1
|
Zhan C, Lan G, Dan Q, Qin N, Pearson A, Mellinger P, Liu Y, Wang Z, Cheong S, Dou C, Li C, Haushalter R, Keasling JD. Hybrid biological-chemical strategy for converting polyethylene into a recyclable plastic monomer using engineered Corynebacterium glutamicum. Metab Eng 2025; 90:106-116. [PMID: 40057262 DOI: 10.1016/j.ymben.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/09/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Converting polyethylene (PE) into valuable materials, particularly ones that are better for the environment than the incumbent plastics, not only helps mitigate environmental issues caused by plastic waste but also alleviates the long-standing problem of microbial fermentation competing with food supplies. However, the inherent robustness of PE due to its strong carbon-carbon bonds and high molecular weight necessitates harsh decomposition conditions, resulting in diverse decomposition outcomes that present significant challenges for downstream applications, especially for bioconversion. In this study, we demonstrate a hybrid biological-chemical conversion process for PE, converting its decomposition products, namely short-chain diacids, into a monomer, β-keto-δ-lactone (BKDL), for highly recyclable polydiketoenimine plastics using engineered Corynebacterium glutamicum. Since BKDL synthesis requires a substantial supply of malonyl-CoA, we employed an alternative biosynthesis pathway that leverages C. glutamicum's natural proficiency in amino acid production. We optimized this pathway in vivo by minimizing carbon loss to CO2 and byproducts, improving the transporter system, and maximizing co-factor regeneration. Furthermore, we co-optimized the PE deconstruction process to produce predominantly C4 to C6 diacids and integrated three catabolic pathways into the engineered strain to enhance diacid utilization, maximizing the carbon conversion from PE. Finally, an engineered polyketide synthase was introduced into C. glutamicum to enable BKDL synthesis. This work demonstrates the potential of a chemo-biological hybrid strategy for recycling plastic waste, highlighting its promise in addressing environmental challenges and promoting sustainable materials.
Collapse
Affiliation(s)
- Chunjun Zhan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Guangxu Lan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Qingyun Dan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ning Qin
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Allie Pearson
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Peter Mellinger
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Yuzhong Liu
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Zilong Wang
- Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
| | - Seokjung Cheong
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Chang Dou
- Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
| | - Chenyi Li
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robert Haushalter
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA; Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
2
|
Nasiriani T, Veisi P, Dikici B, Fattah-Alhosseini A. Chemical fixation of CO 2 conducted by Mg-based materials catalysts to produce cyclic carbonates: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125495. [PMID: 40300544 DOI: 10.1016/j.jenvman.2025.125495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/07/2025] [Accepted: 04/20/2025] [Indexed: 05/01/2025]
Abstract
We are witnessing a surge in CO2 emissions into the atmosphere, leading to serious environmental issues for our planet. If we do not take action, it will harm humanity and the biosphere. Increased levels of CO2 in the atmosphere contribute to global warming, which results in climate upheavals that disrupt ecosystems, alter plant reproduction conditions, and cause numerous related problems. Consequently, the current CO2 levels in the atmosphere must be significantly lowered as soon as possible. CO2 is a plentiful C1 feedstock, and its chemical utilization has inspired chemists in recent years. The reaction of CO2 with epoxide to produce cyclic carbonate (CCs) is highly significant and actively pursued in laboratories worldwide. So, by chemically fixing CO2 into valuable cyclic carbonates, we can achieve two goals at once: reducing atmospheric CO2 and producing essential chemicals. However, CO2's low reactivity and high stability make fixation challenging, leading to the development of innovative heterogeneous catalytic systems to address this. Magnesium-based materials (Mg-based materials) have become an attractive choice for chemical catalysis of CO2 fixation reactions owing to their unique properties enabled by the polar structure of Mg(II) leads to their high CO2 affinity. This research deals with the introduction of Mg-based materials, synthesis methods, and their effect on the performance of the catalytic process in CO2 fixation reactions. Thus, this review can provide researchers with light horizons in utilizing the high potential of Mg-based materials in synthesizing efficient catalysts to achieve excellent yield, conversion, and selectivity in the cycloaddition of CO2 to epoxides into CCs.
Collapse
Affiliation(s)
- Tahereh Nasiriani
- Department of Materials Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.
| | - Payam Veisi
- Department of Materials Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
| | - Burak Dikici
- Department of Mechanical Engineering, Ataturk University, Erzurum, 25240, Turkey.
| | - Arash Fattah-Alhosseini
- Department of Materials Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
3
|
Loprete F, Tosi Brandi E, Calcagno F, De Maron J, Fasolini A, Tarroni R, Basile F, Rivalta I. Advancing CO 2 Conversion with Cu-LDHs: A Review of Computational and Experimental Studies. CHEM REC 2025:e202500014. [PMID: 40227138 DOI: 10.1002/tcr.202500014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/26/2025] [Indexed: 04/15/2025]
Abstract
Layered Double Hydroxides (LDHs) are versatile materials with tuneable properties. They show promising electro- and photo-catalytic activity in the activation and conversion of CO2. Their unique properties make LDHs pivotal materials in emerging sustainable strategies for mitigating the effect of CO2 emissions. However, the intricate structure-property relationship inherent to LDHs challenges their rational design. In this review, we provide a comprehensive overview of both experimental and computational studies about LDHs for photo- and electro-catalytic conversion of CO2, mainly focusing on Cu-based systems due to their superior performance in producing C2 products. We present a background framework, describing the essentials computational and experimental tools, designed to support both experimentalists and theoreticians in the development of tailored LDH materials for efficient and sustainable CO2 valorisation. Finally, we discuss future potential advancements, emphasizing the importance of new synergistic experimental-computational studies.
Collapse
Affiliation(s)
- Fabio Loprete
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum -, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| | - Eleonora Tosi Brandi
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum -, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Interdepartmental Center for Industrial Research, Renewable Sources, Environment, Sea, Energy (CIRI-FRAME), Alma Mater-Studiorum, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| | - Francesco Calcagno
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum -, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| | - Jacopo De Maron
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum -, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Interdepartmental Center for Industrial Research, Renewable Sources, Environment, Sea, Energy (CIRI-FRAME), Alma Mater-Studiorum, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| | - Andrea Fasolini
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum -, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Interdepartmental Center for Industrial Research, Renewable Sources, Environment, Sea, Energy (CIRI-FRAME), Alma Mater-Studiorum, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| | - Riccardo Tarroni
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| | - Francesco Basile
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum -, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Interdepartmental Center for Industrial Research, Renewable Sources, Environment, Sea, Energy (CIRI-FRAME), Alma Mater-Studiorum, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum -, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| |
Collapse
|
4
|
Maitlo HA, Younis SA, Lee CS, Kim KH. Progress in heterostructures for photoelectrocatalytic reduction of carbon dioxide into fuels and value-added products. Adv Colloid Interface Sci 2025; 341:103483. [PMID: 40139066 DOI: 10.1016/j.cis.2025.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/15/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Carbon capture and utilization (CCU) technology offers a sustainable option to simultaneously address both energy crisis and environmental pollution such as catalytic reduction of carbon dioxide (CO2) into value-added fuel products (e.g., C1-C3). Among diverse CCU strategies, the light-irradiated photoelectrocatalytic (PEC) approach is recognized as a cutting-edge option for efficient CO2 reduction reaction (RR) through the integration of photocatalysis and electrocatalysis within a one-stage hybridized catalytic system. Therefore, this review is meticulously structured to elucidate the potential utility of advanced composite catalysts (e.g., titanium dioxide, metal-organic frameworks, and organic/miscellaneous heterostructure materials) in PEC-CO2RR. It also examines the factors and processes governing their PEC-CO2RR activites in relation to their reduction pathways, electronic structures, charge-carrier dynamics, types of electrolytes, mass transfer, light-adsorption potential, and the viability of active sites. The fundamental principles and working mechanisms of diverse catalytic materials in PEC-CO2RR are also outlined to help establish the advanced catalytic systems based on performance assessments (e.g., in terms of CO2 conversion rate, quantum yield, and space-time yield). Overall, this review is expected to deliver the new path for the construction of the next-generation PEC-CO2RR systems that are upscalable, stable, and reusable with enhanced catalytic activity.
Collapse
Affiliation(s)
- Hubdar Ali Maitlo
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea; Department of Energy and Environment Engineering, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea; Analysis and Evaluation department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Caroline Sunyong Lee
- Department of Materials and Chemical Engineering, Hanyang University, Gyeonggi 15500, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
5
|
Lopat'eva ER, Krylov IB, Terent'ev AO. N-Hydroxyphthalimide/TiO 2 Catalyzed Addition of Ethers, Alkylarenes and Aldehydes to Azodicarboxylates under Visible Light. Chemistry 2025; 31:e202404687. [PMID: 39888700 DOI: 10.1002/chem.202404687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/02/2025]
Abstract
The addition of carbon-centered radicals to double bonds is one of the most atom-efficient approaches to the formation of new C-C or C-heteroatom bonds. Existing approaches for the generation of carbon-centered radicals often require elevated temperatures, UV radiation or expensive transition metal catalysts. In this work, a photocatalytic system based on a heterogeneous TiO2 catalyst and a redox organocatalyst N-hydroxyphthalimide is proposed for the generation of carbon-centered radicals from C(sp3)-H substrates or aldehydes at room temperature under visible light irradiation. The developed approach was successfully applied to the addition of ethers, alkylarenes and aldehydes to azodicarboxylates. Titanium oxide acts as a photocatalyst, producing phthalimide-N-oxyl radicals from N-hydroxyphthalimide, thereby enabling the organocatalytic process in solution. Phthalimide-N-oxyl radicals act as catalytically active species that cleave C-H bonds to form carbon-centered radicals.
Collapse
Affiliation(s)
- Elena R Lopat'eva
- Laboratory for Studies of Homolytic Reactions, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation
| | - Igor B Krylov
- Laboratory for Studies of Homolytic Reactions, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation
| | - Alexander O Terent'ev
- Laboratory for Studies of Homolytic Reactions, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation
| |
Collapse
|
6
|
Zaera F. Role of Metal Cocatalysts in the Photocatalytic Production of Hydrogen from Water Revisited. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2025; 39:2422-2434. [PMID: 39936115 PMCID: PMC11808650 DOI: 10.1021/acs.energyfuels.4c06100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
The use of photocatalysts to promote the production of molecular hydrogen from water, following the so-called water splitting reaction, continues to be a promising route for the green production of fuels. The molecular basis of this photocatalysis is the photoexcitation of electrons from the valence band of semiconductors to their conduction band, from which they can be transferred to chemical reactants, protons in the case of water, to promote a reduction reaction. The mechanism by which such a process takes place has been studied extensively using titanium oxide, a simple material that fulfills most requirements for water splitting. However, photocatalysis with TiO2 tends to be highly inefficient; a cocatalyst, commonly a late transition metal (Au, Pt) in nanoparticle form, needs to be added to facilitate the production of H2. The metal is widely believed to help with the scavenging of the excited electrons from the conduction band of the semiconductor in order to prevent their recombination with the accompanying hole formed in the valence band, a step that cancels the initial photon absorption and competes with the photolytic chemical reduction. Here we review and analyze the molecular basis for that mechanism and argue for an alternative explanation, that the role of the metal is to help with the recombination of the atomic hydrogen atoms produced by proton reduction on the semiconductor surface instead. First, we summarize what is known about the electronic structure of these photocatalysts and how the electronic levels need to line up for the reduction of protons in water to be feasible. Next, we review the current understanding of the dynamics of the steps associated with the absorption of photons, the de-excitation via electron-hole pair recombination and fluorescence decay, and the electronic transitions that lead to proton reduction, and contrast those with the rates of the chemical steps required to produce molecular hydrogen. The following section addresses the changes introduced by the addition of the metal cocatalyst, comparatively evaluating its role as either an electron scavenger or a promoter of the recombination of hydrogen atoms. A discussion of the viable chemical mechanisms for the latter pathway is included. Finally, we briefly mention other associated aspects of this photocatalysis, including the possible promotion of H2 production with visible light via resonant excitation of the surface plasmon of Au nanoparticles, the use of single-metal (Au, Pt) atom catalysts and of yolk-shell nanostructures, and the reduction of organic molecules. We end with a brief personal perspective on the possible generality of the concepts introduced in this Critical Review.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center
for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
7
|
Sobczuk KS, Pełech I, Sibera D, Staciwa P, Wanag A, Ekiert E, Kapica-Kozar J, Ćmielewska K, Kusiak-Nejman E, Morawski AW, Narkiewicz U. Investigation of the Photocatalytic Activity of Copper-Modified Commercial Titania (P25) in the Process of Carbon Dioxide Photoreduction. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6139. [PMID: 39769738 PMCID: PMC11677653 DOI: 10.3390/ma17246139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
The photocatalytic reduction of CO2 to useful products is an area of active research because it shows a potential to be an efficient tool for mitigating climate change. This work investigated the modification of titania with copper(II) nitrate and its impact on improving the CO2 reduction efficiency in a gas-phase batch photoreactor under UV-Vis irradiation. The investigated photocatalysts were prepared by treating P25-copper(II) nitrate suspensions (with various Cu2+ concentrations), alkalized with ammonia water, in a microwave-assisted solvothermal reactor. The titania-based photocatalysts were characterized by SEM, EDS, ICP-OES, XRD and UV-Vis/DR methods. Textural properties were measured by the low-temperature nitrogen adsorption/desorption studies at 77 K. P25 photocatalysts modified with copper(II) nitrate used in the process of carbon dioxide reduction allowed for a higher efficiency both for the photocatalytic reduction of CO2 to CH4 and for the photocatalytic water decomposition to hydrogen as compared to a reference. Similarly, modified samples showed significantly higher selectivity towards methane in the CO2 conversion process than the unmodified sample (a change from 30% for a reference sample to 82% for the P25-R-Cu-0.1 sample after the 6 h process). It was found that smaller loadings of Cu are more beneficial for increasing the photocatalytic activity of a sample.
Collapse
Affiliation(s)
- Konrad Sebastian Sobczuk
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (A.W.); (E.E.); (J.K.-K.); (K.Ć.); (E.K.-N.); (A.W.M.); (U.N.)
| | - Iwona Pełech
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (A.W.); (E.E.); (J.K.-K.); (K.Ć.); (E.K.-N.); (A.W.M.); (U.N.)
| | - Daniel Sibera
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (A.W.); (E.E.); (J.K.-K.); (K.Ć.); (E.K.-N.); (A.W.M.); (U.N.)
- Department of Construction and Road Engineering, Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Piastów 50a, 70-311 Szczecin, Poland
| | - Piotr Staciwa
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (A.W.); (E.E.); (J.K.-K.); (K.Ć.); (E.K.-N.); (A.W.M.); (U.N.)
| | - Agnieszka Wanag
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (A.W.); (E.E.); (J.K.-K.); (K.Ć.); (E.K.-N.); (A.W.M.); (U.N.)
| | - Ewa Ekiert
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (A.W.); (E.E.); (J.K.-K.); (K.Ć.); (E.K.-N.); (A.W.M.); (U.N.)
| | - Joanna Kapica-Kozar
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (A.W.); (E.E.); (J.K.-K.); (K.Ć.); (E.K.-N.); (A.W.M.); (U.N.)
| | - Katarzyna Ćmielewska
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (A.W.); (E.E.); (J.K.-K.); (K.Ć.); (E.K.-N.); (A.W.M.); (U.N.)
| | - Ewelina Kusiak-Nejman
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (A.W.); (E.E.); (J.K.-K.); (K.Ć.); (E.K.-N.); (A.W.M.); (U.N.)
| | - Antoni Waldemar Morawski
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (A.W.); (E.E.); (J.K.-K.); (K.Ć.); (E.K.-N.); (A.W.M.); (U.N.)
| | - Urszula Narkiewicz
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (A.W.); (E.E.); (J.K.-K.); (K.Ć.); (E.K.-N.); (A.W.M.); (U.N.)
| |
Collapse
|
8
|
Babu D, Jagadeesan D, Thejaswini TVL, Mohan AM, Deivasigamani P. Visible light responsive heterophase Titania monoliths for the fast and efficient photocatalytic decontamination of organic pollutants. Sci Rep 2024; 14:27441. [PMID: 39523397 PMCID: PMC11551148 DOI: 10.1038/s41598-024-79285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
The article reports the synthesis of an ordered mesoporous network of heterophase TiO2 monoliths as a visible light-responsive photocatalyst using tri-block copolymers of Pluronic F108, P123 and F127 as structure-directing agents (SDAs) and temperature-controlled calcination (450-650 °C) has been carried out by direct templating-assisted hydrothermal approach. The structural/surface morphology and topographical properties of the photocatalyst are characterized using FE-SEM-EDAX, HR-TEM-SAED, p-XRD, VB-XPS, PLS, TG/DTA, UV-Vis-DRS, BET/BJH and zeta potential analysis. The undoped heterophase mesoporous TiO2 monoliths with in-built lattice/surface defects exhibit visible light photocatalytic properties, successfully dissipating Reactive Brown 10 (RB-10) dye. The influence of physicochemical parameters, such as SDAs, temperature, pH, dye concentration, catalyst dosage, photosensitizers and light intensities, are optimized for maximum photocatalytic performance at a shorter timespan. The F127-assisted mesoporous TiO2 monolith (550 °C) exhibits superior degradation kinetics (15 min) for RB-10 dye solution (20 ppm) at pH 2.0-3.0 using a photocatalyst dosage of 50 mg and 2 mM of KBrO3, irradiated with 150 W/cm2 tungsten lamp. The photocatalysts are fabricated without complicated chemical modifications and display topmost efficiency in quickly decontaminating persistent pollutants. The photoproducts from RB-10 photocatalytic degradation are investigated using HR-MS analysis. The photocatalyst can be reused efficiently for six cycles, even under extreme conditions.
Collapse
Affiliation(s)
- Denna Babu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Dhivya Jagadeesan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - T V L Thejaswini
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Akhila Maheswari Mohan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
9
|
Du Y, Yan Q, Wang S. Progress and Challenges of Monometallic Titanium Coordination Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403470. [PMID: 39109946 DOI: 10.1002/smll.202403470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/12/2024] [Indexed: 11/21/2024]
Abstract
The realm of titanium coordination polymer research is still in its nascent stages and presents a formidable challenge in the field of coordination chemistry. In recent decades, the focus has predominantly been on manipulating titanium reactions in solution, resulting in the synthesis of ≈60 targeted compounds. Despite the limited number of documented instances, these materials showcase a diverse array of structures, encompassing 1D chains, 2D layers, and 3D frameworks. This suggests potential for fine-tuning coordination modes and structural features in future investigations. Moreover, titanium coordination polymers not only exhibit photo-active and photo-responsive properties but also hold promise for various other significant applications. This article offers an exhaustive review tracing the evolution of titanium coordination polymer development while providing an update on recent advancements. The review encompasses a synopsis of reported synthetic strategies, methodologies, structural diversity, and associated applications. Additionally, it delves into critical issues that necessitate attention for future progressions and proposes potential avenues to effectively propel this research field forward at an accelerated pace.
Collapse
Affiliation(s)
- Yafei Du
- Hefei National Research Center for Physical Sciences at the Microscale, Suzhou Institute for Advanced Research, CAS Key Laboratory of Microscale Magnetic Resonance, Anhui Province Key Laboratory of Scientific Instrument Development and Application, Hefei National Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Qingqing Yan
- Hefei National Research Center for Physical Sciences at the Microscale, Suzhou Institute for Advanced Research, CAS Key Laboratory of Microscale Magnetic Resonance, Anhui Province Key Laboratory of Scientific Instrument Development and Application, Hefei National Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Sujing Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Suzhou Institute for Advanced Research, CAS Key Laboratory of Microscale Magnetic Resonance, Anhui Province Key Laboratory of Scientific Instrument Development and Application, Hefei National Laboratory, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
10
|
Baran T, Caringella D, Dibenedetto A, Aresta M. Pitfalls in Photochemical and Photoelectrochemical Reduction of CO 2 to Energy Products. Molecules 2024; 29:4758. [PMID: 39407686 PMCID: PMC11477605 DOI: 10.3390/molecules29194758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The photochemical and photoelectrochemical reduction of CO2 is a promising approach for converting carbon dioxide into valuable chemicals (materials) and fuels. A key issue is ensuring the accuracy of experimental results in CO2 reduction reactions (CO2RRs) because of potential sources of false positives. This paper reports the results of investigations on various factors that may contribute to erroneous attribution of reduced-carbon species, including degradation of carbon species contained in photocatalysts, residual contaminants from synthetic procedures, laboratory glassware, environmental exposure, and the operator. The importance of rigorous experimental protocols, including the use of labeled 13CO2 and blank tests, to identify true CO2 reduction products (CO2RPs) accurately is highlighted. Our experimental data (eventually complemented with or compared to literature data) underline the possible sources of errors and, whenever possible, quantify the false positives with respect to the effective conversion of CO2 in clean conditions. This paper clarifies that the incidence of false positives is higher in the preliminary phase of photo-material development when CO2RPs are in the range of a few 10s of μg gcat-1 h-1, reducing its importance when significant conversions of CO2 are performed reaching 10s of mol gcat-1 h-1. This paper suggests procedures for improving the reliability and reproducibility of CO2RR experiments, thus validating such technologies.
Collapse
Affiliation(s)
- Tomasz Baran
- Innovative Catalysis for Carbon Recycling-ICR, Via Camillo Rosalba 49, 70124 Bari, Italy; (T.B.); (D.C.)
| | - Domenico Caringella
- Innovative Catalysis for Carbon Recycling-ICR, Via Camillo Rosalba 49, 70124 Bari, Italy; (T.B.); (D.C.)
| | - Angela Dibenedetto
- Interuniversity Consortium on Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Michele Aresta
- Innovative Catalysis for Carbon Recycling-ICR, Via Camillo Rosalba 49, 70124 Bari, Italy; (T.B.); (D.C.)
| |
Collapse
|
11
|
Qiao XX, Xu YH, Liu XJ, Chen SL, Zhong Z, Li YF, Lü J. Nitrogen-doped titanium dioxide/schwertmannite nanocomposites as heterogeneous photo-Fenton catalysts with enhanced efficiency for the degradation of bisphenol A. J Environ Sci (China) 2024; 143:1-11. [PMID: 38644008 DOI: 10.1016/j.jes.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 04/23/2024]
Abstract
Potential health risks related to environmental endocrine disruptors (EEDs) have aroused research hotspots at the forefront of water treatment technologies. Herein, nitrogen-doped titanium dioxide/schwertmannite nanocomposites (N-TiO2/SCH) have been successfully developed as heterogeneous catalysts for the degradation of typical EEDs via photo-Fenton processes. Due to the sustainable Fe(III)/Fe(II) conversion induced by photoelectrons, as-prepared N-TiO2/SCH nanocomposites exhibit much enhanced efficiency for the degradation of bisphenol A (BPA; ca. 100% within 60 min under visible irradiation) in a wide pH range of 3.0-7.8, which is significantly higher than that of the pristine schwertmannite (ca. 74.5%) or N-TiO2 (ca. 10.8%). In this photo-Fenton system, the efficient degradation of BPA is mainly attributed to the oxidation by hydroxyl radical (•OH) and singlet oxygen (1O2). Moreover, the possible catalytic mechanisms and reaction pathway of BPA degradation are systematically investigated based on analytical and photoelectrochemical analyses. This work not only provides a feasible means for the development of novel heterogeneous photo-Fenton catalysts, but also lays a theoretical foundation for the potential application of mineral-based materials in wastewater treatment.
Collapse
Affiliation(s)
- Xing-Xing Qiao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Hang Xu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang-Ji Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sai-Le Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhou Zhong
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya-Feng Li
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| | - Jian Lü
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
12
|
Haroon H, Xiang Q. Single-Atom based Metal-Organic Framework Photocatalysts for Solar-Fuel Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401389. [PMID: 38733221 DOI: 10.1002/smll.202401389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Indexed: 05/13/2024]
Abstract
The growing demand for fossil fuels and subsequent CO2 emissions prompted a search for alternate sources of energy and a reduction in CO2. Photocatalysis driven by solar light has been found as a potential research area to tackle both these problems. In this direction, SAC@MOF (Single-atom loaded MOFs) photocatalysis is an emerging field and a promising technology. The unique properties of single-atom catalysts (SACs), such as high catalytic activity and selectivity, are leveraged in these systems. Photocatalysis, focusing on the utilization of Metal-Organic Frameworks (MOFs) as platforms for creating single-atom catalysts (SACs) characterized by metal single-atoms (SAs) as their active sites, are noted for their unparalleled atomic efficiency, precisely defined active sites, and superior photocatalytic performance. The synergy between MOFs and SAs in photocatalytic systems is meticulously examined, highlighting how they collectively enhance photocatalytic efficiency. This review examines SAC@MOF development and applications in environmental and energy sectors, focusing on synthesis and stabilization methods for SACs on MOFs and also characterization techniques vital for understanding these catalysts. The potential of SAC@MOF in CO2 Photoreduction and Photocatalytic H2 evolution is highlighted, emphasizing its role in green energy technologies and advances in materials science and Photocatalysis.
Collapse
Affiliation(s)
- Haamid Haroon
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Quanjun Xiang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
13
|
Kong F, Chen W. Carbon Dioxide Capture and Conversion Using Metal-Organic Framework (MOF) Materials: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1340. [PMID: 39195378 DOI: 10.3390/nano14161340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
The escalating threat of anthropogenic climate change has spurred an urgent quest for innovative CO2 capture and utilization (CCU) technologies. Metal-organic frameworks (MOFs) have emerged as prominent candidates in CO2 capture and conversion due to their large specific surface area, well-defined porous structure, and tunable chemical properties. This review unveils the latest advancements in MOF-based materials specifically designed for superior CO2 adsorption, precise separation, advanced photocatalytic and electrocatalytic CO2 reduction, progressive CO2 hydrogenation, and dual functionalities. We explore the strategies that enhance MOF efficiency and examine the challenges of and opportunities afforded by transitioning from laboratory research to industrial application. Looking ahead, this review offers a visionary perspective on harnessing MOFs for the sustainable capture and conversion of CO2.
Collapse
Affiliation(s)
- Fanyi Kong
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wenqian Chen
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
14
|
Chen J, Liu Y, Xie Q, He Y, Zhong D, Chang H, Ho SH, Zhong N. Photocatalytic Optical Hollow Fiber with Enhanced Visible-light-driven CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310894. [PMID: 38431943 DOI: 10.1002/smll.202310894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/16/2024] [Indexed: 03/05/2024]
Abstract
A visible-light-driven CO2 reduction optical fiber is fabricated using graphene-like nitrogen-doped composites and hollow quartz optical fibers to achieve enhanced activity, selectivity, and light utilization for CO2 photoreduction. The composites are synthesized from a lead-based metal-organic framework (TMOF-10-NH2) and g-C3N4 nanosheet (CNNS) via electrostatic self-assembly. The TMOF-10-NH2/g-C3N4 (TMOF/CNNS) photocatalyst with an S-type heterojunction is coated on optical fiber. The TMOF/CNNS coating, which has a bandgap energy of 2.15 eV, has good photoinduced capability at the coating interfaces, high photogenerated electron-hole pair yield, and high charge transfer rate. The conduction band potential of the TMOF/CNNS coating is more negative than that for CO2 reduction. Moreover, TMOF facilitates the CO desorption on its surface, thereby improving the selectivity for CO production. High CO2 photoreduction and selectivity for CO production is demonstrated by the TMOF/CNNS-coated optical fiber with the cladding/core diameter of 2000/1000 µm, 10 wt% TMOF in CNNS, coating thickness of 25 µm, initial CO2 concentration of 90 vol%, and relative humidity of 88% RH under the excitation wavelength of 380-780 nm. Overall, the photocatalytic hollow optical fiber developed herein provides an effective and efficient approach for the enhancement of light utilization efficiency of photocatalysts and selective CO2 reduction.
Collapse
Affiliation(s)
- Jie Chen
- Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing University of Technology, Chongqing, 400054, China
| | - Yang Liu
- Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing University of Technology, Chongqing, 400054, China
| | - Quanhua Xie
- Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing University of Technology, Chongqing, 400054, China
| | - Yuanyuan He
- Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing University of Technology, Chongqing, 400054, China
| | - Dengjie Zhong
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, China
| | - Nianbing Zhong
- Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing University of Technology, Chongqing, 400054, China
| |
Collapse
|
15
|
Yanagimachi A, Kono T, Ota K, Torita T, Bonilla DR, Autrey DE, Badr HO, Barsoum MW. Investigation of Ultramicroporous Structure of One-Dimensional Lepidocrocite Titanates Using Carbon Dioxide and Nitrogen Gases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39016446 DOI: 10.1021/acs.langmuir.4c01689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The novel material, one-dimensional lepidocrocite (1DL) titanate, is attracting industrial and scientific interest because of its applicability to a wide range of practical applications and its ease of synthesis and scale up of production. In this study, we investigated the CO2 adsorption capability and pore structures of 1DL freeze-dried and lithium chloride washed air-dried powders. The synthesized 1DL was characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Using the constant-volume method, CO2 gas adsorption revealed that the 1DL exhibits type IV adsorption-desorption isotherms. The heats of adsorption obtained from the adsorption branches are lower than those obtained from the desorption branches. Brunauer-Emmett-Teller (BET) analysis, using N2 gas adsorption isotherms at 77 K showed that 1DL possesses 80.2 m2/g of BET specific surface area. Nonlocal density functional theory analysis indicated that two types of pores, meso-pores and ultramicro pores, exist in the 1DL freeze-dried powders. This work provides deep insights into the pore structures and CO2 adsorption mechanisms of 1DL powders.
Collapse
Affiliation(s)
| | - Takayuki Kono
- Murata Manufacturing Co., Ltd., Nagaokakyo-shi, Kyoto 617-8555, Japan
| | - Kota Ota
- Murata Manufacturing Co., Ltd., Nagaokakyo-shi, Kyoto 617-8555, Japan
| | - Takeshi Torita
- Murata Manufacturing Co., Ltd., Nagaokakyo-shi, Kyoto 617-8555, Japan
| | - Daja R Bonilla
- Department of Chemistry & Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States
| | - Daniel E Autrey
- Department of Chemistry & Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States
| | - Hussein O Badr
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Michel W Barsoum
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Treto-Suárez MA, Hidalgo-Rosa Y, Saavedra-Torres M, Koivisto BD, Mena Ulecia K, Páez-Hernández D, Zarate X, Schott E. Tunable optical properties of isoreticular UiO-67 MOFs for photocatalysis: a theoretical study. Dalton Trans 2024; 53:11310-11325. [PMID: 38898805 DOI: 10.1039/d4dt01017e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A theoretical study of the reported photocatalytic systems based on Zr-based MOF (UiO-67) with biphenyl-4,4'-dicarboxylic acid (bpdc) and 2,2'-bipyridine-5,5'-dicarboxylic acid (bpydc) as linkers was performed. Quantum chemical calculations were carried out to understand the optical properties of the materials and to facilitate the rational design of new UiO-67 derivatives with potentially improved features as photocatalysts under ambient conditions. Hence, the effect of the structural modifications on the optical properties was studied considering different designs based on the nature of the linkers: in 1 only the bpdc linker was considered, or the mixture 1 : 1 between bpdc and bpydc linkers (labeled as 1A). Also, substituents R, -NH2, and -SH, were included in the 1A MOF only over the bpdc linker (labeled as 1A-bpdc-R) and on both bpdc and bpydc linkers (labeled as 1A-R). Thus a family of six isoreticular UiO-67 derivatives was theoretically characterized using Density Functional Theory (DFT) calculations on the ground singlet (S0) and first excited states (singlet and triplet) using Time-Dependent Density Functional Theory (TD-DFT), multiconfigurational post-Hartree-Fock method via Complete Active Space Self-Consistent Field (CASSCF). In addition, the use of periodic DFT calculations suggest that the energy transfer (ET) channel between bpdc and bpydc linkers might generate more luminescence quenching of 1A when compare to 1. Besides, the results suggest that the 1A-R (R: -SH and NH2) can be used under ambient conditions; however, the ET exhibited by 1A, cannot take place in the same magnitude in these systems. These ET can favor the photocatalytic reduction of a potential metal ion, that can coordinate with the bpydc ligand, via LMCT transition. Consequently, the MOF might be photocatalytically active against molecules of interest (such as H2, N2, CO2, among others) with photo-reduced metal ions. These theoretical results serve as a useful tool to guide experimental efforts in the design of new photocatalytic MOF-based systems.
Collapse
Affiliation(s)
- Manuel A Treto-Suárez
- Departamento de Física y Química, Facultad de Ingeniería, IDETECO, Universidad Autónoma de Chile, Av. Alemania 01090, 4810101-Temuco, Chile.
| | - Yoan Hidalgo-Rosa
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, 8580745, Chile
| | - Mario Saavedra-Torres
- Millennium Nucleus in Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| | - Bryan D Koivisto
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Karel Mena Ulecia
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Ave. Rudecindo Ortega 02950, Temuco, Chile
| | - Dayán Páez-Hernández
- Doctorado en Fisicoquímica Molecular, Center of Applied Nanosciences (CANS), Universidad Andres Bello, Ave. República #275, Santiago de Chile, Chile
| | - Ximena Zarate
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
| |
Collapse
|
17
|
Jiang Y, Li S, Fan Y, Tang Z. Best Practices for Experiments and Reports in Photocatalytic Methane Conversion. Angew Chem Int Ed Engl 2024; 63:e202404658. [PMID: 38573117 DOI: 10.1002/anie.202404658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Efficiently converting methane into valuable chemicals via photocatalysis under mild condition represents a sustainable route to energy storage and value-added manufacture. Despite continued interest in this area, the achievements have been overshadowed by the absence of standardized protocols for conducting photocatalytic methane oxidation experiments as well as evaluating the corresponding performance. In this review, we present a structured solution aimed at addressing these challenges. Firstly, we introduce the norms underlying reactor design and outline various configurations in the gas-solid and gas-solid-liquid reaction systems. This discussion helps choosing the suitable reactors for methane conversion experiments. Subsequently, we offer a comprehensive step-by-step protocol applicable to diverse methane-conversion reactions. Emphasizing meticulous verification and accurate quantification of the products, this protocol highlights the significance of mitigating contamination sources and selecting appropriate detection methods. Lastly, we propose the standardized performance metrics crucial for evaluating photocatalytic methane conversion. By defining these metrics, the community could obtain the consensus of assessing the performance across different studies. Moving forward, the future of photocatalytic methane conversion necessitates further refinement of stringent experimental standards and evaluation criteria. Moreover, development of scalable reactor is essential to facilitate the transition from laboratory proof-of-concept to potentially industrial production.
Collapse
Affiliation(s)
- Yuheng Jiang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Siyang Li
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingying Fan
- Guangdong Engineering Technology Research Center for Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P.R. China
| | - Zhiyong Tang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Kubiak A, Zalas M, Cegłowski M. Innovative microwave in situ approach for crystallizing TiO 2 nanoparticles with enhanced activity in photocatalytic and photovoltaic applications. Sci Rep 2024; 14:12617. [PMID: 38824155 PMCID: PMC11144198 DOI: 10.1038/s41598-024-63614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024] Open
Abstract
This investigation introduces an innovative approach to microwave-assisted crystallization of titania nanoparticles, leveraging an in situ process to expedite anatase crystallization during microwave treatment. Notably, this technique enables the attainment of crystalline material at temperatures below 100 °C. The physicochemical properties, including crystallinity, morphology, and textural properties, of the synthesized TiO2 nanomaterials show a clear dependence on the microwave crystallization temperature. The presented microwave crystallization methodology is environmentally sustainable, owing to heightened energy efficiency and remarkably brief processing durations. The synthesized TiO2 nanoparticles exhibit significant effectiveness in removing formic acid, confirming their practical utility. The highest efficiency of formic acid photodegradation was demonstrated by the T_200 material, reaching almost 100% efficiency after 30 min of irradiation. Furthermore, these materials find impactful application in dye-sensitized solar cells, illustrating a secondary avenue for the utilization of the synthesized nanomaterials. Photovoltaic characterization of assembled DSSC devices reveals that the T_100 material, synthesized at a higher temperature, exhibits the highest photoconversion efficiency attributed to its outstanding photocurrent density. This study underscores the critical importance of environmental sustainability in the realm of materials science, highlighting that through judicious management of the synthesis method, it becomes feasible to advance towards the creation of multifunctional materials.
Collapse
Affiliation(s)
- Adam Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego 8, 61614, Poznan, Poland.
| | - Maciej Zalas
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego 8, 61614, Poznan, Poland
| | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego 8, 61614, Poznan, Poland
| |
Collapse
|
19
|
Xu L, Yu JC, Wang Y. Recent advances on bismuth oxyhalides for photocatalytic CO 2 reduction. J Environ Sci (China) 2024; 140:183-203. [PMID: 38331499 DOI: 10.1016/j.jes.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/24/2023] [Accepted: 07/01/2023] [Indexed: 02/10/2024]
Abstract
Photocatalytic conversion of CO2 into fuels such as CO, CH4, and CH3OH, is a promising approach for achieving carbon neutrality. Bismuth oxyhalides (BiOX, where X = Cl, Br, and I) are appropriate photocatalysts for this purpose due to the merits of visible-light-active, efficient charge separation, and easy-to-modify crystal structure and surface properties. For practical applications, multiple strategies have been proposed to develop high-efficiency BiOX-based photocatalysts. This review summarizes the development of different approaches to prepare BiOX-based photocatalysts for efficient CO2 reduction. In the review, the fundamentals of photocatalytic CO2 reduction are introduced. Then, several widely used modification methods for BiOX photocatalysts are systematacially discussed, including heterojunction construction, introducing oxygen vacancies (OVs), Bi-enrichment, heteroatom-doping, and morphology design. Finally, the challenges and prospects in the design of future BiOX-based photocatalysis for efficient CO2 reduction are examined.
Collapse
Affiliation(s)
- Liangpang Xu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China.
| | - Ying Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China.
| |
Collapse
|
20
|
Kong Y, Pan J, Li Y, Zhang Y, Lin W. Synergistic effect between transition metal single atom and SnS 2 toward deep CO 2 reduction. iScience 2024; 27:109658. [PMID: 38646174 PMCID: PMC11031821 DOI: 10.1016/j.isci.2024.109658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/29/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
The electrochemical reduction of CO2 is an efficient channel to facilitate energy conversion, but the rapid design and rational screening of high-performance catalysts remain a great challenge. In this work, we investigated the relationships between the configuration, energy, and electronic properties of SnS2 loaded with transition metal single atom (TM@SnS2) and analyzed the mechanism of CO2 activation and reduction by using density functional theory. The "charge transfer bridge" promoted the adsorption of CO2 on TM@SnS2, thus enhancing the binding of HCOOH∗ to the catalyst for further hydrogenation and reduction to high-value CH4. The research revealed that the binding free energy of COOH∗ on TM@SnS2 formed a "volcano curve" with the limiting potential of CO2 reduction to CH4, and the TM@SnS2 (TM = Cr, Ru, Os, and Pt) at the "volcano top" exhibited a high CH4 activity.
Collapse
Affiliation(s)
- Yuehua Kong
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Junhui Pan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Yi Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, People’s Republic of China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, People’s Republic of China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, People’s Republic of China
| |
Collapse
|
21
|
Shi JY, Wang ZL, Wang KA, Zhu HB. Synergistic effects of CuS/TiO 2 heterointerfaces: Enhanced cathodic CO 2 reduction and anodic CH 3OH oxidation for paired electrosynthesis of formate. J Colloid Interface Sci 2024; 659:248-256. [PMID: 38176234 DOI: 10.1016/j.jcis.2023.12.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
The electrochemical reduction of carbon dioxide into energy-carrying compounds or value-added chemicals is of great significance for diminishing the greenhouse effect. However, it is still imperative to replace the less-value anodic oxygen evolution reaction (OER) to improve the technical economy. Herein, we firstly reported a bifunctional CuS/TiO2 catalyst for both anodic methanol oxidation reaction (MOR) and cathodic carbon dioxide reduction (CO2R). The in-built abundant CuS/TiO2 heterointerfaces are found to boost the CO2R and MOR to produce formate. Based on the unique bifunctionality of CuS/TiO2, a paired electrosynthesis of formate was performed with a total Faradaic efficiency (FE) of about 170 %, in which the cathodic CO2R achieved a formate FE of about 70 %, and the anodic MOR exhibited an almost 100 % formate FE.
Collapse
Affiliation(s)
- Jia-Yi Shi
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Zhen-Long Wang
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Ke-An Wang
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Hai-Bin Zhu
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China.
| |
Collapse
|
22
|
Tran MN, Moreau M, Addad A, Teurtrie A, Roland T, de Waele V, Dewitte M, Thomas L, Levêque G, Dong C, Simon P, Ben Tayeb K, Mele D, Ordomsky V, Grandidier B. Boosting Gas-Phase TiO 2 Photocatalysis with Weak Electric Field Strengths of Volt/Centimeter. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38501567 DOI: 10.1021/acsami.3c19031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Among semiconductor nanomaterials, titanium dioxide is at the forefront of heterogeneous photocatalysis, but its catalytic activity greatly suffers from the loss of photoexcited charge carriers through deleterious recombination processes. Here, we investigate the impact of an external electric field (EEF) applied to conventional P25 TiO2 nanopowder with or without Au nanoparticles (NPs) to circumvent this issue. The study of two redox reactions in the gas phase, water splitting and toluene degradation, reveals an enhancement of the photocatalytic activity with rather modest electric fields of a few volt/centimeters only. Such an improvement arises from the electric-field-induced quenching of the green emission in anatase, allowing the photoexcited charge carriers to be transferred to the adsorbed reactants instead of pointless radiative recombinations. Applying an EEF across a trap-rich metal oxide material, such as TiO2, which, when impregnated with Au NPs, leads, respectively, to 12- and 6-fold enhancements in the production of hydrogen and the oxidation of toluene for an electric field of 8 V/cm, without any electrolysis, is a simple and elegant strategy to meet higher photocatalytic efficiencies.
Collapse
Affiliation(s)
- My Nghe Tran
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS─Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| | - Myriam Moreau
- Université de Lille, CNRS, UMR 8516-LASIRE-Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Ahmed Addad
- CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, Université de Lille, Lille F-59000, France
| | - Adrien Teurtrie
- CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, Université de Lille, Lille F-59000, France
| | - Thomas Roland
- Université de Lille, CNRS, UMR 8516-LASIRE-Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Vincent de Waele
- Université de Lille, CNRS, UMR 8516-LASIRE-Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Marc Dewitte
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| | - Louis Thomas
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| | - Gaëtan Levêque
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| | - Chunyang Dong
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS─Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Pardis Simon
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS─Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Karima Ben Tayeb
- Université de Lille, CNRS, UMR 8516-LASIRE-Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - David Mele
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| | - Vitaly Ordomsky
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS─Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Bruno Grandidier
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| |
Collapse
|
23
|
Xie Z, Xu S, Li L, Gong S, Wu X, Xu D, Mao B, Zhou T, Chen M, Wang X, Shi W, Song S. Well-defined diatomic catalysis for photosynthesis of C 2H 4 from CO 2. Nat Commun 2024; 15:2422. [PMID: 38499562 PMCID: PMC10948895 DOI: 10.1038/s41467-024-46745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Owing to the specific electronic-redistribution and spatial proximity, diatomic catalysts (DACs) have been identified as principal interest for efficient photoconversion of CO2 into C2H4. However, the predominant bottom-up strategy for DACs synthesis has critically constrained the development of highly ordered DACs due to the random distribution of heteronuclear atoms, which hinders the optimization of catalytic performance and the exploration of actual reaction mechanism. Here, an up-bottom ion-cutting architecture is proposed to fabricate the well-defined DACs, and the superior spatial proximity of CuAu diatomics (DAs) decorated TiO2 (CuAu-DAs-TiO2) is successfully constructed due to the compact heteroatomic spacing (2-3 Å). Owing to the profoundly low C-C coupling energy barrier of CuAu-DAs-TiO2, a considerable C2H4 production with superior sustainability is achieved. Our discovery inspires a novel up-bottom strategy for the fabrication of well-defined DACs to motivate optimization of catalytic performance and distinct deduction of heteroatom synergistically catalytic mechanism.
Collapse
Affiliation(s)
- Zhongkai Xie
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shengjie Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shanhe Gong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaojie Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Dongbo Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Baodong Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ting Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Min Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
24
|
Perota G, Faghani-Eskandarkolaei P, Zahraie N, Zare MH, Sattarahmady N. A Study of Sonodynamic Therapy of Melanoma C540 Cells in Vitro by Titania/Gold Nanoparticles. J Biomed Phys Eng 2024; 14:43-54. [PMID: 38357599 PMCID: PMC10862114 DOI: 10.31661/jbpe.v0i0.2310-1674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/25/2023] [Indexed: 02/16/2024]
Abstract
Background Sonodynamic Therapy (SDT), a safe and non-invasive strategy in tumor therapy, is in development using novel sono-sensitizers, activated by low-intensity ultrasound radiation. SDT mainly progresses through Reactive Oxygen Species (ROS) generation followed by cell annihilation. Objective The current study aimed to investigate the effect of ultrasound therapy with titania/gold nanoparticles (NPs) on melanoma cancer. Material and Methods In this experimental study, Titania/gold NPs (TGNPs) were synthesized, and their activity was investigated in sonodynamic therapy of a melanoma cancer cell line (C540). SDT was performed at 1.0 W cm-2 and 1.0 MHz for one minute. Results The synthesized NPs that comprised gold NPs of <10 nm into titania NPs of <20 nm showed great stability and cytocompatibility. While TGNPs were biocompatible, a remarkable rate of cell ablation was observed upon ultrasound irradiation due to ROS generation. Conclusion The SDT using TGNPs can be introduced as an alternative and low-cost treatment method for melanoma malignancy.
Collapse
Affiliation(s)
- Ghazale Perota
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parsa Faghani-Eskandarkolaei
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Zahraie
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hosein Zare
- Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Naghmeh Sattarahmady
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Kubiak A, Cegłowski M. Unraveling the impact of microwave-assisted techniques in the fabrication of yttrium-doped TiO 2 photocatalyst. Sci Rep 2024; 14:262. [PMID: 38168912 PMCID: PMC10761958 DOI: 10.1038/s41598-023-51078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024] Open
Abstract
In this study, we investigate the role of microwave technology in the fabrication of yttrium-doped TiO2 through a comparative analysis of hydrothermal techniques. Microwave-assisted hydrothermal synthesis offers advantages, but a comprehensive comparison between microwave-assisted and conventional methods is lacking. Therefore, in our investigation, we systematically evaluate and compare the morphological, structural, and optical properties of yttrium-doped TiO2 samples synthesized using both techniques. The X-ray diffraction (XRD) patterns confirm the anatase tetragonal structure of the synthesized TiO2-Y systems, while the larger ion radius of yttrium (Y3+) compared to titanium (Ti4+) presents challenges for yttrium to incorporate into the TiO2 lattice. The X-ray Photoelectron Spectroscopy (XPS) revealed a significant difference in the atomic content of yttrium between the TiO2-Y systems synthesized using microwave-assisted and conventional methods. This finding suggests that the rapid microwave method is more effective in successfully doping TiO2 with rare earth metals such as yttrium. The photo-oxidation of carbamazepine (CBZ) using TiO2-Y systems demonstrated high efficiency under UV-LED light. Microwave-synthesized TiO2-Y demonstrates improved photo-oxidation efficiency of CBZ, attributed to enhanced absorption, charge transfer, surface area, and crystallite size. Overall, the microwave-synthesized TiO2-Y systems showed promising performance for the photo-oxidation of CBZ, with improved efficiency compared to conventional synthesis methods.
Collapse
Affiliation(s)
- Adam Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego 8, 61614, Poznan, Poland.
| | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego 8, 61614, Poznan, Poland
| |
Collapse
|
26
|
Ahmadi M, Alavi SM, Larimi A. Pt-Cu@Bi 2MoO 6/TiO 2 Photocatalyst for CO 2 Reduction. Inorg Chem 2023. [PMID: 37996778 DOI: 10.1021/acs.inorgchem.3c03372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Bi2MoO6/TiO2 heterojunction photocatalysts were constructed by depositing Bi2MoO6 nanosheets on TiO2 nanobelts' surface using a solvothermal method, and the surface of the optimum Bi2MoO6/TiO2 composite was decorated with copper and/or platinum nanoparticles. The synthesized samples were investigated for the CO2 photocatalytic reduction. The structural and optical properties of synthesized photocatalysts were characterized by XRD, FESEM, EDX, N2-physisorption, Raman, TPD-CO2, DRS, and PL analysis. The Bi2MoO6/TiO2 composite with different molar ratios of Bi2MoO6 to TiO2 (1, 1/2, 1/3, 1/4, 1/5, and 1/6) showed enhanced photocatalytic activity compared to pure Bi2MoO6 and TiO2. In comparison to bulk Bi2MoO6 and TiO2, the formation of a heterojunction between Bi2MoO6 and TiO2 leads to enhanced CO2 adsorption capacity. The enhanced performance of composites can be ascribed to the improved efficiency of light harvesting in the visible light range and suppressing charge recombination. The composite photocatalytic activity indicated that the ratio of Bi2MoO6 to TiO2 in the composite samples influenced the photocatalytic performance. The Bi2MoO6/TiO2 composite with 1/4 molar ratio had the best performance in 8 h (36.4 μmol/gcat), which was about 10 and 3 times higher than TiO2 and Bi2MoO6 photocatalysts, respectively. Under UV-visible light irradiation, the Pt-Cu@BMT4 sample produced the highest amount of methane (83.6 μmol/gcat) during CO2 photoreduction. During four irradiation cycles, the Pt-Cu@BMT4 sample exhibited superior stability with less than 5% decrease in methane production.
Collapse
Affiliation(s)
- Maryam Ahmadi
- Catalyst and Nanomaterials Research Laboratory (CNMRL), School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Seyed Mehdi Alavi
- Catalyst and Nanomaterials Research Laboratory (CNMRL), School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Afsanehsadat Larimi
- Department of Chemical and Process Engineering, Niroo Research Institute, Tehran 14686-13113, Iran
| |
Collapse
|
27
|
Zheng J, Li J, Fu Q, Zhang L, Zhu X, Liao Q. Boosting Carbon Dioxide Reduction in a Photocatalytic Fuel Cell with a Bubbling Fluidized Cathode: Dual Function of Titanium Carbide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16182-16190. [PMID: 37906836 DOI: 10.1021/acs.langmuir.3c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Photoelectrochemical reduction of carbon dioxide (CO2) is a promising avenue to realize resourceful utilization of carbon dioxide and mitigate the energy shortage. Herein, a photocatalytic fuel cell with a bubbling fluidized cathode (PFC-BFC) is proposed to increase the performance of the photocatalytic CO2 reduction reaction (CO2RR). Titanium carbide (Ti3C2) is first used as a fluidized cathode catalyst with the dual features of superior capacitance and high CO2RR catalytic activity. Compared with the conventional PFC system, the as-proposed PFC-BFC system exhibits a higher gas production performance. Particularly, the generation rate and Faraday efficiency for CH4 production reach to 37.2 μmol g-1 h-1 and 72%, which are 10.9 and 6.5 times higher than that of the conventional PFC system, respectively. The bubbling fluidized cathode allows a rapid electron transfer between catalysts and the current collector and an efficient diffusion of catalysts in the whole solution, thus remarkably increasing the effective reaction area of the CO2RR. In addition, the fluidized reaction mechanism of charging/discharging-coupled CO2RR is investigated. Significantly, a magnified PFC-BFC system is designed and exhibits a similar gas generation rate compared to that of the small-scale system, indicating a good potential of scaling up in the industry applications. These results demonstrated that the proposed PFC-BFC system can maximize the utilization of catalyst active sites and enhance the reaction kinetics, providing an alternative design for the application of CO2RR.
Collapse
Affiliation(s)
- Jili Zheng
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Jun Li
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Qian Fu
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Liang Zhang
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Xun Zhu
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Qiang Liao
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| |
Collapse
|
28
|
Zhu L, Qin C, Wang Y, Cao J. WS 2 supported PtO x clusters for efficient photocatalytic CO 2 reduction: a DFT study. Phys Chem Chem Phys 2023; 25:30014-30022. [PMID: 37905440 DOI: 10.1039/d3cp03592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Platinum (Pt) nanoparticles/nanoclusters are some of the most efficient cocatalysts for photocatalytic CO2 reduction. Nevertheless, the produced CO can lead to a poisoning effect due to the strong adsorption strength of the Pt cocatalysts. Using density functional theory, PtOx clusters with variable sizes (Pt4O6, Pt5O8, Pt7O10, and Pt8O13) are selected to load on WS2 (PtOx-WS2) for photocatalytic CO2 conversion. The calculated results demonstrate that PtOx-WS2 are highly stable, and the electron-rich PtOx clusters are beneficial for the photocatalytic CO2 reduction. All the PtOx-WS2 catalysts exhibit efficient photocatalytic performance for CO2 reduction. Especially, Pt4O6-, Pt5O8-, and Pt8O13-WS2 have acceptable or ultra-low ΔGmax (ΔG for the rate-determining step) of 0.57, 0.23, and 0.48 eV to produce CH3OH, HCOOH, and CH4, respectively. The photocatalytic activities of PtOx-WS2 are correlated with the adsorption strength of the key intermediates, and the strong interactions between PtOx-WS2 and *COOH or *HCOO can lower the free energy changes for the first hydrogenation step. More importantly, PtOx-WS2 can also weaken the adsorption strength of *CO and *HCOOH, which are conducive to forming *CHO. This work gives an in-depth insight to design novel catalysts and promote their catalytic activity for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Linghao Zhu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Cong Qin
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Yan Wang
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Jianliang Cao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Polytechnic University, Jiaozuo 454000, China.
| |
Collapse
|
29
|
Shang Z, Feng X, Chen G, Qin R, Han Y. Recent Advances on Single-Atom Catalysts for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304975. [PMID: 37528498 DOI: 10.1002/smll.202304975] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Indexed: 08/03/2023]
Abstract
The present energy crisis and environmental challenges may be efficiently resolved by converting carbon dioxide (CO2 ) into various useful carbon products. The development of more effective catalysts has been the main focus of current research on photocatalytic CO2 reduction. Due to their high atomic efficiency and superior catalytic activity, single-atom catalysts (SACs) have attracted considerable interest in catalytic CO2 conversion. This review discusses the current research developments, obstacles, and potential of SACs for photocatalytic CO2 reduction. And further, discusses the principle of photocatalytic carbon dioxide reduction. This work has compared and analyzed the effects of support materials and active site types in SACs on photocatalytic CO2 reduction performance. This work believes that by sharing these developments, some inspiration for the rational design and development of stable and effective photocatalytic CO2 reduction catalysts based on SACs can be provided.
Collapse
Affiliation(s)
- Ziang Shang
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xueting Feng
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guanzhen Chen
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rong Qin
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
| |
Collapse
|
30
|
Hassaan MA, El-Nemr MA, Elkatory MR, Ragab S, Niculescu VC, El Nemr A. Principles of Photocatalysts and Their Different Applications: A Review. Top Curr Chem (Cham) 2023; 381:31. [PMID: 37906318 PMCID: PMC10618379 DOI: 10.1007/s41061-023-00444-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Human existence and societal growth are both dependent on the availability of clean and fresh water. Photocatalysis is a type of artificial photosynthesis that uses environmentally friendly, long-lasting materials to address energy and environmental issues. There is currently a considerable demand for low-cost, high-performance wastewater treatment equipment. By changing the structure, size, and characteristics of nanomaterials, the use of nanotechnology in the field of water filtration has evolved dramatically. Semiconductor-assisted photocatalysis has recently advanced to become among the most promising techniques in the fields of sustainable energy generation and ecological cleanup. It is environmentally beneficial, cost-effective, and strictly linked to the zero waste discharge principle used in industrial effluent treatment. Owing to the reduction or removal of created unwanted byproducts, the green synthesis of photoactive nanomaterial is more beneficial than chemical synthesis approaches. Furthermore, unlike chemical synthesis methods, the green synthesis method does not require the use of expensive, dangerous, or poisonous ingredients, making it a less costly, easy, and environmental method for photocatalyst synthesis. This work focuses on distinct greener synthesis techniques utilized for the production of new photocatalysts, including metals, metal doped-metal oxides, metal oxides, and plasmonic nanostructures, including the application of artificial intelligence and machine learning to the design and selection of an innovative photocatalyst in the context of energy and environmental challenges. A brief overview of the industrial and environmental applications of photocatalysts is also presented. Finally, an overview and recommendations for future research are given to create photocatalytic systems with greatly improved stability and efficiency.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Marine Pollution Department, Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, 21556, Alexandria, Egypt.
| | - Mohamed A El-Nemr
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia, 61519, Egypt
| | - Marwa R Elkatory
- Advanced Technology and New Materials Research Institute, SRTA-City, New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Safaa Ragab
- Marine Pollution Department, Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, 21556, Alexandria, Egypt
| | - Violeta-Carolina Niculescu
- National Research and Development Institute for Cryogenic and Isotopic Technologies-ICSI Rm. Valcea, 4th Uzinei Street, 240050, Valcea, Romania
| | - Ahmed El Nemr
- Marine Pollution Department, Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, 21556, Alexandria, Egypt.
| |
Collapse
|
31
|
Fallahizadeh S, Gholami M, Rahimi MR, Esrafili A, Farzadkia M, Kermani M. Enhanced photocatalytic degradation of amoxicillin using a spinning disc photocatalytic reactor (SDPR) with a novel Fe 3O 4@void@CuO/ZnO yolk-shell thin film nanostructure. Sci Rep 2023; 13:16185. [PMID: 37758793 PMCID: PMC10533499 DOI: 10.1038/s41598-023-43437-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotics are resistant compounds with low biological degradation that generally cannot be removed by conventional wastewater treatment processes. The use of yolk-shell nanostructures in spinning disc photocatalytic reactor (SDPR) enhances the removal efficiency due to their high surface-to-volume ratio and increased interaction between catalyst particles and reactants. The purpose of this study is to investigate the SDPR equipped to Fe3O4@void@CuO/ZnO yolk-shell thin film nanostructure (FCZ YS) in the presence of visible light illumination in the photocatalytic degradation of amoxicillin (AMX) from aqueous solutions. Stober, co-precipitation, and self-transformation methods were used for the synthesis of FCZ YS thin film nanostructure and the physical and chemical characteristics of the catalyst were analyzed by XRD, VSM,, EDX, FESEM, TEM, AFM, BET, contact angle (CA), and DRS. Then, the effect of different parameters including pH (3-11), initial concentration of AMX (10-50 mg/L), flow rate (10-25 mL/s) and rotational speed (100-400 rpm) at different times in the photocatalytic degradation of AMX were studied. The obtained results indicated that the highest degradation efficiency of 97.6% and constant reaction rate of AMX were obtained under LED visible light illumination and optimal conditions of pH = 5, initial AMX concentration of 30 mg/L, solution flow rate of 15 mL/s, rotational speed of 300 rpm and illumination time of 80 min. The durability and reusability of the nanostructure were tested, that after 5 runs had a suitable degradation rate. Considering the appropriate efficiency of amoxicillin degradation by FCZ YS nanostructure, the use of Fe3O4@void@CuO/ZnO thin film in SDPR is suggested in water and wastewater treatment processes.
Collapse
Affiliation(s)
- Saeid Fallahizadeh
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahmood Reza Rahimi
- Process Intensification Laboratory, Department of Chemical Engineering, Yasouj University, Yasouj, 75918-74831, Iran.
| | - Ali Esrafili
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Meinhardová V, Dubnová L, Drobná H, Matějová L, Kočí K, Čapek L. Role of lamp type in conventional batch and micro-photoreactor for photocatalytic hydrogen production. Front Chem 2023; 11:1271410. [PMID: 37799783 PMCID: PMC10548134 DOI: 10.3389/fchem.2023.1271410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The use of an irradiation source with a homogeneous distribution of irradiation in the volume of the reaction mixture belongs to the essential aspects of heterogeneous photocatalysis. First, the efficacy of six lamps with various radiation intensity and distribution characteristics is contrasted. The topic of discussion is the photocatalytic hydrogen production from a methanol-water solution in the presence of a NiO-TiO2 photocatalyst. The second section is focused on the potential of a micro-photoreactor system-the batch reactor with a micro-reactor with a circulating reaction mixture, in which the photocatalytic reaction takes place using TiO2 immobilized on borosilicate glass. Continuous photocatalytic hydrogen generation from a methanol-water solution is possible in a micro-photoreactor. This system produced 333.7 ± 21.1 µmol H2 (252.8 ± 16.0 mmol.m-2, the hydrogen formation per thin film area) in a reproducible manner during 168 h.
Collapse
Affiliation(s)
| | - Lada Dubnová
- Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia
| | - Helena Drobná
- Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia
| | - Lenka Matějová
- Institute of Environmental Technology, VŠB-Technical University of Ostrava, Ostrava Poruba, Czechia
| | - Kamila Kočí
- Institute of Environmental Technology, VŠB-Technical University of Ostrava, Ostrava Poruba, Czechia
| | - Libor Čapek
- Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia
| |
Collapse
|
33
|
Moustakas NG, Klahn M, Mei BT, Pougin A, Dilla M, Peppel T, Ristig S, Strunk J. A high-purity gas-solid photoreactor for reliable and reproducible photocatalytic CO 2 reduction measurements. HARDWAREX 2023; 15:e00448. [PMID: 37795341 PMCID: PMC10545968 DOI: 10.1016/j.ohx.2023.e00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 10/06/2023]
Abstract
Reactions between a gas phase and a solid material are of high importance in the study of alternative ways for energy conversion utilizing otherwise useless carbon dioxide (CO2). The photocatalytic CO2 reduction to hydrocarbon fuels like e.g., methane (CH4) is such a potential candidate process converting solar light into molecular bonds. In this work, the design, construction, and operation of a high-purity gas-solid photoreactor is described. The design aims at eliminating any unwanted carbon-containing impurities and leak points, ensuring the collection of reliable and reproducible data in photocatalytic CO2 reduction measurements. Apart from the hardware design, a detailed experimental procedure including gas analysis is presented, allowing newcomers in the field of gas-solid CO2 reduction to learn the essential basics and valuable tricks. By performing extensive blank measurements (with/without sample and/or light) the true performance of photocatalytic materials can be monitored, leading to the identification of trends and the proposal of possible mechanisms in CO2 photoreduction. The reproducibility of measurements between different versions of the here presented reactor on the ppm level is evidenced.
Collapse
Affiliation(s)
- Nikolaos G. Moustakas
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Marcus Klahn
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Bastian T. Mei
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Anna Pougin
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Martin Dilla
- Max Planck Institute for Chemical Energy Conversion (MPI CEC), Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Tim Peppel
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Simon Ristig
- Max Planck Institute for Chemical Energy Conversion (MPI CEC), Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Jennifer Strunk
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
34
|
Yao Y, Li B, Gao X, Yang Y, Yu J, Lei J, Li Q, Meng X, Chen L, Xu D. Highly Efficient Solar-Driven Dry Reforming of Methane on a Rh/LaNiO 3 Catalyst through a Light-induced Metal-To-Metal Charge Transfer Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303654. [PMID: 37314337 DOI: 10.1002/adma.202303654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Indexed: 06/15/2023]
Abstract
As an energy-saving and green method, solar-driven dry reforming of methane (DRM) is expected to introduce new activation processes and prevent sintering and coking of the catalysts. However, it still lacks an efficient way to coordinate the regulation of activation of reactants and lattice oxygen migration. In this study, Rh/LaNiO3 is designed as a highly efficient photothermal catalyst for solar-driven DRM, which performs production rates of 452.3 mmol h-1 gRh -1 for H2 and 527.6 mmol h-1 gRh -1 for CO2 under a light intensity of 1.5 W cm-2 , with an excellent stability. Moreover, a remarkable light-to-chemical energy efficiency (LTCEE) of 10.72% is achieved under a light intensity of 3.5 W cm-2 . The characterizations of surface electronic and chemical properties and theoretical analysis demonstrate that strong adsorption for CH4 and CO2 , light-induced metal-to-metal charge transfer (MMCT) process and high oxygen mobility together bring Rh/LaNiO3 excellent performance for solar-driven DRM.
Collapse
Affiliation(s)
- Yuan Yao
- Beijng National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Ben Li
- Beijng National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaowen Gao
- Beijng National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yuying Yang
- Beijng National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jianbo Yu
- Beijng National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jianan Lei
- Beijng National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qi Li
- Beijng National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiangchao Meng
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Langxing Chen
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Dongsheng Xu
- Beijng National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
35
|
Ou TH, Hu P, Liu Z, Wang Y, Hossain S, Meng D, Shi Y, Zhang S, Zhang B, Song B, Liu F, Cronin SB, Wu W. Plasmon-Enhanced Photocatalytic CO 2 Reduction for Higher-Order Hydrocarbon Generation Using Plasmonic Nano-Finger Arrays. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111753. [PMID: 37299656 DOI: 10.3390/nano13111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The carbon dioxide reduction reaction (CO2RR) is a promising method to both reduce greenhouse gas carbon dioxide (CO2) concentrations and provide an alternative to fossil fuel by converting water and CO2 into high-energy-density chemicals. Nevertheless, the CO2RR suffers from high chemical reaction barriers and low selectivity. Here we demonstrate that 4 nm gap plasmonic nano-finger arrays provide a reliable and repeatable plasmon-resonant photocatalyst for multiple-electrons reactions: the CO2RR to generate higher-order hydrocarbons. Electromagnetics simulation shows that hot spots with 10,000 light intensity enhancement can be achieved using nano-gap fingers under a resonant wavelength of 638 nm. From cryogenic 1H-NMR spectra, formic acid and acetic acid productions are observed with a nano-fingers array sample. After 1 h laser irradiation, we only observe the generation of formic acid in the liquid solution. While increasing the laser irradiation period, we observe both formic and acetic acid in the liquid solution. We also observe that laser irradiation at different wavelengths significantly affected the generation of formic acid and acetic acid. The ratio, 2.29, of the product concentration generated at the resonant wavelength 638 nm and the non-resonant wavelength 405 nm is close to the ratio, 4.93, of the generated hot electrons inside the TiO2 layer at different wavelengths from the electromagnetics simulation. This shows that product generation is related to the strength of localized electric fields.
Collapse
Affiliation(s)
- Tse-Hsien Ou
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Pan Hu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Zerui Liu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yunxiang Wang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Sushmit Hossain
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Deming Meng
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yudi Shi
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Sonia Zhang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Boxin Zhang
- Mork Family Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Boxiang Song
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanxin Liu
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Stephen B Cronin
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Wei Wu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
36
|
Chen K, Cai A, Li TT. Covalent Organic Framework-Semiconductor-Based Heterostructures for Photocatalytic Applications. CHEMSUSCHEM 2023; 16:e202300021. [PMID: 36799094 DOI: 10.1002/cssc.202300021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 05/20/2023]
Abstract
Photocatalysis is a promising and sustainable technology in the fields of energy conversion/storage and environment purification; however, the utilization of individual component as photocatalyst is generally restricted due to the low catalytic activity deriving from the rapid recombination of photogenerated electrons/holes. Covalent organic framework (COF)-semiconductor-based composite photocatalysts with synergistic effects provide a feasible route to achieve high-performance photocatalytic reactions with more active sites, strong light utilization ability, and high stability. In recent years, significant progress has been made in the rational design and preparation of the COF-semiconductors-based heterostructures for photocatalytic water splitting, carbon dioxide (CO2 ) reduction, and dye/pollutant degradation. In this Review, the synthetic strategies of COF-semiconductor-based heterostructures are first introduced, which includes the rational design of the morphology, connection modes, and type of heterojunctions. The performance of COF-semiconductor-based heterostructures in different photocatalytic reactions are comprehensively reviewed. The structure-activity relationship and the synergistic effects within the heterostructures are discussed, and the photocatalytic mechanism and the role of COFs during the photocatalytic process are also presented. Finally, an outlook and challenges of realizing COF-semiconductor-based heterostructures with simple synthesis methods, diverse functions, high performance, and well-defined reaction mechanisms are provided.
Collapse
Affiliation(s)
- Kai Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Anqi Cai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Ting-Ting Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo, 315211, P. R. China
| |
Collapse
|
37
|
Bailey MR, Gmür TA, Grillo F, Isa L. Modular Attachment of Nanoparticles on Microparticle Supports via Multifunctional Polymers. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:3731-3741. [PMID: 37181676 PMCID: PMC10173378 DOI: 10.1021/acs.chemmater.3c00555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Nanoparticles are key to a range of applications, due to the properties that emerge as a result of their small size. However, their size also presents challenges to their processing and use, especially in relation to their immobilization on solid supports without losing their favorable functionalities. Here, we present a multifunctional polymer-bridge-based approach to attach a range of presynthesized nanoparticles onto microparticle supports. We demonstrate the attachment of mixtures of different types of metal-oxide nanoparticles, as well as metal-oxide nanoparticles modified with standard wet chemistry approaches. We then show that our method can also create composite films of metal and metal-oxide nanoparticles by exploiting different chemistries simultaneously. We finally apply our approach to the synthesis of designer microswimmers with decoupled mechanisms of steering (magnetic) and propulsion (light) via asymmetric nanoparticle binding, aka Toposelective Nanoparticle Attachment. We envision that this ability to freely mix available nanoparticles to produce composite films will help bridge the fields of catalysis, nanochemistry, and active matter toward new materials and applications.
Collapse
|
38
|
Li CF, Guo RT, Zhang ZR, Wu T, Pan WG. Converting CO 2 into Value-Added Products by Cu 2 O-Based Catalysts: From Photocatalysis, Electrocatalysis to Photoelectrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207875. [PMID: 36772913 DOI: 10.1002/smll.202207875] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Indexed: 05/11/2023]
Abstract
Converting CO2 into value-added products by photocatalysis, electrocatalysis, and photoelectrocatalysis is a promising method to alleviate the global environmental problems and energy crisis. Among the semiconductor materials applied in CO2 catalytic reduction, Cu2 O has the advantages of abundant reserves, low price and environmental friendliness. Moreover, Cu2 O has unique adsorption and activation properties for CO2 , which is conducive to the generation of C2+ products through CC coupling. This review introduces the basic principles of CO2 reduction and summarizes the pathways for the generation of C1 , C2 , and C2+ products. The factors affecting CO2 reduction performance are further discussed from the perspective of the reaction environment, medium, and novel reactor design. Then, the properties of Cu2 O-based catalysts in CO2 reduction are summarized and several optimization strategies to enhance their stability and redox capacity are discussed. Subsequently, the application of Cu2 O-based catalysts in photocatalytic, electrocatalytic, and photoelectrocatalytic CO2 reduction is described. Finally, the opportunities, challenges and several research directions of Cu2 O-based catalysts in the field of CO2 catalytic reduction are presented, which is guidance for its wide application in the energy and environmental fields is provided.
Collapse
Affiliation(s)
- Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Tong Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| |
Collapse
|
39
|
Ge L, Ke Y, Li X. Machine learning integrated photocatalysis: progress and challenges. Chem Commun (Camb) 2023; 59:5795-5806. [PMID: 37093605 DOI: 10.1039/d3cc00989k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Discovering efficient photocatalysts has long been the goal of photocatalysis, which has traditionally been driven by serendipitous or try-and-error strategies. Recent developments in photocatalysis integrated with machine learning techniques promise to accelerate the discovery of photocatalysts, but are also facing significant challenges. In this review, advances in machine learning integrated photocatalysis are first presented from the perspective of three main photocatalytic processes: light harvesting, charge generation and separation, and surface redox reactions. Next, progress in using machine learning to understand complex photoactivity-structure relationships and identify the factors governing activity follows. A future photocatalysis paradigm is then provided with the integration of artificial intelligence, robots and automation. Lastly, we discuss the current challenges in machine learning integrated photocatalysis. This review aims to provide a systematic overview and guidelines to the broad scientific community interested in photocatalysis and artificial intelligence for solar fuel synthesis.
Collapse
Affiliation(s)
- Luyao Ge
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Zhejiang Normal University, Jinhua 321004, China.
| | - Yuanzhen Ke
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Zhejiang Normal University, Jinhua 321004, China.
| | - Xiaobo Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
40
|
Ai X, Yan S, Lin C, Lu K, Chen Y, Ma L. Facile Fabrication of Highly Active CeO 2@ZnO Nanoheterojunction Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1371. [PMID: 37110956 PMCID: PMC10143434 DOI: 10.3390/nano13081371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Photocatalyst performance is often limited by the poor separation and rapid recombination of photoinduced charge carriers. A nanoheterojunction structure can facilitate the separation of charge carrier, increase their lifetime, and induce photocatalytic activity. In this study, CeO2@ZnO nanocomposites were produced by pyrolyzing Ce@Zn metal-organic frameworks prepared from cerium and zinc nitrate precursors. The effects of the Zn:Ce ratio on the microstructure, morphology, and optical properties of the nanocomposites were studied. In addition, the photocatalytic activity of the nanocomposites under light irradiation was assessed using rhodamine B as a model pollutant, and a mechanism for photodegradation was proposed. With the increase in the Zn:Ce ratio, the particle size decreased, and surface area increased. Furthermore, transmission electron microscopy and X-ray photoelectron spectroscopy analyses revealed the formation of a heterojunction interface, which enhanced photocarrier separation. The prepared photocatalysts show a higher photocatalytic activity than CeO2@ZnO nanocomposites previously reported in the literature. The proposed synthetic method is simple and may produce highly active photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Xiaoqian Ai
- School of Physics and Information Engineering, Jiangsu Province Engineering Research Center of Basic Education Big Data Application, Jiangsu Second Normal University, Nanjing 210013, China; (X.A.)
| | - Shun Yan
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Chao Lin
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Kehong Lu
- School of Physics and Information Engineering, Jiangsu Province Engineering Research Center of Basic Education Big Data Application, Jiangsu Second Normal University, Nanjing 210013, China; (X.A.)
| | - Yujie Chen
- School of Physics and Information Engineering, Jiangsu Province Engineering Research Center of Basic Education Big Data Application, Jiangsu Second Normal University, Nanjing 210013, China; (X.A.)
| | - Ligang Ma
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
| |
Collapse
|
41
|
Han GH, Bang J, Park G, Choe S, Jang YJ, Jang HW, Kim SY, Ahn SH. Recent Advances in Electrochemical, Photochemical, and Photoelectrochemical Reduction of CO 2 to C 2+ Products. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205765. [PMID: 36592422 DOI: 10.1002/smll.202205765] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Environmental problems such as global warming are one of the most prominent global challenges. Researchers are investigating various methods for decreasing CO2 emissions. The CO2 reduction reaction via electrochemical, photochemical, and photoelectrochemical processes has been a popular research topic because the energy it requires can be sourced from renewable sources. The CO2 reduction reaction converts stable CO2 molecules into useful products such as CO, CH4 , C2 H4 , and C2 H5 OH. To obtain economic benefits from these products, it is important to convert them into hydrocarbons above C2 . Numerous investigations have demonstrated the uniqueness of the CC coupling reaction of Cu-based catalysts for the conversion of CO2 into useful hydrocarbons above C2 for electrocatalysis. Herein, the principle of semiconductors for photocatalysis is briefly introduced, followed by a description of the obstacles for C2+ production. This review presents an overview of the mechanism of hydrocarbon formation above C2 , along with advances in the improvement, direction, and comprehension of the CO2 reduction reaction via electrochemical, photochemical, and photoelectrochemical processes.
Collapse
Affiliation(s)
- Gyeong Ho Han
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Junbeom Bang
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Gaeun Park
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Seonghyun Choe
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Youn Jeong Jang
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sang Hyun Ahn
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
42
|
Luo W, Li A, Yang B, Pang H, Fu J, Chen G, Liu M, Liu X, Ma R, Ye J, Zhang N. Synthesis of a Hexagonal Phase ZnS Photocatalyst for High CO Selectivity in CO 2 Reduction Reactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15387-15395. [PMID: 36926809 DOI: 10.1021/acsami.2c21966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
ZnS materials exhibit very negative potential of the conduction band, which is promising in photocatalytic reduction reactions. Unfortunately, previously reported ZnS materials for photocatalysis are mainly in the cubic phase, which produce high activity for H2 evolutions and low activity toward CO2 reductions. Herein, a hexagonal phase ZnS photocatalyst is fabricated for highly efficient CO2 reduction reactions. The hexagonal ZnS nanoplates with the pure phase and well crystallization are synthesized via three-step solvothermal methods. In photocatalytic CO2 reduction reactions under an aqueous solution environment, the hexagonal ZnS produces a CO selectivity of 21%, which is distinctly higher than that of 0.2% for commonly used cubic ZnS. The energy band study suggests that hexagonal ZnS possesses a slightly more negative conduction band and wider bandgap than cubic ZnS. Theoretical calculations reveal that the hexagonal ZnS possesses increased electron density around Zn atoms as that of cubic ZnS. Furthermore, hexagonal ZnS exhibits relatively reduced absorption energy of CO2 reduction intermediates and increased absorption energy of H* as cubic ZnS, which result in better selectivity toward CO2 reduction reactions. This study offers deep insights into the synthesis and electronic structure of hexagonal ZnS for CO2 reduction reactions, which inspire the design of highly active photocatalysts for artificial photosynthesis.
Collapse
Affiliation(s)
- Wuqing Luo
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - An Li
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Baopeng Yang
- School of Physical Science and Electronics, Central South University, Changsha 410083, Hunan, P. R. China
| | - Hong Pang
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Junwei Fu
- School of Physical Science and Electronics, Central South University, Changsha 410083, Hunan, P. R. China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Min Liu
- School of Physical Science and Electronics, Central South University, Changsha 410083, Hunan, P. R. China
| | - Xiaohe Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
43
|
Sun Y, Younis SA, Kim KH, Kumar V. Potential utility of BiOX photocatalysts and their design/modification strategies for the optimum reduction of CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160923. [PMID: 36543271 DOI: 10.1016/j.scitotenv.2022.160923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
As an effective means to efficiently control the emissions of carbon dioxide (CO2), photo-conversion of CO2 into solar fuels (or their precursors) is meaningful both as an option to generate cleaner energy and to alleviate global warming. In this regard, bismuth oxyhalide (BiOX, where X = Cl, Br, and I) semiconductors have sparked considerable interest due to their multiple merits (e.g., visible light-harvesting, efficient charge carriers separation, and excellent chemical stability). In this review, the fundamental aspects of BiOX-based photocatalysts are discussed in relation to their modification strategies and associated reduction mechanisms of CO2 to help expand their applicabilities. In this context, their performance is also evaluated in terms of the key performance metrics (e.g., quantum efficiency (QE), space-time yield (STY), and figure of merit (FoM)). Accordingly, the morphology design of BiOX materials is turned out as one of the most efficient strategies for the maximum yield of CO while the introduction of heterojunctions into BiOX materials was more suitable for CH4 formation. As such, the adoption of the proper modification approach is recommended for efficient conversion of CO2.
Collapse
Affiliation(s)
- Yang Sun
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04673, Republic of Korea
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04673, Republic of Korea; Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04673, Republic of Korea.
| | - Vanish Kumar
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India.
| |
Collapse
|
44
|
Moradi S, Farhadian M, Reza Solaimany Nazar A, Moghadam M. Application of Bi2WO6/N-TiO2catalyst immobilized on FTO in a tray photoreactor for textile color degradation from aqueous solutions: Effects of mineral salts. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
45
|
Nosrati A, Javanshir S, Feyzi F, Amirnejat S. Effective CO 2 Capture and Selective Photocatalytic Conversion into CH 3OH by Hierarchical Nanostructured GO-TiO 2-Ag 2O and GO-TiO 2-Ag 2O-Arg. ACS OMEGA 2023; 8:3981-3991. [PMID: 36743052 PMCID: PMC9893446 DOI: 10.1021/acsomega.2c06753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
The attenuation of greenhouse gases, especially CO2, as one of the main causes of global warming and their conversion into valuable materials are among the challenges that must be met in the 21st century. For this purpose, hierarchical ternary and quaternary hybrid photocatalysts based on graphene oxide, TiO2, Ag2O, and arginine have been developed for combined CO2 capture and photocatalytic reductive conversion to methanol under visible and UV light irradiation. The material's band gap energy was estimated from the diffuse reflectance spectroscopy (DRS) Tauc analysis algorithm. Structural and morphological properties of the synthesized photocatalysts were studied using various analytical techniques such as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The calculated band gaps for GO-TiO2-Ag2O and GO-TiO2-Ag2O-Arg were 3.18 and 2.62 eV, respectively. This reduction in the band gap showed that GO-TiO2-Ag2O-Arg has a significant visible light photocatalytic ability. The investigation of CO2 capture for the designed catalyst showed that GO-TiO2-Ag2O-Arg and GO-TiO2-Ag2O have high CO2 absorption capacities (1250 and 1185 mmol g-1, respectively, at 10 bar and 273 K under visible light irradiation). The amounts of methanol produced by GO-TiO2-Ag2O and GO-TiO2-Ag2O-Arg were 8.154 and 5.1 μmol·gcat1·h-1 respectively. The main advantages of this study are the high efficiencies and selectivity of catalysts toward methanol formation. The reaction mechanism to understand the role of hybrid photocatalysts for CO2 conversion is deliberated. In addition, these catalysts remain stable during the photocatalytic process and can be used repeatedly, proving to be enlightening for environmental research.
Collapse
Affiliation(s)
- Aliakbar Nosrati
- Heterocyclic
Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Shahrzad Javanshir
- Heterocyclic
Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Farzaneh Feyzi
- Thermodynamics
Research Laboratory, School of Chemical Engineering, Iran University of Science and Technology, Tehran1684613114, Iran
| | - Sara Amirnejat
- Heterocyclic
Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| |
Collapse
|
46
|
Zhang XY, Wang P, Zhang Y, Cheng XM, Sun WY. Facet-Dependent Photocatalytic Behavior of Fe-soc-MOF for Carbon Dioxide Reduction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3348-3356. [PMID: 36600591 DOI: 10.1021/acsami.2c19236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exposing different facets on metal-organic frameworks (MOFs) is an efficient approach to regulate their photocatalytic performance for CO2 reduction. Herein, Fe-soc-MOFs exposed with different facets were successfully synthesized, and the morphologies of Fe-soc-MOF exposed with eight {111} facets (Fe-soc-O) and that exposed with eight {111} and six {100} crystal facets (Fe-soc-M) are first reported. Fe-soc-MOFs have facet-dependent active sites on their surface and correspondingly different catalytic performance for photocatalytic CO2 reduction. Fe-soc-O has the highest CO production of 1804 μmol g-1 h-1, while the Fe-soc-MOF exposed with six {100} facets (Fe-soc-C) has the best CO selectivity of 94.7%. Density functional theory (DFT) calculations demonstrate that the (111) facet has more favorable thermodynamic potential for CO2 reduction and H2 evolution compared with the (100) one, deriving from its facet-dependent active sites. This work shows that utilizing the facet-engineering strategy to regulate the active sites exposed on the surface of MOFs is feasible. The results display the relation between the facet of MOFs and the photocatalytic behavior for CO2 reduction.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Ya Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Xiao-Mei Cheng
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
47
|
Arun J, Nachiappan S, Rangarajan G, Alagappan RP, Gopinath KP, Lichtfouse E. Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:339-362. [PMID: 36060494 PMCID: PMC9419126 DOI: 10.1007/s10311-022-01503-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/05/2022] [Indexed: 05/04/2023]
Abstract
Global pollution is calling for advanced methods to remove contaminants from water and wastewater, such as TiO2-assisted photocatalysis. The environmental applications of titanium dioxide have started after the initial TiO2 application for water splitting by Fujishima and Honda in 1972. TiO2 is now used for self-cleaning surfaces, air and water purification systems, microbial inactivation and selective organic conversion. The synthesis of titanium dioxide nanomaterials with high photocatalytic activity is actually a major challenge. Here we review titanium dioxide photocatalysis with focus on mechanims, synthesis, and applications. Synthetic methods include sol-gel, sonochemical, microwave, oxidation, deposition, hydro/solvothermal, and biological techniques. Applications comprise the production of energy, petroleum recovery, and the removal of microplastics, pharmaceuticals, metals, dyes, pesticides, and of viruses such as the severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Jayaseelan Arun
- Centre for Waste Management-International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Tamil Nadu, Chennai, 6030119 India
| | - S. Nachiappan
- Department of Chemical Engineering, University of Technology and Applied Sciences, Salalah, Sultanate of Oman
| | - Goutham Rangarajan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, M5S3E5 Canada
| | - Ram Prasath Alagappan
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601 DA Delft, The Netherlands
| | - K. P. Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam (OMR), Tamil Nadu, Chennai, 603110 India
| | - Eric Lichtfouse
- European Centre for Research and Education in Geosciences (CEREGE), Aix Marseille University, 13007 Marseille, France
| |
Collapse
|
48
|
Chen Y, Guan B, Wu X, Guo J, Ma Z, Zhang J, Jiang X, Bao S, Cao Y, Yin C, Ai D, Chen Y, Lin H, Huang Z. Research status, challenges and future prospects of renewable synthetic fuel catalysts for CO 2 photocatalytic reduction conversion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11246-11271. [PMID: 36517610 DOI: 10.1007/s11356-022-24686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
In recent years, with global climate change, the utilization of carbon dioxide as a resource has become an important goal of human society to achieve carbon peaking and carbon neutrality. Among them, the catalytic conversion of carbon dioxide to generate renewable fuels has received great attention. As one of these methods, photocatalysis has its unique properties and mechanism, which can only rely on sunlight without inputting other energy. It is an emerging discipline with great development prospects. The core of photocatalysis lies in the development of photocatalysts with high activity, high selectivity, low cost, and high durability. This review first introduces the background and mechanism of photocatalysis, then introduces various types of photocatalysts based on different substrates, and analyzes the methods and mechanisms to improve the activity and selectivity of photocatalysts. Finally, combining the plasmon effect with photocatalysis, the review analyzes the promoting effect of the plasmon effect on the photocatalytic carbon dioxide synthesis of renewable fuels, which provides a new idea for it.
Collapse
Affiliation(s)
- Yujun Chen
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Bin Guan
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240.
| | - Xingze Wu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Jiangfeng Guo
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Zeren Ma
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Jinhe Zhang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Xing Jiang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Shibo Bao
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Yiyan Cao
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Chengdong Yin
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Di Ai
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Yuxuan Chen
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - He Lin
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| | - Zhen Huang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No.800, Min Hang District, Shanghai, People's Republic of China, 200240
| |
Collapse
|
49
|
Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Modeling and simulation of photocatalytic CO2 reduction into methanol in a bubble slurry photoreactor. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|