1
|
Ullah Q, Khan SA, Arifuddin M, Mohsin M, Kausar S, Fatema N, Ahmer MF. Recent Developments in Colorimetric and Fluorometric Detection Methods of Trivalent Metal Cations (Al 3+, Fe 3+ and Cr 3+) Using Schiff Base Probes: At a Glance. J Fluoresc 2025; 35:543-557. [PMID: 38133749 DOI: 10.1007/s10895-023-03514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
This review basically concerned with the application of different Schiff bases (SB) based fluorimetric (turn-off and turn-on) and colorimetric chemosensors for the detection of heavy metal cations particularly Al(III), Fe(III), and Cr(III) ions. Chemosensors based on Schiff bases have exhibited outstanding performance in the detection of different metal cations due to their facile and in-expensive synthesis, and their excellent coordination ability with almost all metal cations and stabilize them in different oxidation states. Moreover, Schiff bases have also been used as antifungal, anticancer, analgesic, anti-inflammatory, antibacterial, antiviral, antioxidant, and antimalarial etc. The Schiff base also can be used as an intermediate for the formation of various heterocyclic compounds. In this review, we have focused on the research work performed on the development of chemosensors (colorimetric and fluorometric) for rapid detection of trivalent metal cations particularly Al(III), Fe(III), and Cr(III) ions using Schiff base as a ligand during 2020-2022.
Collapse
Affiliation(s)
- Qasim Ullah
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Salman Ahmad Khan
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Mohammed Arifuddin
- Chemistry Department, Directorate of Distance Education (DDE), Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Md Mohsin
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Samrin Kausar
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Nahid Fatema
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Mohammad Faraz Ahmer
- Department of Electrical and Electronics Engineering, Mewat Engineering College, Nuh Gurugram University Haryana, Gurugram, India.
| |
Collapse
|
2
|
Sharif S, Shahbaz M, Şahin O, Khurshid MA, Anbar MM, Dar B. Synthesis, Crystal Structure and Fluorimetric Study of 2-phenylphthalazin-1(2H)-one: a Highly Selective Florescent Chemosensor for Detection of Fe 3+ and Fe 2+ Metal Ions. J Fluoresc 2024; 34:2783-2791. [PMID: 37910270 DOI: 10.1007/s10895-023-03484-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
A ligand, 2-phenylphthalazin-1(2H)-one (K), was synthesized by refluxing 2-formylbenzoic acid with phenyl hydrazine in presence of ethanol. FTIR, elemental analysis and single crystal XRD techniques were used to elucidate the structure. Fluorimetric turn-off response was recorded when solution of ligand (K) in DMF was treated with aqueous solution of Fe3+ and Fe2+ metal ions. No specific changes were observed on addition of other metal ions (Pb2+, Cd2+, Mn2+, Zn2+, Ba2+, Ni2+, Al3+, Ag1+, Co2+, Ca2+, Cu2+, Mg2+, Cr3+). Limit of Detection (LOD) was calculated for Fe2 and Fe3+as 2.4 µM and 2.5µM respectively, which is quite below to the recommended value 5.4 µM of the Environment Protection Agency of USA. Association constants for Fe3+ and Fe2+ metal ions were determined as 6 × 10-4 M-1 and 3.6 × 10-4 M-1 respectively. Benesi-Hildebrand plot confirmed 1:1 binding ratio between metal ions and ligand.
Collapse
Affiliation(s)
- Shahzad Sharif
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University, Lahore, 54000, Pakistan.
| | - Muhammad Shahbaz
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University, Lahore, 54000, Pakistan
| | - Onur Şahin
- Department of Occupat Health & Safety, Faculty of Health Sciences, Sinop University, TR-57000, Sinop, Turkey
| | - Muhammad Aqib Khurshid
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University, Lahore, 54000, Pakistan
| | - Maryam Musaffa Anbar
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University, Lahore, 54000, Pakistan
| | - Birra Dar
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University, Lahore, 54000, Pakistan
| |
Collapse
|
3
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Zeußel L, Singh S. Meldrum's Acid Furfural Conjugate MAFC: A New Entry as Chromogenic Sensor for Specific Amine Identification. Molecules 2023; 28:6627. [PMID: 37764403 PMCID: PMC10535807 DOI: 10.3390/molecules28186627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Bioactive amines are highly relevant for clinical and industrial application to ensure the metabolic status of a biological process. Apart from this, generally, amine identification is a key step in various bioorganic processes ranging from protein chemistry to biomaterial fabrication. However, many amines have a negative impact on the environment and the excess intake of amines can have tremendous adverse health effects. Thus, easy, fast, sensitive, and reliable sensing methods for amine identification are strongly searched for. In the past few years, Meldrum's acid furfural conjugate (MAFC) has been extensively explored as a starting material for the synthesis of photoswitchable donor-acceptor Stenhouse adducts (DASA). DASA formation hereby results from the rapid reaction of MAFC with primary and secondary amines, which has so far been demonstrated through numerous publications for different applications. The linear form of the MAFC-based DASA exhibits intense pink coloration due to its linear conjugated triene-2-ol conformation, which has inspired researchers to use this easy synthesizable molecule as an optical sensor for primary, secondary, and biogenic amines. Due to its new entry into amine identification, a collection of the literature exclusively on MAFC is demanded. In this mini review, we intend to present the state-of-the-art of MAFC as an optical molecular sensor in hopes to motivate researchers to find even more applications of MAFC-based sensors and methods that pave the way to their usage in medicinal applications.
Collapse
Affiliation(s)
- Lisa Zeußel
- Department of Nanobiosystem Technology, Institute of Chemistry and Biotechnology, Technical University Ilmenau, Prof-Schmidt-Straße 26, 98693 Ilmenau, Germany;
- Research Group Bioorganic Chemistry of Bioactive Surfaces, Institute of Chemistry and Biotechnology, Prof-Schmidt-Straße 26, 98693 Ilmenau, Germany
| | - Sukhdeep Singh
- Research Group Bioorganic Chemistry of Bioactive Surfaces, Institute of Chemistry and Biotechnology, Prof-Schmidt-Straße 26, 98693 Ilmenau, Germany
| |
Collapse
|
5
|
Negi S, Gahlyan P, Bawa R, Singh B, Bhandari M, Kakkar R, Pani B, Kumar R. A rhodamine based fluorescent and colorimetric chemosensor for the detection of Cr 3+ ions and its utility in a molecular logic gate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4000-4009. [PMID: 37545382 DOI: 10.1039/d3ay00783a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A new rhodamine based fluorescent and colorimetric chemosensor S1 was synthesized for the selective recognition of Cr3+, a trivalent metal ion. The interaction of S1 toward different metal ions has been studied via fluorescence and UV-visible spectroscopy. The studies revealed that the fluorescence and colorimetric changes of chemosensor S1 are prominent for Cr3+ over other competitive metal ions. Moreover, the chemosensor S1 exhibits 1 : 1 complex formation with Cr3+ as apparent from the Job's plot and the Benesi-Hildebrand (B-H) plot. Density functional theory (DFT) studies also revealed that the Cr3+ ion is coordinated to three atoms of S1, which validates the formation of a complex between S1 and Cr3+. The limit of detection (LOD) of chemosensor S1 for Cr3+ was 0.21 μM. Furthermore, to explore the recyclability of S1, ethylenediaminetetraacetic acid (EDTA) was added to the S1-Cr3+ solution. On the addition of EDTA to the solution of S1-Cr3+, the reversibility of the complex was observed, and a colorimetric variation was also observed on the addition of Cr3+ and EDTA to S1 which mimics the "INHIBIT "molecular logic gate. Chemosensor S1 also demonstrated practical utility through detection of Cr3+ in the solid state.
Collapse
Affiliation(s)
- Swati Negi
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - Parveen Gahlyan
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
- Department of Chemistry, Shivaji College, University of Delhi, Delhi 110027, India
| | - Rashim Bawa
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - Bholey Singh
- Department of Chemistry, Swami Shraddhanand College, University of Delhi, Delhi 110036, India
| | - Mamta Bhandari
- Computational Chemistry Group, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rita Kakkar
- Computational Chemistry Group, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Balaram Pani
- Department of Chemistry, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India
| | - Rakesh Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
6
|
Singh G, Devi A, Sharma S, Devi S, Mohan B, Yadav R, Sehgal R. Development of piperazine conjoined 1,2,3-triazolyl-γ-propyltriethoxysilanes: Fluorometric detection of Cr 3+ ions and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122358. [PMID: 36702083 DOI: 10.1016/j.saa.2023.122358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Chromium is essential for some biochemical processes, and excess is a big concern that shows adverse effects on human health and the environment. Therefore, it is urgent to design new sensors to detect chromium ions rapidly. The present study discusses the synthesis of piperazine conjoined 1,2,3-triazolyl-γ-propyltriethoxysilanes (4a-4b) and development of 4a as fluorescence turn-on sensor for the detection of Cr3+ ions. The mechanistic insights reveal to the restricted CN rotation and inhibited intramolecular charge transfer (ICT) process. In addition, Job's plot and Benesi-Hildebrand plot justify the 1:1 binding affinity with a binding constant of 9.96 × 105 M-1 for [ligand 4a + Cr3+] complex and the limit of detection for Cr3+ ions is observed as 6.06 × 10-8 M. The fluorescence spectral changes, 1H NMR spectra and DFT studies provide evidences for ligand 4a and Cr3+ ions interactions. Further, the reversibility of the ligand 4a from [ligand 4a + Cr3+] complex on the addition of EDTA can be used in the construction of molecular logic gate where Cr3+ and EDTA are considered as inputs and the fluorescence intensity at 398 nm as output. Further, compounds 4a-4b were then evaluated for their antibacterial activity against bacterial strains (Escherichia coliand Staphylococcus aureus), revealing a modest activity. The binding mode of ligand 4a to Staphylococcus aureus (PDB ID - 3U2K) and Escherichia coli (PDB ID - 5Z4O) was investigated using an in-silico molecular docking technique, which revealed that the triazole ring and silanyl group are involved in hydrogen bonding with proteins and may be the cause of the ligand's antibacterial activity. The ligand 4a demonstrated a high affinity for binding within the active sites of proteins with binding energies of -7.97 kcal/mol (3U2K) and -8.68 kcal/mol (5Z4O).
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Anita Devi
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Sanjay Sharma
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Swati Devi
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Brij Mohan
- College of Ocean Food and Biological Engineering, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen 361021, China
| | - Richa Yadav
- Department of Medical Parasitology, PGIMER, Chandigarh 160014, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, PGIMER, Chandigarh 160014, India.
| |
Collapse
|
7
|
Chang W, Yu X, Xu Z, Sang X, Zhang H, Zeng C. Detection of heavy metal ion in real samples with fiber based paper based on new rare earth cluster. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122097. [PMID: 36462321 DOI: 10.1016/j.saa.2022.122097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/15/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Chromium (Cr) is an important material, but also one of the most toxic heavy metal pollutants, showing great threat to human health and ecological environment, thus, accurate and rapid detection of Cr3+ has far-reaching significance. In this work, based on the ligand of 2,3,4,5,6-pentafluorobenzoic acid (HPFBA) that does not contains oscillation effect group such as "CH, OH, and NH bond", three rare earth dinuclear cluster of Ln2(PFBA)6(phen)2(H2O)2 (Ln = Tb3+1-Tb, Eu3+1-Eu, Gd3+1-Gd, phen = 1,10-phenanthroline) were obtained. 1-Tb shows excellent stability and luminescence properties. In depth investigation reveals that 1-Tb shows quick detection towards Cr3+ in water through luminescence "turn-off", with extremely short response time of 1.0 min, very low limit of detection (LOD) of 5.2 ppb and no interference from other ions. The LOD value is much lower than the total content of chromium for water in China (15 ppm, GB9078-1996). In the actual environment such as tap water, lake water, human, and serum, 1-Tb shows excellent detection and recovery rate for Cr3+. More interestingly, a fiber based paper of test paper that based on 1-Tb and ordinary filter paper was fabricated, which can probe Cr3+ by visible color changes to the naked eye under UV light.
Collapse
Affiliation(s)
- Wenting Chang
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China
| | - Xiaobo Yu
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China
| | - Zhaohui Xu
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China
| | - Xiaoyan Sang
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China
| | - Hua Zhang
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China
| | - Chenghui Zeng
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China.
| |
Collapse
|
8
|
Liu Y, Yang F, Wei K, Kang M, Liu P, Yang X, Pei M, Zhang G. 5-(thiophene-2-yl)oxazole derived “off-on-off” fluorescence chemosensor for sequential recognition of In3+ and Cr3+ ions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
9
|
Musikavanhu B, Zhang Y, Zhu D, Xue Z, Yuan R, Wang S, Zhao L. Turn-off detection of Cr(III) with chelation enhanced fluorescence quenching effect by a naphthyl hydrazone Shiff base chemosensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121599. [PMID: 35816866 DOI: 10.1016/j.saa.2022.121599] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/16/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
A thiophene substituted naphthyl hydrazone derivative NHT was synthesized using a one-step route for the detection of trivalent chromium (Cr3+). UV-visible absorption and emission spectra, density functional theory calculations as well as 1H NMR titration confirmed that the probe underwent a turn-off response via the chelation enhanced fluorescence quenching effect upon exposure to Cr3+ and the NHT-Cr3+ complex was formed at a 1:1 binding stoichiometry. NHT exhibited a fast response rate of 2.3 min in buffer solution and a relatively low limit of detection of 41 nM. In addition, the Schiff base chemosensor exhibited excellent selectivity with high affinity towards Cr3+ in the presence of other competing cations. Bioimaging of the probe in PC3 cells further demonstrated the potential real life application of the probe in detecting Cr3+.
Collapse
Affiliation(s)
- Brian Musikavanhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yujie Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dongwei Zhu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Rui Yuan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China.
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
10
|
Thanigachalam S, Pathak M, Sathiyanarayanan KI. Photodegradation of rhodamine-B and methyl orange employing nano-alumina developed from new aluminium(III) complex(es) associated with phenanthridine-salicylaldehyde derived ligands. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2120814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Sathish Thanigachalam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Madhvesh Pathak
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | |
Collapse
|
11
|
Seenan S, Manickam S, Sawminathan S, Jothi D, Kulathu Iyer S. Phenanthridine based fluorescent probe for Th4+ ion chemosensor. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Algethami JS. A Review on Recent Progress in Organic Fluorimetric and Colorimetric Chemosensors for the Detection of Cr 3+/6+Ions. Crit Rev Anal Chem 2022; 54:487-507. [PMID: 35758232 DOI: 10.1080/10408347.2022.2082242] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Chromium occurs in the environment primarily in two valence states, trivalent Cr3+ and hexavalent Cr6+, which have different physicochemical and biochemical properties. However, the higher concentration of Cr3+/6+ can cause various adverse effects on human health. Therefore, detecting Cr3+/6+ ions is important in various samples. Colorimetric and fluorescent chemosensors are the most powerful tools for the detection of Cr3+/6+ ions. These chemosensors have excellent bioimaging capability and significant sensitivity and selectivity. In this article, different colorimetric and fluorescent chemosensors based on organic compounds, including Schiff base, antipyrine, diarylethene, pyrene, crown ether, dansyl, pyridine, thiazole, coumarin, boradiazaindacene, rhodamine, imidazole, hydrazone, and other functional groups for detection of Cr3+/6+ ions have been reviewed, classified them according to different fluorophore and recognition mode. I hope this article will help the readers for the future design of highly effective, sensitive, and selective chemosensors for the detection and determination of Cr3+/6+ ions.
Collapse
Affiliation(s)
- Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
| |
Collapse
|
13
|
Ling J, Wei G, Li J. A highly sensitive and selective molecularly imprinted sensor for direct determination of ultra‐trace Cr(III) in environmental samples. ChemistrySelect 2022. [DOI: 10.1002/slct.202104521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Ling
- College of Environmental Science and Engineering Guilin University of Technology Guilin 541004 China
| | - Ge Wei
- GRG Metrology & Test (Nanning) Co., Ltd. Nanning 530000 China
| | - Jianping Li
- College of Environmental Science and Engineering Guilin University of Technology Guilin 541004 China
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| |
Collapse
|