1
|
Sevinçli ZŞ, Amudi K, Öncel BC, Yurtcu E, İşeri ÖD, Menges N. Selective RNA binding and imaging with imidazopyrazine-based fluorescent molecule. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 340:126382. [PMID: 40373550 DOI: 10.1016/j.saa.2025.126382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
We report the synthesis and characterization of novel imidazopyrazine-based fluorescent molecules 5a and 5b targeting RNA and DNA binding. Molecule 5b showed superior photophysical properties with stable fluorescence and high quantum yield in various solvents. UV-Vis and fluorescence spectroscopy revealed strong RNA binding with time-dependent fluorescence quenching and increasing absorbance, suggesting groove binding or π-π stacking interactions. Furthermore, agarose gel electrophoresis further confirmed selective RNA binding of 5b. Imaging studies demonstrated that 5b penetrated into viable MCF-7 cells and selectively stained RNA and retained fluorescence for up to 8 h under ambient conditions. These findings advance the study of RNA dynamics in living cells, highlighting the potential of 5b for RNA-specific bioimaging and sensing applications.
Collapse
Affiliation(s)
- Zekiye Şeyma Sevinçli
- Pharmaceutical Chemistry Section, Faculty of Pharmacy, Van Yuzuncu Yil University, Van 65100, Turkiye
| | - Karina Amudi
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya 42090, Turkiye
| | - Buse Ceyda Öncel
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Ankara 06790, Turkiye
| | - Erkan Yurtcu
- Medical Biology Department, School of Medicine, Kırıkkale University, Kırıkkale 71451, Turkiye
| | - Özlem Darcansoy İşeri
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Ankara 06790, Turkiye
| | - Nurettin Menges
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya 42090, Turkiye; Biomedical Engineering Section, Faculty of Engineering, Necmettin Erbakan University, Konya 42090, Turkiye.
| |
Collapse
|
2
|
Deriabina A, Prutskij T, Morales Ochoa HD, Delgado Curiel E, Palacios Corte V. Comparative Study of Fluorescence Emission of Fisetin, Luteolin and Quercetin Powders and Solutions: Further Evidence of the ESIPT Process. BIOSENSORS 2024; 14:413. [PMID: 39329788 PMCID: PMC11430667 DOI: 10.3390/bios14090413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
Fisetin and Luteolin are important flavonoids produced in plants and known for their antioxidant, anti-inflammatory, neuroprotective, and analgesic properties. They are also good candidates for different types of biosensors. The model used to describe the fluorescence (FL) emission of these flavonoids involves an excited-state intermolecular proton transfer (ESIPT) process that causes a change in the molecule configuration and a corresponding decrease in the emission energy. Due to the different molecular structures of Fisetin and Luteolin, only one possible proton transfer within the molecule is allowed for each of them: transfer of the H3 proton for Fisetin and of the H5 for Luteolin. Here, we compare their calculated emission wavelengths, obtained using TDDFT/M06-2X/6-31++G(d,p), with their FL emission spectra measured on the corresponding powders and solutions and show that the experimental data are consistent with the presence of the ESIPT process. We also compare the emission wavelengths found for Fisetin and Luteolin with those calculated and measured for Quercetin, where, under photoexcitation, the transfers of both H3 and H5 protons are possible. We analyze the difference in the processes associated with the H3 and H5 proton transfers and discuss the reason for the predominance of the H5 proton transfer in Quercetin. Additionally, a new system of notation for flavonoid molecules is developed.
Collapse
Affiliation(s)
- Alexandra Deriabina
- Faculty of Physical and Mathematical Sciences, Autonomous University of Puebla (BUAP), Puebla 72570, Mexico
| | - Tatiana Prutskij
- Sciences Institute, Autonomous University of Puebla (BUAP), Puebla 72570, Mexico
| | | | - Esteban Delgado Curiel
- Faculty of Physical and Mathematical Sciences, Autonomous University of Puebla (BUAP), Puebla 72570, Mexico
| | - Veranda Palacios Corte
- Faculty of Physical and Mathematical Sciences, Autonomous University of Puebla (BUAP), Puebla 72570, Mexico
| |
Collapse
|
3
|
Hao Y, Li X, Li H, Chang S, Zhang J, Dong L. Theoretical investigation of the excited-state intramolecular double proton transfer process of 2,2'-(benzo[1,2- d:4,5- d']bis(thiazole)-2,6-diyl)diphenol. RSC Adv 2024; 14:26239-26245. [PMID: 39211530 PMCID: PMC11358760 DOI: 10.1039/d4ra04553j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
In this work, the excited state intramolecular double proton transfer (ESIDPT) mechanism of 2,2'-(benzo[1,2-d:4,5-d']bis(thiazole)-2,6-diyl)diphenol (BTAP) is proposed using density functional theory (DFT) and time-dependent DFT (TDDFT). The changes in bond lengths, bond angles and IR vibrational spectra associated with two intramolecular hydrogen bonds of BTAP upon photoexcitation indicate that the hydrogen bonds are strengthened in the excited state, facilitating the ESIDPT process. Investigation of the constructed S1-state potential energy surface proposes that BTAP prefers a stepwise ESIDPT mechanism. Electronic spectra and frontier molecular orbitals (FMOs) are also presented to illustrate the luminescent properties of BTAP.
Collapse
Affiliation(s)
- Yongchao Hao
- School of Chemical Engineering and Biotechnology, Xingtai University Xingtai 054001 China
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050024 China
| | - Xiaoran Li
- School of Chemical Engineering and Biotechnology, Xingtai University Xingtai 054001 China
| | - Hongfang Li
- School of Chemical Engineering and Biotechnology, Xingtai University Xingtai 054001 China
| | - Shanyan Chang
- School of Chemical Engineering and Biotechnology, Xingtai University Xingtai 054001 China
| | - Jiangyu Zhang
- School of Chemical Engineering and Biotechnology, Xingtai University Xingtai 054001 China
| | - Lili Dong
- School of Chemical Engineering and Biotechnology, Xingtai University Xingtai 054001 China
| |
Collapse
|
4
|
Gül S, Açıkgöz E, Çakır M, Menges N. Design and Synthesis of ESIPT-Based Imidazole Derivatives for Cell Imaging. ACS OMEGA 2024; 9:24291-24298. [PMID: 38882084 PMCID: PMC11171098 DOI: 10.1021/acsomega.3c09822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
Excited-state intramolecular proton transfer (ESIPT)-based fluorescent molecules offer several exciting applications and are utilized most frequently as a cell imaging agent. Because of this, four distinct imidazole derivatives with ESIPT emission have been synthesized, and their fluorescence characteristics have been assessed in a variety of settings. Measurements using fluorescence spectroscopy have shown a promising candidate for cell staining, and potential candidate was specifically investigated for cell imaging uses in HT-29, MDA-MB-231, and HaCaT. Cytotoxicity of candidate molecule (1d) was analyzed using HT-29 and HaCaT cell lines, and at a dosage of 160 μM, HT-29 and HaCaT cell lines showed no signs of important cell toxicity. When spectroscopically measured, compound 1d showed no fluorescence ability in phosphate-buffered saline (PBS) solution. However, after 8 h of incubation in several cell lines, excellent fluorescence characteristics were seen in the green and red filters.
Collapse
Affiliation(s)
- Sergen Gül
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42100 Konya, Türkiye
| | - Eda Açıkgöz
- School of Medicine, Van Yüzüncü Yil University, 65080 Van, Türkiye
| | - Mustafa Çakır
- School of Medicine, Van Yüzüncü Yil University, 65080 Van, Türkiye
| | - Nurettin Menges
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42100 Konya, Türkiye
- Faculty of Pharmacy, Van Yüzüncü Yil University, 65080 Van, Türkiye
| |
Collapse
|
5
|
Bar N, Chowdhury P, Kanti Das G. The photodynamic approach to the molecular-level origin of metal-guided photochromism and ultrafast absorption spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124031. [PMID: 38368822 DOI: 10.1016/j.saa.2024.124031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/28/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
Metal-guided photochromic material (photochromic complex) is one of the latest versions of photo-responsive materials due to their smart behaviour and promising real-world applications. The present work explores the molecular-level origin of metal-guided photochromism using a photodynamic approach and ultrafast absorption spectroscopy, to address all existing lacunas. Here, rhodamine B (RhB) dye containing the Schiff base zinc complex is considered a representative photochromic complex for both theoretical treatment and experimental observations. Detailed theoretical studies, including geometry optimization, frontier molecular orbital (FMO) analysis, transition state (TS) identification, and natural bond orbital (NBO) analysis, along with spectral studies, are employed to investigate the photodynamic equilibrium (enol-form keto-form). This equilibrium is regulated by the interplay of intrinsic factors (push-pull effect) and extrinsic factors (such as UV-light, the phenolic-OH group, metal ions, and solvents). The potential energy surface (PES) of the photo-conversion (enol →enol*→keto*→ meta-stable keto) is evaluated. While, the PES of the reversion (meta-stable keto →enol) is constructed based on the studies of thermo-reversion and photo-reversion. Finally, the theoretical findings related to the photodynamic equilibrium are validated by direct experimental evidence obtained through femtosecond transient absorption (fs-TA) spectroscopy.
Collapse
Affiliation(s)
- Nandagopal Bar
- Polymer & Nano Research Laboratory, Department of Chemistry, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India
| | - Pranesh Chowdhury
- Polymer & Nano Research Laboratory, Department of Chemistry, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India.
| | - Gourab Kanti Das
- Polymer & Nano Research Laboratory, Department of Chemistry, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India
| |
Collapse
|
6
|
MENGEŞ N. Heterocyclic molecules with ESIPT emission: synthetic approaches, molecular diversities, and application strategies. Turk J Chem 2023; 47:888-909. [PMID: 38173742 PMCID: PMC10760871 DOI: 10.55730/1300-0527.3585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
Excited-state intramolecular proton transfer (ESIPT) is one of the most essential emission processes in most circumstances because of its dual emission band in most cases and its high Stokes shifts. These distinguishing properties make ESIPT-based probes more suitable for a variety of applications, including analyte sensors, solid-state sensing mechanisms, optical technologies, and biomarkers for endogenous or exogenous compounds in various settings. As a result, researchers around the world are working on ESIPT emissions and developing different scaffolds for various applications or industry demands. This field of study is rapidly expanding and there is a need for an up-to-date review of synthesis methodologies and applications. This paper provides the highlights of ESIPT-based heterocyclic scaffolds, synthesis strategies, and application scenarios in the literature from 2017 to 2023.
Collapse
Affiliation(s)
- Nurettin MENGEŞ
- Science and Technology Research and Application Center (BİTAM), Necmettin Erbakan University, Konya,
Turkiye
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya,
Turkiye
| |
Collapse
|
7
|
Bera A, Vennapusa SR. Triplet state generation followed by the excited-state intramolecular proton transfer in 3-sulfanylchromen-4-one. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Shekhovtsov NA, Nikolaenkova EB, Ryadun AA, Samsonenko DG, Tikhonov AY, Bushuev MB. ESIPT-Capable 4-(2-Hydroxyphenyl)-2-(Pyridin-2-yl)-1 H-Imidazoles with Single and Double Proton Transfer: Synthesis, Selective Reduction of the Imidazolic OH Group and Luminescence. Molecules 2023; 28:molecules28041793. [PMID: 36838780 PMCID: PMC9962989 DOI: 10.3390/molecules28041793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
1H-Imidazole derivatives establish one of the iconic classes of ESIPT-capable compounds (ESIPT = excited state intramolecular proton transfer). This work presents the synthesis of 1-hydroxy-4-(2-hydroxyphenyl)-5-methyl-2-(pyridin-2-yl)-1H-imidazole (LOH,OH) as the first example of ESIPT-capable imidazole derivatives wherein the imidazole moiety simultaneously acts as a proton acceptor and a proton donor. The reaction of LOH,OH with chloroacetone leads to the selective reduction of the imidazolic OH group (whereas the phenolic OH group remains unaffected) and to the isolation of 4-(2-hydroxyphenyl)-5-methyl-2-(pyridin-2-yl)-1H-imidazole (LH,OH), a monohydroxy congener of LOH,OH. Both LOH,OH and LH,OH demonstrate luminescence in the solid state. The number of OH···N proton transfer sites in these compounds (one for LH,OH and two for LOH,OH) strongly affects the luminescence mechanism and color of the emission: LH,OH emits in the light green region, whereas LOH,OH luminesces in the orange region. According to joint experimental and theoretical studies, the main emission pathway of both compounds is associated with T1 → S0 phosphorescence and not related to ESIPT. At the same time, LOH,OH also exhibits S1 → S0 fluorescence associated with ESIPT with one proton transferred from the hydroxyimidazole moiety to the pyridine moiety, which is not possible for LH,OH due to the absence of the hydroxy group in the imidazole moiety.
Collapse
Affiliation(s)
- Nikita A. Shekhovtsov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Correspondence: (N.A.S.); (A.Y.T.); (M.B.B.)
| | - Elena B. Nikolaenkova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alexey A. Ryadun
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Denis G. Samsonenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alexsei Ya. Tikhonov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Correspondence: (N.A.S.); (A.Y.T.); (M.B.B.)
| | - Mark B. Bushuev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Correspondence: (N.A.S.); (A.Y.T.); (M.B.B.)
| |
Collapse
|
9
|
Shekhovtsov NA, Nikolaenkova EB, Berezin AS, Plyusnin VF, Vinogradova KA, Naumov DY, Pervukhina NV, Tikhonov AY, Bushuev MB. Tuning ESIPT-coupled luminescence by expanding π-conjugation of a proton acceptor moiety in ESIPT-capable zinc(II) complexes with 1-hydroxy-1 H-imidazole-based ligands. Dalton Trans 2022; 51:15166-15188. [PMID: 36129344 DOI: 10.1039/d2dt02460h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emission of ESIPT-fluorophores is known to be sensitive to various external and internal stimuli and can be fine-tuned through substitution in the proton-donating and proton-accepting groups. The incorporation of metal ions in the molecules of ESIPT fluorophores without their deprotonation is an emerging area of research in coordination chemistry which provides chemists with a new factor affecting the ESIPT reaction and ESIPT-coupled luminescence. In this paper we present 1-hydroxy-5-methyl-4-(pyridin-2-yl)-2-(quinolin-2-yl)-1H-imidazole (HLq) as a new ESIPT-capable ligand. Due to the spatial separation of metal binding and ESIPT sites this ligand can coordinate metal ions without being deprotonated. The reactions of ZnHal2 with HLq afford ESIPT-capable [Zn(HLq)Hal2] (Hal = Cl, Br, I) complexes. In the solid state HLq and [Zn(HLq)Hal2] luminesce in the orange region (λmax = 600-650 nm). The coordination of HLq by Zn2+ ions leads to the increase in the photoluminescence quantum yield due to the chelation-enhanced fluorescence effect. The ESIPT process is barrierless in the S1 state, leading to the only possible fluorescence channel in the tautomeric form (T), S1T → S0T. The emission of [Zn(HLq)Hal2] in the solid state is blue-shifted as compared with HLq due to the stabilization of the ground state and destabilization of the excited state. In CH2Cl2 solutions, the compounds demonstrate dual emission in the UV (λmax = 358 nm) and green (λmax = 530 nm) regions. This dual emission is associated with two radiative deactivation channels in the normal (N) and tautomeric (T) forms, S1N → S0N and S1T → S0T, originating from two minima on the excited state potential energy surfaces. High energy barriers for the GSIPT process allow the trapping of molecules in the minimum of the tautomeric form, S0T, resulting in the possibility of the S0T → S1T photoexcitation and extraordinarily small Stokes shifts in the solid state. Finally, the π-system of quinolin-2-yl group facilitates the delocalization of the positive charge in the proton-accepting part of the molecule and promotes the ESIPT reaction.
Collapse
Affiliation(s)
- Nikita A Shekhovtsov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Elena B Nikolaenkova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Alexey S Berezin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Victor F Plyusnin
- Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3, Institutskaya str., Novosibirsk, 630090, Russia
| | - Katerina A Vinogradova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Dmitry Yu Naumov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Natalia V Pervukhina
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Alexsei Ya Tikhonov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Mark B Bushuev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| |
Collapse
|
10
|
Anomalous emission of an ESIPT-capable zinc(II) complex: an interplay of TADF, TICT and anti-Kasha behaviour. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Shang C, Cao Y, Sun C, Li Y. Comparison of the excited-state proton transfer and single electron transfer mechanisms of the natural antioxidant Juglone and its dimer 3,3′-bijuglone. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Li Y, Wang Y, Feng X, Zhao Y. Spectroscopic and mechanistic insights into solvent mediated excited-state proton transfer and aggregation-induced emission: introduction of methyl group onto 2-( o-hydroxyphenyl)benzoxazole. Phys Chem Chem Phys 2022; 24:26297-26306. [DOI: 10.1039/d2cp03007a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
2-(2-Hydroxy-5-methylphenyl)benzoxazole(HBO-pCH3), a solvatochromic benzoxazole-based probe, exhibited a typical dual fluorescence phenomenon, high fluorescence quantum yield, red-shifted emission and large Stokes’ shift via the ESIPT in solvents.
Collapse
Affiliation(s)
- Yu Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuanyue Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaoqing Feng
- School of Pharmacy & School of Medicine, Changzhou University, Changzhou 213164, China
| | - Yanying Zhao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
13
|
Kan XT, Yao H, Niu YB, Hu YP, Zhang YM, Wei TB, Lin Q. Regulation of conjugate rigid plane structures for achieving transformation of fluorescence recognition properties. NEW J CHEM 2022. [DOI: 10.1039/d1nj05911d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Regulation of a conjugate rigid plane structure based on bisbenzimidazole derivatives to research the structure-effective relationship between conjugate systems size and fluorescence sensing properties.
Collapse
Affiliation(s)
- Xiao-Tong Kan
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Hong Yao
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Yan-Bing Niu
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Yin-Ping Hu
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - You-Ming Zhang
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
- Deputy Director-General of Gansu Natural Energy Research Institute, Renmin Road 23, Lanzhou, Gansu, 730070, P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Qi Lin
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| |
Collapse
|