynthesis of bimetallic silver doped copper (Cu-Ag) nanocomposites using green methods by utilizing aqueous extract of Carica papaya leaves. The optical property and the surface morphology of the nanoparticles were determined by using various analytical techniques like Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDAX) and Transmission Electron Microscopy (TEM). The redox behaviour of the bimetallic nanocomposites was studied using Cyclic Voltammetry (CV) with platinum electrode in 0.1M KCl solution at different scan rates and concentrations. The FTIR revealed the presence of active components of the leaf extract which played the roles of surfactants, stabilizing, capping, and reducing agents. Similarly, SEM with EDAX exhibited the presence of spherically agglomerated Cu-Ag nanocomposites and TEM images revealed a particle size of 20 nm. The gradual increase in peak current was observed in CV with increase in the scan rates and concentrations apparently. The bimetallic nanocomposites showed potential anti-bacterial, anti-cancerous activity and the reports are provided in detail.
Collapse
|
11
|
Zhu L, Dai Y, Gao L, Zhao Q. Tumor Microenvironment-Modulated Nanozymes for NIR-II-Triggered Hyperthermia-Enhanced Photo-Nanocatalytic Therapy via Disrupting ROS Homeostasis. Int J Nanomedicine 2021; 16:4559-4577. [PMID: 34267513 PMCID: PMC8275154 DOI: 10.2147/ijn.s309062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Reactive oxygen species (ROS) are a group of signaling biomolecules that play important roles in the cell cycle. When intracellular ROS homeostasis is disrupted, it can induce cellular necrosis and apoptosis. It is desirable to effectively cascade-amplifying ROS generation and weaken antioxidant defense for disrupting ROS homeostasis in tumor microenvironment (TME), which has been recognized as a novel and ideal antitumor strategy. Multifunctional nanozymes are highly promising agents for ROS-mediated therapy. Methods This study constructed a novel theranostic nanoagent based on PEG@Cu2-xS@Ce6 nanozymes (PCCNs) through a facile one-step hydrothermal method. We systematically investigated the photodynamic therapy (PDT)/photothermal therapy (PTT) properties, catalytic therapy (CTT) and glutathione (GSH) depletion activities of PCCNs, antitumor efficacy induced by PCCNs in vitro and in vivo. Results PCCNs generate singlet oxygen (1O2) with laser (660 nm) irradiation and use catalytic reactions to produce hydroxyl radical (•OH). Moreover, PCCNs show the high photothermal performance under NIR II 1064-nm laser irradiation, which can enhance CTT/PDT efficiencies to increase ROS generation. The properties of O2 evolution and GSH consumption of PCCNs achieve hypoxia-relieved PDT and destroy cellular antioxidant defense system respectively. The excellent antitumor efficacy in 4T1 tumor-bearing mice of PCCNs is achieved through disrupting ROS homeostasis-involved therapy under the guidance of photothermal/photoacoustic imaging. Conclusion Our study provides a proof of concept of “all-in-one” nanozymes to eliminate tumors via disrupting ROS homeostasis.
Collapse
Affiliation(s)
- Lipeng Zhu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People's Republic of China
| | - Yunlu Dai
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People's Republic of China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, People's Republic of China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Science, Beijing, People's Republic of China
| | - Qi Zhao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People's Republic of China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, People's Republic of China
| |
Collapse
|
12
|
Manikandan DB, Arumugam M, Veeran S, Sridhar A, Krishnasamy Sekar R, Perumalsamy B, Ramasamy T. Biofabrication of ecofriendly copper oxide nanoparticles using Ocimum americanum aqueous leaf extract: analysis of in vitro antibacterial, anticancer, and photocatalytic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:33927-33941. [PMID: 33410001 DOI: 10.1007/s11356-020-12108-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Nanotechnology tends to be a swiftly growing field of research that actively influences and inhibits the growth of bacteria/cancer. Noble metal nanoparticles (NPs) such as silver, copper, and gold have been used to damage bacterial and cancer growth over recent years; however, the toxicity of higher NPs concentrations remains a major issue. The copper oxide nanoparticles (CuONPs) were therefore fabricated using a simple green chemistry approach. Biofabricated CuONPs were characterized using UV-visible, FE-SEM with EDS, HR-TEM, FT-IR, XRD, Raman spectroscopy, and XPS analysis. Formations of CuONPs have been observed by UV-visible absorbance peak at 360.74 nm. The surface morphology of the CuONPs showed the spherical structure and size (~ 68 nm). The EDS spectrum of CuONPs has proved to be the key signals of copper (Cu) and oxygen (O) components. FT-IR analysis, to validate the important functional biomolecules (O-H, C=C, C-H, C-O) are responsible for reduction and stabilization of CuONPs. The monoclinic end-centered crystalline structures of CuONPs were confirmed with XRD planes. The electrochemical oxygen states of the CuONPs have been studied using spectroscopy of the Raman and X-ray photoelectron. After successful preparation, CuONPs examined their antibacterial, anticancer, and photocatalytic activities. Green-fabricated CuONPs were promising antibacterial candidate against human pathogenic gram-negative bacteria Escherichia coli, Vibrio cholerae, Salmonella typhimurium, Klebsiella pneumoniae, Aeromonas hydrophila, and Pseudomonas aeruginosa. CuONPs were demonstrated the excellent anticancer activity against A549 human lung adenocarcinoma cell line. Furthermore, CuONPs exhibited photocatalytic degradation of azo dyes such as eosin yellow (EY), rhodamine 123 (Rh 123), and methylene blue (MB). Biofabricated CuONPs may therefore be an important biomedical research for the aid of bacterial/cancer diseases and photocatalytic degradation of azo dyes.
Collapse
Affiliation(s)
- Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Srinivasan Veeran
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Arun Sridhar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Rajkumar Krishnasamy Sekar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Balaji Perumalsamy
- National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
- National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
13
|
Lin HK, Huang CW, Lin YH, Chuang WS, Huang JC. Effects of Accumulated Energy on Nanoparticle Formation in Pulsed-Laser Dewetting of AgCu Thin Films. NANOSCALE RESEARCH LETTERS 2021; 16:110. [PMID: 34191148 PMCID: PMC8245639 DOI: 10.1186/s11671-021-03564-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Ag50Cu50 films were deposited on glass substrates by a sputtering system. Effects of accumulated energy on nanoparticle formation in pulse-laser dewetting of AgCu films were investigated. The results showed that the properties of the dewetted films were found to be dependent on the magnitude of the energy accumulated in the film. For a low energy accumulation, the two distinct nanoparticles had rice-shaped/Ag60Cu40 and hemispherical/Ag80Cu20. Moreover, the absorption spectra contained two peaks at 700 nm and 500 nm, respectively. By contrast, for a high energy accumulation, the nanoparticles had a consistent composition of Ag60Cu40, a mean diameter of 100 nm and a peak absorption wavelength of 550 nm. Overall, the results suggest that a higher Ag content of the induced nanoparticles causes a blue shift of the absorption spectrum, while a smaller particle size induces a red shift.
Collapse
Affiliation(s)
- H K Lin
- Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, 1, Hseuhfu Road, Pingtung 912, Taiwan, ROC.
| | - C W Huang
- Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, 1, Hseuhfu Road, Pingtung 912, Taiwan, ROC
- Department of Plant Medicine, National Pingtung University of Science and Technology, 1, Hseuhfu Road, Pingtung 912, Taiwan, ROC
| | - Y H Lin
- Department of Plant Medicine, National Pingtung University of Science and Technology, 1, Hseuhfu Road, Pingtung 912, Taiwan, ROC
| | - W S Chuang
- Department of Materials Science and Engineering, Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong.
| | - J C Huang
- Department of Materials Science and Engineering, Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
14
|
Sharma D, Ledwani L, Kumar N, Mehrotra T, Pervaiz N, Kumar R. An Investigation of Physicochemical and Biological Properties of Rheum emodi-Mediated Bimetallic Ag–Cu Nanoparticles. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04641-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Ikram M, Abbasi S, Haider A, Naz S, Ul-Hamid A, Imran M, Haider J, Ghaffar A. Bimetallic Ag/Cu incorporated into chemically exfoliated MoS 2 nanosheets to enhance its antibacterial potential: in silico molecular docking studies. NANOTECHNOLOGY 2020; 31:275704. [PMID: 32182604 DOI: 10.1088/1361-6528/ab8087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bimetallic Ag and Cu (1:1 wt%) nanoparticles (NPs) were synthesized and annealed at temperatures of 400 °C, 600 °C, and 800 °C using chemical reduction techniques. High temperature annealed (at 800 °C) Ag:Cu sample ratios (5 and 10 wt%) were used to dope MoS2. A wide variety of techniques including X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning, high resolution transmission electron microscopy, differential scanning calorimetry, thermogravimetric analysis, Raman, photoluminescence, and ultraviolet visible spectrophotometry were used to study the morphology, structure, functional groups, excitons recombination, and thermal and optical properties of both annealed and doped samples. The antimicrobial activity of the prepared products was tested on the MRSA-superbug with ciprofloxacin antibiotic as the reference drug. Statistically significant (P < 0.05) inhibition zones (mm) were recorded for the as-synthesized Ag-Cu, heat-treated samples at 400 °C, 600 °C, and 800 °C, doped Ag-Cu/MoS2 5% and Ag-Cu/MoS2 10% which ranged from 6.35-9.85 mm and 8.60-11.75 mm at (0.5, 1.0 mg 50 μl-1) concentrations compared with ciprofloxacin 12.55 mm and DIW 0 mm inhibition zones, respectively. Overall Ag-Cu NPs alone and with different temperature treatments showed less antibacterial efficacy compared with Ag-Cu/MoS2 5% and 10%. Furthermore, molecular docking studies were employed to unveil the binding interaction pattern of NPs in the active pocket of β-lactamase enzyme suggested that it could be a potential inhibitor that could be further evaluated for its enzyme inhibition characteristics.
Collapse
Affiliation(s)
- M Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Punjab 54000 Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Aghajanyan A, Gabrielyan L, Schubert R, Trchounian A. Silver ion bioreduction in nanoparticles using Artemisia annua L. extract: characterization and application as antibacterial agents. AMB Express 2020; 10:66. [PMID: 32266590 PMCID: PMC7138892 DOI: 10.1186/s13568-020-01002-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 01/26/2023] Open
Abstract
The biological synthesis of metal nanoparticles using plant extracts with defined size and morphology is a simple, nontoxic and environmentally friendly method. The present study focused on the synthesis of silver nanoparticles (Ag NPs) by Artemisia annua L. extract as reducing and stabilising agent. The Ag NPs function, as antibacterial agents, is with that they are further used in human therapy. The effects of pH and temperature on the synthesis of NPs were characterized by UV-absorption spectroscopy and shown by surface plasmon resonance (SPR) band at 410 nm. NPs' size and morphology were measured by transmission electron microscopy (TEM) and dynamic light scattering (DLS). TEM images showed that Ag NPs were in a nano-sized range (20-90 nm) and had spherical shape. Our findings demonstrated that lower concentration (100 µg mL-1) of the biogenic Ag NPs exhibited antibacterial activity against Gram-negative Escherichia coli BW 25113 and Gram-positive Enterococcus hirae ATCC 9790.
Collapse
Affiliation(s)
- Anush Aghajanyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025, Yerevan, Armenia
| | - Lilit Gabrielyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025, Yerevan, Armenia
- Department of Medical Biochemistry and Biotechnology, Russian-Armenian University, 123 H. Emin Str., 0051, Yerevan, Armenia
| | - Robin Schubert
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Armen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025, Yerevan, Armenia.
- Department of Medical Biochemistry and Biotechnology, Russian-Armenian University, 123 H. Emin Str., 0051, Yerevan, Armenia.
| |
Collapse
|
17
|
Wang X, Huang F, Wang D, Li D, Li P, Muhammad J, Dong X, Zhang Z. Electrical/thermal behaviors of bimetallic (Ag-Cu, Ag-Sn) nanoparticles for printed electronics. NANOTECHNOLOGY 2020; 31:135603. [PMID: 31816613 DOI: 10.1088/1361-6528/ab5fed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, Ag-Cu and Ag-Sn nanoparticles (NPs) were synthesized by a physical vapor condensation method, i.e. DC arc-discharge plasma. The as-prepared bimetallic NPs consist of metallic cores of Ag-Cu or Ag-Sn and ultrathin oxide shells of CuO or a hybrid of SnO and SnO2. Ag-Sn NPs exhibit a room-temperature resistivity of 4.24 × 10-5 Ω · cm, a little lower than 7.10 × 10-5 Ω · cm of Ag-Cu NPs. Both bimetallic NPs demonstrate typical metallic conduction behavior with a positive temperature coefficient of resistance over 25-300 K. Ag-Sn NPs exhibit thermally competitive stability up to 230 °C and a lower resistivity of 3.18 × 10-5 Ω · cm after sintering at 200 °C, giving it potential for application in flexible printed electronics.
Collapse
Affiliation(s)
- Xin Wang
- School of Materials Science and Engineering, Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116023, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pourmorteza N, Jafarpour M, Feizpour F, Rezaeifard A. Cu(ii) vitamin C tunes photocatalytic activity of TiO 2 nanoparticles for visible light-driven aerobic oxidation of benzylic alcohols. RSC Adv 2020; 10:12053-12059. [PMID: 35496605 PMCID: PMC9050754 DOI: 10.1039/d0ra00075b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/15/2020] [Indexed: 12/13/2022] Open
Abstract
The incorporation of Cu(OAc)2 into ascorbic acid coated TiO2 nanoparticles easily provided a new heterogeneous visible-light active titania-based photocatalyst (TiO2-AA-Cu(ii)) which was characterized by different techniques such as FT-IR, XPS, ICP-AES, TGA and TEM. A red-shift of the band-edge and a reduction of the band-gap (2.8 eV vs. 3.08 for TiO2) were demonstrated by UV-DRS and Tauc plots. The combination of the as-prepared TiO2-AA-Cu(ii) nanoparticles with TEMPO and molecular oxygen (air) afforded an active catalytic system for the selective oxidation of diverse set of benzylic alcohols under solvent-free conditions. A photoassisted pathway was confirmed for oxidation reactions evidenced by good correlation between apparent quantum yield (AQY) and diffuse reflectance spectra (DRS) of the as-prepared nanohybrid. The spectral data and recycling experiments demonstrated the structural stability of the title copper photocatalyst during oxidation reactions.
Collapse
Affiliation(s)
- Narges Pourmorteza
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand Birjand 97179-414 Iran +98 5632202515 +98 5632202516
| | - Maasoumeh Jafarpour
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand Birjand 97179-414 Iran +98 5632202515 +98 5632202516
| | - Fahimeh Feizpour
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand Birjand 97179-414 Iran +98 5632202515 +98 5632202516
| | - Abdolreza Rezaeifard
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand Birjand 97179-414 Iran +98 5632202515 +98 5632202516
| |
Collapse
|
19
|
Singh P, Halder M, Ray S, Bandyopadhyay B, Sen K. Biomolecule-Mediated Generation of Ru Nanocatalyst for Sustainable Reduction of Nitrobenzene. ACS OMEGA 2019; 4:21267-21278. [PMID: 31867521 PMCID: PMC6921630 DOI: 10.1021/acsomega.9b02770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/18/2019] [Indexed: 05/26/2023]
Abstract
A mild and sustainable synthetic route was followed for the generation of biomolecule-assisted Ru nanocatalyst under open as well as inert atmosphere using the polyphenol morin. The nanocatalyst was characterized thoroughly by powder X-ray diffraction, N2 adsorption-desorption, high-resolution transmission electron microscopy, dynamic light scattering, X-ray photoelectron spectroscopy, absorption spectroscopy, Fourier transform infrared spectroscopy, fluorescence spectroscopy, thermogravimetric analysis, and inductively coupled plasma optical emission spectrometry. The nanocatalyst reveals excellent catalytic activity for the reduction of several substituted nitrobenzene to aniline derivatives under simple, mild, and environment-friendly conditions. The catalyst can be reused for four consecutive cycles without significant loss in its catalytic activity.
Collapse
Affiliation(s)
- Pritam Singh
- Department
of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Mita Halder
- Department
of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Santanu Ray
- Surface Analysis Laboratory,
School of Environment
and Technology, University of Brighton, Brighton BN2 4GJ, U.K.
| | - Bilwadal Bandyopadhyay
- ECMP
Division, NMR Laboratory, Saha Institute
of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Kamalika Sen
- Department
of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India
| |
Collapse
|
20
|
Sonochemical Mediated Synthesis of Iron Oxide (Fe3O4 and Fe2O3) Nanoparticles and their Characterization, Cytotoxicity and Antibacterial Properties. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01526-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|