1
|
Askari N, Jamalzadeh M, Askari A, Liu N, Samali B, Sillanpaa M, Sheppard L, Li H, Dewil R. Unveiling the photocatalytic marvels: Recent advances in solar heterojunctions for environmental remediation and energy harvesting. J Environ Sci (China) 2025; 148:283-297. [PMID: 39095165 DOI: 10.1016/j.jes.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 08/04/2024]
Abstract
In the quest for effective solutions to address Environ. Pollut. and meet the escalating energy demands, heterojunction photocatalysts have emerged as a captivating and versatile technology. These photocatalysts have garnered significant interest due to their wide-ranging applications, including wastewater treatment, air purification, CO2 capture, and hydrogen generation via water splitting. This technique harnesses the power of semiconductors, which are activated under light illumination, providing the necessary energy for catalytic reactions. With visible light constituting a substantial portion (46%) of the solar spectrum, the development of visible-light-driven semiconductors has become imperative. Heterojunction photocatalysts offer a promising strategy to overcome the limitations associated with activating semiconductors under visible light. In this comprehensive review, we present the recent advancements in the field of photocatalytic degradation of contaminants across diverse media, as well as the remarkable progress made in renewable energy production. Moreover, we delve into the crucial role played by various operating parameters in influencing the photocatalytic performance of heterojunction systems. Finally, we address emerging challenges and propose novel perspectives to provide valuable insights for future advancements in this dynamic research domain. By unraveling the potential of heterojunction photocatalysts, this review contributes to the broader understanding of their applications and paves the way for exciting avenues of exploration and innovation.
Collapse
Affiliation(s)
- Najmeh Askari
- Department of Chemical Engineering, Process and Environmental Technology Lab, KU Leuven, De Nayerlaan 5 Sint-Katelijne-Waver, 2860, Belgium.
| | | | - Aghil Askari
- Department of Mechanical Engineering, UMass Lowell, Lowell, MA 01851, USA
| | - Naiyun Liu
- Department of Chemical Engineering, Process and Environmental Technology Lab, KU Leuven, De Nayerlaan 5 Sint-Katelijne-Waver, 2860, Belgium; Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Bijan Samali
- Centre for Infrastructure Engineering, Western Sydney University, Penrith NSW, 2751, Australia
| | - Mika Sillanpaa
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Leigh Sheppard
- Solar Energy Technologies Research Group, Western Sydney University, Penrith NSW, 2751, Australia
| | - Haitao Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Raf Dewil
- Department of Chemical Engineering, Process and Environmental Technology Lab, KU Leuven, De Nayerlaan 5 Sint-Katelijne-Waver, 2860, Belgium; Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom.
| |
Collapse
|
2
|
Fu Y, Janczarek M. UV and Visible Light-Induced Photocatalytic Efficiency of Polyaniline/Titanium Dioxide Heterostructures. Molecules 2024; 30:23. [PMID: 39795080 PMCID: PMC11722138 DOI: 10.3390/molecules30010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
The concept of using polyaniline/titanium dioxide heterostructures as efficient photocatalysts is based on the synergistic effect of conducting polymer and metal oxide semiconductors. Due to inconclusive literature reports, the effect of different polyaniline/TiO2 ratios on photocatalytic activity under UV and visible light was investigated. In most papers, non-recommended dyes are used as model compounds to evaluate visible light activity. Therefore, colorless phenol was used instead of dyes in this study to clarify the real visible light-induced photocatalytic activity of polyaniline/TiO2 composites. This publication also includes a discussion of whether materials derived from bulk (non-nanostructured) polyaniline and TiO2 by the standard in situ oxidative polymerization method are suitable candidates for promising photocatalytic materials. The evaluation of photocatalytic activity was performed in both UV and visible light systems. X-ray diffraction and UV-Vis diffuse reflectance spectroscopy methods were applied to characterize the obtained samples. Obtained polyaniline (pure and in composites) was identified as emeraldine salt. In the UV system, none of the prepared samples with different polyaniline-titania ratios had activity better than reference P25 titania. It has been observed that the presence of polyaniline adversely affects the photocatalytic properties, as the polyaniline layer covering the titania surface can shield the UV light transmission by blocking the contact between the TiO2 surface and organic molecules. In the case of using visible light, no synergies have been observed between polyaniline and titania either. The photodegradation efficiencies of the most active samples were similar to those of pure polyaniline. In conclusion, in order to obtain efficient polyaniline/titania photocatalysts active in UV and/or visible light, it is necessary to take into account the morphological and surface properties of both components.
Collapse
Affiliation(s)
| | - Marcin Janczarek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland;
| |
Collapse
|
3
|
Amalia FR, Wang L, Bielan Z, Markowska-Szczupak A, Wei Z, Kowalska E. Gels in Heterogeneous Photocatalysis: Past, Present, and Future. Gels 2024; 10:810. [PMID: 39727568 DOI: 10.3390/gels10120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
Photocatalysis has attracted more and more attention as a possible solution to environmental, water, and energy crises. Although some photocatalytic materials have already proven to perform well, there are still some problems that should be solved for the broad commercialization of photocatalysis-based technologies. Among them, cheap and easy recycling, as well as stability issues, should be addressed. Accordingly, the application of gels, either as a photocatalytic material or as its support, might be a good solution. In this review, various propositions of gel-based photocatalysts have been presented and discussed. Moreover, an easy nanoarchitecture design of gel-based structures enables fundamental studies, e.g., on mechanism clarifications. It might be concluded that gels with their unique properties, i.e., low density, high specific surface area, great porosity, and low-cost preparation, are highly prospective for solar-energy-based reactions, water treatment, photodynamic cancer therapies, and fundamental research.
Collapse
Affiliation(s)
| | - Lei Wang
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
| | - Zuzanna Bielan
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
| | - Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, 71-065 Szczecin, Poland
| | - Zhishun Wei
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Ewa Kowalska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
4
|
Zhao Z, Law CS, Zhao Y, Baron Jaimez JA, Talebian‐Kiakalaieh A, Li H, Ran J, Jiao Y, Abell AD, Santos A. Elucidating Synergies of Single-Atom Catalysts in a Model Thin Film Photoelectrocatalyst to Maximize Hydrogen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407598. [PMID: 39231320 PMCID: PMC11538634 DOI: 10.1002/advs.202407598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/10/2024] [Indexed: 09/06/2024]
Abstract
Realization of the full potential of single-atom photoelectrocatalysts in sustainable energy generation requires careful consideration of the design of the host material. Here, a comprehensive methodology for the rational design of photoelectrocatalysts using anodic titanium dioxide (TiO2) nanofilm as a model platform is presented. The properties of these nanofilms are precisely engineered to elucidate synergies across structural, chemical, optoelectronic, and electrochemical properties to maximize the efficiency of the hydrogen evolution reaction (HER). These findings clearly demonstrate that thicker TiO2 nanofilms in anatase phase with pits on the surface can accommodate single-atom platinum catalysts in an optimal configuration to increase HER performance. It is also evident that the electrolyte temperature can further enhance HER output through thermochemical effect. A judicious design incorporating all these factors into one system gives rise to a ten-fold HER enhancement. However, the reusability of the host photoelectrocatalyst is limited by the leaching of the Pt atom, worsening HER. Density-functional theory calculations have provided insights into the mechanism underlying the experimental observations in terms of moderate hydrogen adsorption and enhanced gas generation. This improved understanding of the critical factors determining HER performance in a model photoelectrocatalyst paves the way for future advances in scalable and translatable photoelectrocatalyst technologies.
Collapse
Affiliation(s)
- Zichu Zhao
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
- Institute for Photonics and Advanced Sensing (IPAS)The University of AdelaideAdelaideSouth Australia5005Australia
| | - Cheryl Suwen Law
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
- Institute for Photonics and Advanced Sensing (IPAS)The University of AdelaideAdelaideSouth Australia5005Australia
| | - Yanzhang Zhao
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
| | - Jairo Alberto Baron Jaimez
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
- Institute for Photonics and Advanced Sensing (IPAS)The University of AdelaideAdelaideSouth Australia5005Australia
| | | | - Haobo Li
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
| | - Jingrun Ran
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
| | - Yan Jiao
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
| | - Andrew D. Abell
- Institute for Photonics and Advanced Sensing (IPAS)The University of AdelaideAdelaideSouth Australia5005Australia
- Department of ChemistryThe University of AdelaideAdelaideSouth Australia5005Australia
| | - Abel Santos
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
- Institute for Photonics and Advanced Sensing (IPAS)The University of AdelaideAdelaideSouth Australia5005Australia
| |
Collapse
|
5
|
Martínez-Montelongo JH, Pineda-Arellano CA, Hernandez-Rangel R, Jiménez-González ML, Betancourt I, Peralta-Hernández JM, Medina-Ramírez IE. Bismuth-based nanocomposites as potential materials for indoor air treatment. CHEMOSPHERE 2024; 367:143539. [PMID: 39433093 DOI: 10.1016/j.chemosphere.2024.143539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/09/2024] [Accepted: 10/12/2024] [Indexed: 10/23/2024]
Abstract
Air pollution is a worldwide health hazard; thus, improving air quality is a demanding need. Photocatalysis is a robust strategy for air treatment. The boosted activity of the photocatalytic system depends on tuning their properties for the particular application. BiOX (X: Cl, I) compounds are emergent photocatalytic systems with numerous advantages for air treatment. However, their optical properties (Eg) and fast recombination of active species (e-/h+) limit their practical applications. In this study, we remark on the properties of BiOX-GO systems for indoor air purification. We use a microwave-activated solvothermal technique to synthesize the nanomaterials (NMs). BiOX NMs exhibit hierarchical 3D structures, crystallinity, and tunable optical absorption properties. BiOX-GO composites present an enhanced visible-light photocatalytic activity due to the electron acceptor capacity of GO and modification of Eg. The indoor air disinfection capacity of the NMs ranked as follows: BiOCl-GO (96.7%) > BiOI-GO (96.2%) > BiOI (89.2%) > BiOCl (79%). The higher efficiency under visible light of BiOCl-GO can be related to the presence of oxygen vacancies, strong oxidation potential, and single crystalline phase of the materials. Due to the abundance and biocompatibility of bismuth-containing compounds, together with their enhanced visible light activity, BiOX become potent candidates for environmentally sustainable remediation technologies.
Collapse
Affiliation(s)
- Jorge H Martínez-Montelongo
- Chemistry Department, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - Carlos A Pineda-Arellano
- CONAHCYT-Centro de Investigaciones en Óptica, A.C. Unidad Aguascalientes, Prol. Constitución 607, Fracc. Reserva Loma Bonita, Aguascalientes, Ags, 20200, Mexico
| | - Rafael Hernandez-Rangel
- Chemistry Department, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - M L Jiménez-González
- Chemistry Department, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - Israel Betancourt
- Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de México, Mexico
| | | | - Iliana E Medina-Ramírez
- Chemistry Department, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico.
| |
Collapse
|
6
|
Li S, Jiang B, Liu G, Shi C, Yu H, Lin Y. A new attempt to remove toluene using nickel-iron bimetallic particle electrode reactor. Sci Rep 2024; 14:10056. [PMID: 38698147 PMCID: PMC11065997 DOI: 10.1038/s41598-024-60956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
A new attempt of removing toluene waste gas using a three-dimensional electrode reaction device with nickel-iron bimetallic particle electrode is presented in this paper. The particle electrode was prepared by a simple liquid phase reduction method. Through bimetal modification, the particle electrode mass transfer rate is increased to 1.29 times, and the degradation efficiency of the reactor is increased by nearly 40%, which makes it possible to remove toluene waste gas by other electrochemical methods in addition to plasma method. The removal efficiency of the particle electrode can be stabilized at more than 80% after 5 cycles (50 h). At the same time, the relationship between independent working parameters and dependent variables is analyzed using the central composite design, and the operating parameters are optimized. Based on this study, the removal mechanism and possible degradation pathway of toluene were investigated. This study provides a supplement to the possibility and theoretical basis of new technology application for electrocatalytic oxidation removal of VOCs.
Collapse
Affiliation(s)
- Siwen Li
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Bo Jiang
- Jilin Research and Design Institute of Building Science (Jilin Province Construction Engineering Quality Test Center), Changchun, 130011, China
| | - Gen Liu
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Chunyan Shi
- The University of Kitakyushu, 1-1 Hibikino Wakamatsuku Kitakyushu, Fukuoka, Japan
| | - Hongbin Yu
- School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Yingzi Lin
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China.
| |
Collapse
|
7
|
Tran MN, Moreau M, Addad A, Teurtrie A, Roland T, de Waele V, Dewitte M, Thomas L, Levêque G, Dong C, Simon P, Ben Tayeb K, Mele D, Ordomsky V, Grandidier B. Boosting Gas-Phase TiO 2 Photocatalysis with Weak Electric Field Strengths of Volt/Centimeter. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38501567 DOI: 10.1021/acsami.3c19031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Among semiconductor nanomaterials, titanium dioxide is at the forefront of heterogeneous photocatalysis, but its catalytic activity greatly suffers from the loss of photoexcited charge carriers through deleterious recombination processes. Here, we investigate the impact of an external electric field (EEF) applied to conventional P25 TiO2 nanopowder with or without Au nanoparticles (NPs) to circumvent this issue. The study of two redox reactions in the gas phase, water splitting and toluene degradation, reveals an enhancement of the photocatalytic activity with rather modest electric fields of a few volt/centimeters only. Such an improvement arises from the electric-field-induced quenching of the green emission in anatase, allowing the photoexcited charge carriers to be transferred to the adsorbed reactants instead of pointless radiative recombinations. Applying an EEF across a trap-rich metal oxide material, such as TiO2, which, when impregnated with Au NPs, leads, respectively, to 12- and 6-fold enhancements in the production of hydrogen and the oxidation of toluene for an electric field of 8 V/cm, without any electrolysis, is a simple and elegant strategy to meet higher photocatalytic efficiencies.
Collapse
Affiliation(s)
- My Nghe Tran
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS─Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| | - Myriam Moreau
- Université de Lille, CNRS, UMR 8516-LASIRE-Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Ahmed Addad
- CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, Université de Lille, Lille F-59000, France
| | - Adrien Teurtrie
- CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, Université de Lille, Lille F-59000, France
| | - Thomas Roland
- Université de Lille, CNRS, UMR 8516-LASIRE-Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Vincent de Waele
- Université de Lille, CNRS, UMR 8516-LASIRE-Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Marc Dewitte
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| | - Louis Thomas
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| | - Gaëtan Levêque
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| | - Chunyang Dong
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS─Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Pardis Simon
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS─Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Karima Ben Tayeb
- Université de Lille, CNRS, UMR 8516-LASIRE-Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - David Mele
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| | - Vitaly Ordomsky
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS─Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Bruno Grandidier
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| |
Collapse
|
8
|
Li Y, Zhang C, Hu Z. Hydraulic retention time governed the micro/nanostructures of titanium-incorporated diatoms and their photocatalytic activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123398. [PMID: 38272163 DOI: 10.1016/j.envpol.2024.123398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Titanium-incorporated diatoms are promising biomaterials to photodegrade micropollutants such as pharmaceuticals and personal care products (PPCPs). Hydraulic retention time (HRT) is a key parameter for diatom cultivation and the incorporation of titanium into diatom frustules. This study assessed how HRT governs the micro/nanostructures, titania (TiO2) content and distribution, and the photocatalytic activity of titanium-incorporated diatom frustules. We cultivated a diatom strain Stephanodiscus hantzschii using a feed solution containing titanium(IV) in membrane bioreactors (MBRs) at a solids retention time (SRT) of 10 d and staged HRTs from 24 to 12 and to 6 h. The decrease in HRT reduced the porosity of diatom frustules but increased their silicon and titania contents. When the HRT decreased from 24 to 12 and to 6 h, the specific surface areas of the diatom decreased from 37.65 ± 3.19 to 31.53 ± 3.71 and to 18.43 ± 2.69 m2·g-1 frustules, while the titanium (Ti) contents increased from 53 ± 14 to 71 ± 9 and to 85 ± 13 mg Ti·g-1 frustules. The increase in the influent flow rates of the MBRs with decreasing HRTs likely enhanced nutrient diffusion inside the diatom valve pores, facilitating the uptake and incorporation of silicon and titanium. The titanium-incorporated frustules were effective in removing two representative PPCPs, bisphenol A (BPA) and N,N-diethyl-meta-toluamide (DEET), from water. As photocatalytic activity depends on the amount of titanium, decreasing the HRT substantially increased the photocatalytic activity of the titanium-incorporated frustules. In batch tests under ultraviolet light, frustules from the diatom cultivated at HRTs of 24, 12, and 6 h had the pseudo-first-order removal (mainly through photodegradation) rate constants of BPA of 0.376, 0.456, and 0.683 h-1, respectively. Under the same experimental condition, the pseudo-first-order removal rate constants of DEET by the frustules cultivated at HRTs of 24, 12, and 6 h increased from 0.270 to 0.330 and to 0.480 h-1.
Collapse
Affiliation(s)
- Yan Li
- NingboTech University, Ningbo, 315000, China; Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, 65211, United States
| | - Chiqian Zhang
- Civil Engineering Program, College of Engineering & Computer Science, Arkansas State University, Arkansas, 72467, United States.
| | - Zhiqiang Hu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, 65211, United States
| |
Collapse
|
9
|
Kuzin A, Chen G, Zhu F, Gorin D, Mohan B, Choudhury U, Cui J, Modi K, Huang G, Mei Y, Solovev AA. Bridging the gap: harnessing liquid nanomachine know-how for tackling harmful airborne particulates. NANOSCALE 2023; 15:17727-17738. [PMID: 37881900 DOI: 10.1039/d3nr03808d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The emergence of "nanomotors", "nanomachines", and "nanorobotics" has transformed dynamic nanoparticle research, driving a transition from passive to active and intelligent nanoscale systems. This review examines two critical fields: the investigation of airborne particles, significant contributors to air pollution, and the rapidly emerging domain of catalytic and field-controlled nano- and micromotors. We examine the basic concepts of nano- and micromachines in motion and envision their possible use in a gaseous medium to trap and neutralize hazardous particulates. While past studies described the application of nanotechnology and nanomotors in various scenarios, airborne nano/micromachine motion and their control have yet to be thoroughly explored. This review intends to promote multidisciplinary research on nanomachines' propulsion and task-oriented applications, highlighting their relevance in obtaining a cleaner atmospheric environment, a critical component to consider for human health.
Collapse
Affiliation(s)
- Aleksei Kuzin
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China.
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Guoxiang Chen
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China.
| | - Fenyang Zhu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China.
| | - Dmitry Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Brij Mohan
- Centro de Quimica Estrutural, Institute of Molecular Sciences, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Udit Choudhury
- Department of Polymer and Process Engineering, Indian Institute of Technology - Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | - Jizhai Cui
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China.
| | - Krunal Modi
- Department of Humanities and Sciences, School of Engineering, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| | - Gaoshan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China.
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, P. R. China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200433, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China.
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, P. R. China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200433, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai 200433, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, P. R. China
| | - Alexander A Solovev
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
10
|
Shojai S, Meftahi M, Yousefi R, Moosavi-Movahedi AA, Haeri-Rohani A, Habibi-Rezaei M. Cellulose membrane coated Mo-doped TiO 2nanotube sheets for sustained oxidation of biomolecules. NANOTECHNOLOGY 2023; 34:315101. [PMID: 37141862 DOI: 10.1088/1361-6528/acd258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/04/2023] [Indexed: 05/06/2023]
Abstract
Titanium dioxide nanotubes (TNT) are widely researched materials for the photocatalytic generation of free radicals, which are useful in wastewater treatment. We aimed to prepare Mo-doped TNT sheets, covered with a cellulose membrane to avoid TNT surface inactivation by protein adsorption. We studied the susceptibility of serum albumin (SA) bound to different molar ratios of palmitic acid (PA) to denaturation and fibrillation by this system, which is meant to mimic oxidative stress conditions such as non-alcoholic fatty liver disease. The results demonstrated that cellulose membrane-covered TNT successfully oxidized the SA, identified by structural changes to the protein. Increasing the molar ratio of PA to protein-enhanced thiol group oxidation while protecting the protein against structural changes. Finally, we propose that in this photocatalyzed oxidation system, the protein is oxidized by a non-adsorptive mechanism mediated by H2O2. Therefore, we suggest that this system could be used as a sustained oxidation system to oxidize biomolecules as well as potentially in wastewater treatment.
Collapse
Affiliation(s)
- Sajjad Shojai
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Meftahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Reza Yousefi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ali A Moosavi-Movahedi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417466191, Iran
| | - Ali Haeri-Rohani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | |
Collapse
|
11
|
Layan E, Gupta J, Ly I, Nallet F, Bentaleb A, Laurichesse E, Vallée R, Blin JL, Lebeau B, Louërat F, Le Bechec M, Moonen P, Toupance T, Pigot T, Backov R. TiO 2-SiO 2 Self-Standing Materials bearing Hierarchical Porosity: MUB-200(x) Series toward 3D-Efficient VOC Photoabatement Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3871-3882. [PMID: 36878006 DOI: 10.1021/acs.langmuir.2c03062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Three-dimensional photoactive self-standing porous materials have been synthesized through the integration of soft chemistry and colloids (emulsions, lyotrope mesophases, and P25 titania nanoparticles). Final multiscale porous ceramics bear 700-1000 m2 g-1 of micromesoporosity depending on the P25 nanoparticle contents. The applied thermal treatment does not affect the P25 anatase/rutile allotropic phase ratio. Photonic investigations correlated with the foams' morphologies suggest that the larger amount of TiO2 that is introduced, the larger the walls' density and the smaller the mean size of the void macroscopic diameters, with both effects inducing a reduction of the photon transport mean free path (lt) with the P25 content increase. A light penetration depth in the range of 6 mm is reached, thus depicting real 3D photonic scavenger behavior. The 3D photocatalytic properties of the MUB-200(x) series, studied in a dynamic "flow-through" configuration, show that the highest photoactivity (concentration of acetone ablated and concentration of CO2 formed) is obtained with the highest monolith height (volume) while providing an average of 75% mineralization. These experimental results validate the fact that these materials, bearing 3D photoactivity, are paving the path for air purification operating with self-standing porous monolith-type materials, which are much easier to handle than powders. As such, the photocatalytic systems can now be advantageously miniaturized, thereby offering indoor air treatment within vehicles/homes while drastically limiting the associated encumbrance. This volumetric counterintuitive acting mode for light-induced reactions may find other relevant advanced applications for photoinduced water splitting, solar fuel, and dye-sensitized solar cells while both optimizing photon scavenging and opening the path for the miniaturization of the processes where encumbrance or a foot-print penalty would be advantageously circumvented.
Collapse
Affiliation(s)
- Elodie Layan
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Juhi Gupta
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Isabelle Ly
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Frédéric Nallet
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Ahmed Bentaleb
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Eric Laurichesse
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Renaud Vallée
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Jean-Luc Blin
- Institut Jean Barriol, UMR CNRS 7053 L2CM, Université de Lorraine, Faculté des Sciences et Technologies, BP 70239, 54506 Vandoeuvre lès Nancy cedex, France
| | - Bénédicte Lebeau
- CNRS - Institut de Science des Matériaux de Mulhouse (IS2M), 15 rue Jean Starcky - BP 2488, 68057 Mulhouse cedex, France
| | - Frédéric Louërat
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Mickael Le Bechec
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, 64000 Pau, France
| | - Peter Moonen
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Total, LFCR, 64000 Pau, France
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, DMEX, 64000 Pau, France
| | - Thierry Toupance
- Université de Bordeaux, Institut des Sciences Moléculaires CNRS UMR 5255, Bât. A12, 351 Cours de la Libération, 33405 Talence cedex, France
| | - Thierry Pigot
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, 64000 Pau, France
| | - Rénal Backov
- Université de Bordeaux, CRPP-UMR CNRS 5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| |
Collapse
|
12
|
Ciocarlan RG, Blommaerts N, Lenaerts S, Cool P, Verbruggen SW. Recent Trends in Plasmon-Assisted Photocatalytic CO 2 Reduction. CHEMSUSCHEM 2023; 16:e202201647. [PMID: 36626298 DOI: 10.1002/cssc.202201647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Direct photocatalytic reduction of CO2 has become an highly active field of research. It is thus of utmost importance to maintain an overview of the various materials used to sustain this process, find common trends, and, in this way, eventually improve the current conversions and selectivities. In particular, CO2 photoreduction using plasmonic photocatalysts under solar light has gained tremendous attention, and a wide variety of materials has been developed to reduce CO2 towards more practical gases or liquid fuels (CH4 , CO, CH3 OH/CH3 CH2 OH) in this manner. This Review therefore aims at providing insights in current developments of photocatalysts consisting of only plasmonic nanoparticles and semiconductor materials. By classifying recent studies based on product selectivity, this Review aims to unravel common trends that can provide effective information on ways to improve the photoreduction yield or possible means to shift the selectivity towards desired products, thus generating new ideas for the way forward.
Collapse
Affiliation(s)
- Radu-George Ciocarlan
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Natan Blommaerts
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Silvia Lenaerts
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Pegie Cool
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Sammy W Verbruggen
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
13
|
Khoshpasand F, Nikpay A, Keshavarz M. Performance of photocatalytic oxidation surface with new geometry for indoor environment application: experimental and simulation. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2023. [DOI: 10.1515/ijcre-2022-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Abstract
Many studies of the photocatalytic oxidation process investigated on the removal efficiency and other variables of the input and output photoreactor. In the laboratory scale, it’s impossible, examination of the removal efficiency details, such as mass and energy transfer with air flow rate. Also, experimental methods request time consumption and money. For this reason, the simulation method can be used. The aim of this study was to prove that the validation of modeling approach in the photocatalytic oxidation process in the removal of toluene from air. Investigation of bed surface morphology, with FESEM, BET and TGA, shows acceptable monotonous of TiO2 nanoparticles on the ss plate. Furthermore, it was observed good adherence of nanoparticles on it. Experimental results on photocatalytic bed surface exhibited in the toluene concentration range of 10–40 ppm and flow rate of 2–5 l/min, with increasing flow and decreasing concentration, removal efficiency increased. The optimum removal point was 59% and 25 g/m3 min for 3.75 ppm and 5.61 l/min. For bed surface performance, the correlation between experimental results and simulation data was obtained 98%. According to the results, the photocatalytic oxidation process performed well for removal of low concentration of toluene from air. In addition, the obtained simulation method eliminated the random factors which can be affected by photocatalytic bed surface and it can show dependence of results based on reality.
Collapse
Affiliation(s)
- Fatemeh Khoshpasand
- Student Research Committee , School of Health , Qazvin University of Medical Sciences , P.O.Box 34197-659811 , Qazvin , Iran
- Department of Occupational Health , School of Health , Qazvin University of Medical Sciences , P.O.Box 34197-659811 , Qazvin , Iran
| | - Ahmad Nikpay
- Department of Occupational Health , School of Health , Qazvin University of Medical Sciences , P.O.Box 34197-659811 , Qazvin , Iran
- Health Products Safety Research Center , Qazvin University of Medical Sciences , P.O.Box 34197-659811 , Qazvin , Iran
| | - Mehrdad Keshavarz
- Student Research Committee , School of Health , Qazvin University of Medical Sciences , P.O.Box 34197-659811 , Qazvin , Iran
- Department of Occupational Health , School of Health , Qazvin University of Medical Sciences , P.O.Box 34197-659811 , Qazvin , Iran
| |
Collapse
|
14
|
Peeters H, Lenaerts S, Verbruggen SW. Benchmarking the Photocatalytic Self-Cleaning Activity of Industrial and Experimental Materials with ISO 27448:2009. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1119. [PMID: 36770132 PMCID: PMC9919847 DOI: 10.3390/ma16031119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Various industrial surface materials are tested for their photocatalytic self-cleaning activity by performing the ISO 27448:2009 method. The samples are pre-activated by UV irradiation, fouled with oleic acid and irradiated by UV light. The degradation of oleic acid over time is monitored by taking water contact angle measurements using a contact angle goniometer. The foulant, oleic acid, is an organic acid that makes the surface more hydrophobic. The water contact angle will thus decrease over time as the photocatalytic material degrades the oleic acid. In this study, we argue that the use of this method is strongly limited to specific types of surface materials, i.e., only those that are hydrophilic and smooth in nature. For more hydrophobic materials, the difference in the water contact angles of a clean surface and a fouled surface is not measurable. Therefore, the photocatalytic self-cleaning activity cannot be established experimentally. Another type of material that cannot be tested by this standard are rough surfaces. For rough surfaces, the water contact angle cannot be measured accurately using a contact angle goniometer as prescribed by the standard. Because of these limitations, many potentially interesting industrial substrates cannot be evaluated. Smooth samples that were treated with an in-house developed hydrophilic titania thin film (PCT/EP2018/079983) showed a great photocatalytic self-cleaning performance according to the ISO standard. Apart from discussing the pros and cons of the current ISO standard, we also stress how to carefully interpret the results and suggest alternative testing solutions.
Collapse
Affiliation(s)
- Hannelore Peeters
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Silvia Lenaerts
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sammy W. Verbruggen
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
15
|
Nguyen PH, Cao TM, Nguyen TT, Tong HD, Van Pham V. Photoelectrochemical water oxidation over TiO 2 nanotubes modified with MoS 2 and g-C 3N 4. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1541-1550. [PMID: 36605609 PMCID: PMC9764855 DOI: 10.3762/bjnano.13.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
TiO2 nanotube arrays (TNAs) have been studied for photoelectrochemical (PEC) water splitting. However, there are two major barriers of TNAs, including a low photo-response and the fast charge carrier recombination in TNAs, leading to poor photocatalytic efficiency. Through a comparison of MoS2/TNAs and g-C3N4/TNAs, it was found that TNAs modified with MoS2 and g-C3N4 exhibited a current density of, respectively, 210.6 and 139.6 μA·cm-2 at an overpotential of 1.23 V vs RHE, which is 18.2 and 12 times higher than that of pure TNAs under the same conditions. The stability of the MoS2/TNAs heterojunction is higher than that of g-C3N4/TNAs.
Collapse
Affiliation(s)
- Phuong Hoang Nguyen
- HUTECH University, 475A Dien Bien Phu Street, Binh Thanh District, Ho Chi Minh City, 700000, Vietnam
| | - Thi Minh Cao
- HUTECH University, 475A Dien Bien Phu Street, Binh Thanh District, Ho Chi Minh City, 700000, Vietnam
| | - Tho Truong Nguyen
- HUTECH University, 475A Dien Bien Phu Street, Binh Thanh District, Ho Chi Minh City, 700000, Vietnam
| | - Hien Duy Tong
- Faculty of Engineering, Vietnamese-German University (VGU), Le Lai Street, Hoa Phu Ward, Thu Dau Mot City, Binh Duong Province, Vietnam
| | - Viet Van Pham
- HUTECH University, 475A Dien Bien Phu Street, Binh Thanh District, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
16
|
Optimizing the shape anisotropy of gold nanoparticles for enhanced light harvesting and photocatalytic applications. Photochem Photobiol Sci 2022; 22:773-781. [PMID: 36508140 DOI: 10.1007/s43630-022-00351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
AbstractHybrid nanoparticles (NP) of bismutite nanodisks (BSC ND) with gold nanoparticles (Au NP) of different aspect ratios (AR), such as spheres, rods and etched rods were synthesized via a facile sonochemical method. To better control the shapes of Au NP deposited on the substrate, these were pre-synthesized prior to the deposition using a modified seed mediated growth method by altering the pH and supersaturation of the growth solution. The shift in the peak position and shape of the localized surface plasmon resonance (LSPR) absorption band associated with fine-tuning of the shape of Au NP, led to enhanced light harvesting capabilities of the hybrid. Introducing shape anisotropy in the NP brought about narrowing of bandgap and lowering of PL intensity in the hybrids, suggesting better electronic contact of the NP with BSC, and effective suppression of recombination effects. Hybrids of BSC with Au nanorods showed 14% improved degradation of methylene blue (MB) dye compared to the hybrids with nanospheres. With this study, we provide a novel promising strategy to maximize the light harvesting capacity of semiconductors by tailoring the AR of Au NP, for improved solar to chemical energy conversion.
Graphical abstract
Collapse
|
17
|
Preparation and enhanced photocatalytic properties of the large-area transferred mesoporous InGaN-based MQWs with mesoporous GaN reflectors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
TiO2/g-C3N4 composites for the removal of chromium in wastewater. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
19
|
Kovalevskiy N, Svintsitskiy D, Cherepanova S, Yakushkin S, Martyanov O, Selishcheva S, Gribov E, Kozlov D, Selishchev D. Visible-Light-Active N-Doped TiO 2 Photocatalysts: Synthesis from TiOSO 4, Characterization, and Enhancement of Stability Via Surface Modification. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234146. [PMID: 36500767 PMCID: PMC9739126 DOI: 10.3390/nano12234146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 05/13/2023]
Abstract
This paper describes the chemical engineering aspects for the preparation of highly active and stable nanocomposite photocatalysts based on N-doped TiO2. The synthesis is performed using titanium oxysulfate as a low-cost inorganic precursor and ammonia as a precipitating agent, as well as a source of nitrogen. Mixing the reagents under a control of pH leads to an amorphous titanium oxide hydrate, which can be further successfully converted to nanocrystalline anatase TiO2 through calcination in air at an increased temperature. The as-prepared N-doped TiO2 provides the complete oxidation of volatile organic compounds both under UV and visible light, and the action spectrum of N-doped TiO2 correlates to its absorption spectrum. The key role of paramagnetic nitrogen species in the absorption of visible light and in the visible-light-activity of N-doped TiO2 is shown using the EPR technique. Surface modification of N-doped TiO2 with copper species prevents its intense deactivation under highly powerful radiation and results in a nanocomposite photocatalyst with enhanced activity and stability. The photocatalysts prepared under different conditions are discussed regarding the effects of their characteristics on photocatalytic activity under UV and visible light.
Collapse
Affiliation(s)
- Nikita Kovalevskiy
- Department of Unconventional Catalytic Processes, Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
| | - Dmitry Svintsitskiy
- Department of Heterogeneous Catalysis, Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
| | - Svetlana Cherepanova
- Department of Heterogeneous Catalysis, Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
| | - Stanislav Yakushkin
- Department of Physicochemical Methods of Research, Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
| | - Oleg Martyanov
- Department of Physicochemical Methods of Research, Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
| | | | - Evgeny Gribov
- Department of Unconventional Catalytic Processes, Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
| | - Denis Kozlov
- Department of Unconventional Catalytic Processes, Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
| | - Dmitry Selishchev
- Department of Unconventional Catalytic Processes, Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +73-8-3326-9429
| |
Collapse
|
20
|
Volders J, Elen K, Raes A, Ninakanti R, Kelchtermans AS, Sastre F, Hardy A, Cool P, Verbruggen SW, Buskens P, Van Bael MK. Sunlight-Powered Reverse Water Gas Shift Reaction Catalysed by Plasmonic Au/TiO 2 Nanocatalysts: Effects of Au Particle Size on the Activity and Selectivity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4153. [PMID: 36500776 PMCID: PMC9738324 DOI: 10.3390/nano12234153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
This study reports the low temperature and low pressure conversion (up to 160 °C, p = 3.5 bar) of CO2 and H2 to CO using plasmonic Au/TiO2 nanocatalysts and mildly concentrated artificial sunlight as the sole energy source (up to 13.9 kW·m-2 = 13.9 suns). To distinguish between photothermal and non-thermal contributors, we investigated the impact of the Au nanoparticle size and light intensity on the activity and selectivity of the catalyst. A comparative study between P25 TiO2-supported Au nanocatalysts of a size of 6 nm and 16 nm displayed a 15 times higher activity for the smaller particles, which can only partially be attributed to the higher Au surface area. Other factors that may play a role are e.g., the electronic contact between Au and TiO2 and the ratio between plasmonic absorption and scattering. Both catalysts displayed ≥84% selectivity for CO (side product is CH4). Furthermore, we demonstrated that the catalytic activity of Au/TiO2 increases exponentially with increasing light intensity, which indicated the presence of a photothermal contributor. In dark, however, both Au/TiO2 catalysts solely produced CH4 at the same catalyst bed temperature (160 °C). We propose that the difference in selectivity is caused by the promotion of CO desorption through charge transfer of plasmon generated charges (as a non-thermal contributor).
Collapse
Affiliation(s)
- Jordi Volders
- Design and Synthesis of Inorganic Materials (DESINe), Institute for Materials Research, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- Imec Vzw, Imomec Associated Laboratory, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- EnergyVille, Thor Park 8320, 3600 Genk, Belgium
| | - Ken Elen
- Design and Synthesis of Inorganic Materials (DESINe), Institute for Materials Research, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- Imec Vzw, Imomec Associated Laboratory, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- EnergyVille, Thor Park 8320, 3600 Genk, Belgium
| | - Arno Raes
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Rajeshreddy Ninakanti
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - An-Sofie Kelchtermans
- Design and Synthesis of Inorganic Materials (DESINe), Institute for Materials Research, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- Imec Vzw, Imomec Associated Laboratory, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- EnergyVille, Thor Park 8320, 3600 Genk, Belgium
| | - Francesc Sastre
- The Netherlands Organisation for Applied Scientific Research (TNO), High Tech Campus 25, 5656 AE Eindhoven, The Netherlands
| | - An Hardy
- Design and Synthesis of Inorganic Materials (DESINe), Institute for Materials Research, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- Imec Vzw, Imomec Associated Laboratory, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- EnergyVille, Thor Park 8320, 3600 Genk, Belgium
| | - Pegie Cool
- Laboratory of Adsorption and Catalysis, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Sammy W. Verbruggen
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Pascal Buskens
- Design and Synthesis of Inorganic Materials (DESINe), Institute for Materials Research, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- The Netherlands Organisation for Applied Scientific Research (TNO), High Tech Campus 25, 5656 AE Eindhoven, The Netherlands
| | - Marlies K. Van Bael
- Design and Synthesis of Inorganic Materials (DESINe), Institute for Materials Research, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- Imec Vzw, Imomec Associated Laboratory, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- EnergyVille, Thor Park 8320, 3600 Genk, Belgium
| |
Collapse
|
21
|
Sharma S, Kumar R, Raizada P, Ahamad T, Alshehri SM, Nguyen VH, Thakur S, Nguyen CC, Kim SY, Le QV, Singh P. An overview on recent progress in photocatalytic air purification: Metal-based and metal-free photocatalysis. ENVIRONMENTAL RESEARCH 2022; 214:113995. [PMID: 35932830 DOI: 10.1016/j.envres.2022.113995] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Air pollution is becoming a distinctly growing concern and the most pressing universal problem as a result of increased energy consumption, with the multiplication of the human population and industrial enterprises, resulting in the generation of hazardous pollutants. Among these, carbon monoxide, nitrogen oxides, Volatile organic compounds, Semi volatile organic compounds, and other inorganic gases not only have an adverse impact on human health both outdoors and indoors, but have also substantially altered the global climate, resulting in several calamities around the world. Thus, the purification of air is a crucial matter to deal with. Photocatalytic oxidation is one of the most recent and promising technologies, and it has been the subject of numerous studies over the past two decades. Hence, the photocatalyst is the most reassuring aspirant due to its adequate bandgap and exquisite stability. The process of photocatalysis has provided many benefits to the atmosphere by removing pollutants. In this review, our work focuses on four main themes. Firstly, we briefly elaborated on the general mechanism of air pollutant degradation, followed by an overview of the typical TiO2 photocatalyst, which is the most researched photocatalyst for photocatalytic destruction of gaseous VOCs. The influence of operating parameters influencing the process of photocatalytic oxidation (such as mass transfer, light source and intensity, pollutant concentration, and relative humidity) was then summarized. Afterwards, the progress and drawbacks of some typical photoreactors (including monolithic reactors, microreactors, optical fiber reactors, and packed bed reactors) were described and differentiated. Lastly, the most noteworthy coverage is dedicated to different types of modification strategies aimed at ameliorating the performance of photocatalysts for degradation of air pollutants, which were proposed and addressed. In addition, the review winds up with a brief deliberation for more exploration into air purification photocatalysis.
Collapse
Affiliation(s)
- Sarika Sharma
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan (HP), 173229, India
| | - Rohit Kumar
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan (HP), 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan (HP), 173229, India
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram district-603103, Tamil Nadu, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Chinh Chien Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan (HP), 173229, India.
| |
Collapse
|
22
|
Rouvière N, Brach JP, Honnecker T, Christoforidis KC, Robert D, Keller V. UiO-66/TiO2 nanostructures as adsorbent/photocatalytic composites for air treatment towards dry dimethyl methylphosphonate-laden air flow as a Chemical Warfare Agent analog. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Almaie S, Vatanpour V, Rasoulifard MH, Koyuncu I. Volatile organic compounds (VOCs) removal by photocatalysts: A review. CHEMOSPHERE 2022; 306:135655. [PMID: 35817187 DOI: 10.1016/j.chemosphere.2022.135655] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Amplified anthropogenic release of volatile organic compounds (VOCs) gets worse air quality and human health. Photocatalytic degradation of VOCs is the practical strategy due to its low cost, simplicity, high efficiency, and environmental sustainability. Different types of photocatalyst activated by UV and visible lights are applied for VOC degradation. This review tries to investigate the state-of-art of recently published papers on this subject with a focus on the high-efficiency photocatalyst. The novel photocatalysts are introduced and enhancing photocatalytic activity strategies such as the hybrid of two/three photocatalyst, impurity doping, and heterojunctions with narrow bandgap semiconductors have been explained. The procedures of visible light activation of the photocatalysts are discussed with attention to current problems and future challenges. In addition, effective operational parameters in the photocatalytic degradation of VOCs have been reviewed with their advantages and drawbacks. A series of strategies are developed for the efficient utilization of visible light photocatalysts and improving new materials or design structures to degrade produced toxic intermediates/by-products during photocatalytic degradation of VOCs. This review shows that there are significant challenges in the applications of photocatalysts in the selective removal of VOCs. Several approaches should be combined to produce synergistic effects, which may lead to much higher photocatalytic performance than individual strategies. Another challenge is to develop efficient photocatalysts to meet real problems on an industrial scale.
Collapse
Affiliation(s)
- Soudeh Almaie
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | - Mohammad Hossein Rasoulifard
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
24
|
Wang K, Paszkiewicz O, Vincent M, Henkiel P, Kowalski D, Kowalska E, Markowska-Szczupak A. Evaluation of Antifungal Properties of Titania P25. MICROMACHINES 2022; 13:1851. [PMID: 36363871 PMCID: PMC9693362 DOI: 10.3390/mi13111851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Commercial titania photocatalyst—P25 was chosen for an antifungal property examination due to it exhibiting one of the highest photocatalytic activities among titania photocatalysts. Titania P25 was homogenized first (HomoP25) and then annealed at different temperatures. Additionally, HomoP25 was modified with 0.5 wt% or 2.0 wt% of platinum by a photodeposition method. The obtained samples were characterized by diffuse-reflectance spectroscopy (DRS), X-ray photoabsorption spectroscopy (XPS), X-ray diffraction (XRD) and Raman spectroscopy. Moreover, photocatalytic activity was tested for methanol dehydrogenation under UV/vis irradiation. The spore-destroying effect of photocatalysts was investigated against two mold fungal species, i.e., Aspergillus fumigatus and Aspergillus niger. Both the mycelium growth and API ZYM (estimation of enzymatic activity) tests were applied for the assessment of antifungal effect. It was found that annealing caused a change of surface properties of the titania samples, i.e., an increase in the noncrystalline part, a growth of particles and enhanced oxygen adsorption on its surface, which resulted in an increase in both the hydrogen evolution rate and the antifungal effect. Titania samples annealed at 300−500 °C were highly active during 60-min UV/vis irradiation, inhibiting the germination of both fungal spores, whereas titania modification with platinum (0.5 and 2.0 wt%) had negligible effect, despite being highly active for hydrogen evolution. The control experiments revealed the lack of titania activity in the dark, as well as high resistance of fungi for applied UV/vis irradiation in the absence of photocatalysts. Moreover, the complete inhibition of 19 hydrolases, secreted by both tested fungi, was noted under UV/vis irradiation on the annealed P25 sample. It is proposed that titania photocatalysts of large particle sizes (>150 nm) and enriched surface with oxygen might efficiently destroy fungal structures under mild irradiation conditions and, thus, be highly promising as covering materials for daily products.
Collapse
Affiliation(s)
- Kunlei Wang
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| | - Mewin Vincent
- Faculty of Chemistry & Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Patrycja Henkiel
- Faculty of Chemistry & Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Damian Kowalski
- Faculty of Chemistry & Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| |
Collapse
|
25
|
Is Black Titania a Promising Photocatalyst? Catalysts 2022. [DOI: 10.3390/catal12111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Five different (commercial and self-synthesized) titania samples were mixed with NaBH4 and then heated to obtain black titania samples. The change in synthesis conditions resulted in the preparation of nine different photocatalysts, most of which were black in color. The photocatalysts were characterized by various methods, including X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), photoacoustic and reverse-double beam photoacoustic spectroscopy (PAS/RDB-PAS). The photocatalytic activity was tested for oxidative decomposition of acetic acid, methanol dehydrogenation, phenol degradation and bacteria inactivation (Escherichia coli) under different conditions, i.e., irradiation with UV, vis, and NIR, and in the dark. It was found that the properties of the obtained samples depended on the features of the original titania materials. A shift in XRD peaks was observed only in the case of the commercial titania samples, indicating self-doping, whereas faceted anatase samples (self-synthesized) showed high resistance towards bulk modification. Independent of the type and degree of modification, all modified samples exhibited much worse activity under UV irradiation than original titania photocatalysts both under aerobic and anaerobic conditions. It is proposed that the strong reduction conditions during the samples’ preparation resulted in the partial destruction of the titania surface, as evidenced by both microscopic observation and crystallographic data (an increase in amorphous content), and thus the formation of deep electron traps (bulk defects as oxygen vacancies) increasing the charge carriers’ recombination. Under vis irradiation, a slight increase in photocatalytic performance (phenol degradation) was obtained for only four samples, while two samples also exhibited slight activity under NIR. In the case of bacteria inactivation, some modified samples exhibited higher activity under both vis and NIR than respective pristine titania, which could be useful for disinfection, cancer treatment and other purposes. However, considering the overall performance of the black titania samples in this study, it is difficult to recommend them for broad environmental applications.
Collapse
|
26
|
Photocatalytic Degradation of Tetracycline under Visible Light Irradiation on BiVO4 Microballs Modified with Noble Metals. Catalysts 2022. [DOI: 10.3390/catal12111293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Monoclinic scheelite bismuth vanadate (BVO) microballs were prepared by a facile hydrothermal method and subsequently modified with 2 wt% of noble metals (NM = Au, Ag, Cu, Pt and Pd) by a photodeposition route. All materials were characterized by diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR). The photocatalytic performance was investigated by degradation of tetracycline antibiotic under visible light irradiation. Moreover, photocurrent generation under UV/vis was also examined. It was found that BVO modification with all tested NMs resulted in a significant improvement in photocatalytic performance. The highest activity was obtained for Cu/BVO with mainly oxidized forms of copper. Based on scavenger tests (∙O2− and ∙OH as the main responsible species for TC degradation) and redox properties, it was proposed that the Z-scheme mechanism between copper oxides and BVO was responsible for enhanced photocatalytic activity. However, the co-participation of zero-valent forms of NMs should also be considered, either as electron scavengers, plasmonic sensitizers or conductors. Presented data reveal that porous microballs, highly attractive for practical applications due to micro-sized diameter and efficient light harvesting inside the structure, could be efficiently used for environmental and energy purposes under solar radiation.
Collapse
|
27
|
Wang K, Kowalska E. Property-governed performance of platinum-modified titania photocatalysts. Front Chem 2022; 10:972494. [PMID: 36212069 PMCID: PMC9538187 DOI: 10.3389/fchem.2022.972494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Titania is probably the most widely investigated semiconductor photocatalyst because of various advantages, such as high activity, thermal and chemical stability, low price, abundance, and negligible toxicity. However, pristine titania is also characterized by charge carriers’ recombination, and thus lower quantum yields of photocatalytic reactions than theoretical 100%. Moreover, its wide bandgap, despite being recommended for excellent redox properties, means also inactivity under visible part of solar radiation. Accordingly, titania has been surface modified, doped and coupled with various elements/compounds. For example, platinum deposited on the surface of titania has shown to improve both UV activity and the performance under vis. Although the studies on titania modification with platinum started almost half a century ago, and huge number of papers have been published up to now, it is unclear which properties are the most crucial and recommended to obtain highly efficient photocatalyst. In the literature, the opposite findings could be found on the property-governed activities that could result from huge differences in the reaction systems, and also examined photocatalysts. Considering the platinum properties, its content, the size of nanoparticles and the oxidation state, must be examined. Obviously, the characteristics of titania also influence the resultant properties of deposited platinum, and thus the overall photocatalytic performance. Although so many reports on Pt/TiO2 have been published, it is hardly possible to give indispensable advice on the recommended properties. However, it might be concluded that usually fine platinum NPs uniformly deposited on the titania surface result in high photocatalytic activity, and thus in the low optimal content of necessary platinum. Moreover, the aggregation of titania particles might also help in the lowering the necessary platinum amount (even to 0.2 wt%) due to the interparticle electron transfer mechanism between titania particles in one aggregate. In respect of platinum state, it is thought that it is highly substrate-specific case, and thus either positively charged or zero valent platinum is the most recommended. It might be concluded that despite huge number of papers published on platinum-modified titania, there is still a lack of comprehensive study showing the direct correlation between only one property and the resultant photocatalytic activity.
Collapse
|
28
|
Qiao P, Zhang A, Sun R, Wang W. Simple Quaternary Templating Systems for Direct Synthesis of Unique SBA-15 Mesopore Frameworks Embedded with High-Content TiO 2 Nanoparticles as High-Performance Photocatalysts. Inorg Chem 2022; 61:13968-13980. [PMID: 35998630 DOI: 10.1021/acs.inorgchem.2c01957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
This work presents a simple P123-based quaternary templating system using titanyl sulfate (TS) as the TiO2 precursor and self-contained sulfuric acid as the catalyst (TS/TEOS/P123/H2O). A unique structural configuration of SBA-15-type mesopore frameworks embedded with high-content TiO2 nanoparticles can be directly obtained. Even with a high TiO2 content (29.1 wt %), well-defined mesostructures free of pore blocking can be secured. A new structural formation mechanism is unveiled: a self-assembly process between inorganic species and P123 micelles yields ordered mesostructures catalyzed by self-contained TS in the low-temperature step, while sol-gel reaction and crystallization of TS coincide with processes of mesostructural re-organization and partial evacuation of P123 from mesopores. The incorporation of high-content TiO2 nanoparticles into mesopore frameworks mainly happens during the hydrothermal treatment step. Not surprisingly, thanks to well-defined mesostructures containing high-content accessible TiO2 nanoparticles, such TiO2/SBA-15 composites show high activity and good reusability in photodegrading Rhodamine B and humic acids and photoreducing highly toxic Cr6+ in water under UV irradiation.
Collapse
Affiliation(s)
- Pengchao Qiao
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, Liaoning, China
| | - Ao Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, Liaoning, China
| | - Rui Sun
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, Liaoning, China
| | - Wei Wang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, Liaoning, China
| |
Collapse
|
29
|
Ninakanti R, Dingenen F, Borah R, Peeters H, Verbruggen SW. Plasmonic Hybrid Nanostructures in Photocatalysis: Structures, Mechanisms, and Applications. Top Curr Chem (Cham) 2022; 380:40. [PMID: 35951165 DOI: 10.1007/s41061-022-00390-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
(Sun)Light is an abundantly available sustainable source of energy that has been used in catalyzing chemical reactions for several decades now. In particular, studies related to the interaction of light with plasmonic nanostructures have been receiving increased attention. These structures display the unique property of localized surface plasmon resonance, which converts light of a specific wavelength range into hot charge carriers, along with strong local electromagnetic fields, and/or heat, which may all enhance the reaction efficiency in their own way. These unique properties of plasmonic nanoparticles can be conveniently tuned by varying the metal type, size, shape, and dielectric environment, thus prompting a research focus on rationally designed plasmonic hybrid nanostructures. In this review, the term "hybrid" implies nanomaterials that consist of multiple plasmonic or non-plasmonic materials, forming complex configurations in the geometry and/or at the atomic level. We discuss the synthetic techniques and evolution of such hybrid plasmonic nanostructures giving rise to a wide variety of material and geometric configurations. Bimetallic alloys, which result in a new set of opto-physical parameters, are compared with core-shell configurations. For the latter, the use of metal, semiconductor, and polymer shells is reviewed. Also, more complex structures such as Janus and antenna reactor composites are discussed. This review further summarizes the studies exploiting plasmonic hybrids to elucidate the plasmonic-photocatalytic mechanism. Finally, we review the implementation of these plasmonic hybrids in different photocatalytic application domains such as H2 generation, CO2 reduction, water purification, air purification, and disinfection.
Collapse
Affiliation(s)
- Rajeshreddy Ninakanti
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Fons Dingenen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Rituraj Borah
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Hannelore Peeters
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sammy W Verbruggen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
30
|
Usgodaarachchi L, Thambiliyagodage C, Wijesekera R, Vigneswaran S, Kandanapitiye M. Fabrication of TiO 2 Spheres and a Visible Light Active α-Fe 2O 3/TiO 2-Rutile/TiO 2-Anatase Heterogeneous Photocatalyst from Natural Ilmenite. ACS OMEGA 2022; 7:27617-27637. [PMID: 35967057 PMCID: PMC9366797 DOI: 10.1021/acsomega.2c03262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/14/2022] [Indexed: 05/27/2023]
Abstract
High-purity (98.8%, TiO2) rutile nanoparticles were successfully synthesized using ilmenite sand as the initial titanium source. This novel synthesis method was cost-effective and straightforward due to the absence of the traditional gravity, magnetic, electrostatic separation, ball milling, and smelting processes. Synthesized TiO2 nanoparticles were 99% pure. Also, highly corrosive environmentally hazardous acid leachate generated during the leaching process of ilmenite sand was effectively converted into a highly efficient visible light active photocatalyst. The prepared photocatalyst system consists of anatase-TiO2/rutile-TiO2/Fe2O3 (TF-800), rutile-TiO2/Fe2TiO5 (TFTO-800), and anatase-TiO2/Fe3O4 (TF-450) nanocomposites, respectively. The pseudo-second-order adsorption rate of the TF-800 ternary nanocomposite was 0.126 g mg-1 min-1 in dark conditions, and a 0.044 min-1 visible light initial photodegradation rate was exhibited. The TFTO-800 binary nanocomposite adsorbed methylene blue (MB) following pseudo-second-order adsorption (0.224 g mg-1 min-1) in the dark, and the rate constant for photodegradation of MB in visible light was 0.006 min-1. The prepared TF-450 nanocomposite did not display excellent adsorptive and photocatalytic performances throughout the experiment period. The synthesized TF-800 and TFTO-800 were able to degrade 93.1 and 49.8% of a 100 mL, 10 ppm MB dye solution within 180 min, respectively.
Collapse
Affiliation(s)
- Leshan Usgodaarachchi
- Department
of Materials Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe, Colombo 10115, Sri Lanka
| | - Charitha Thambiliyagodage
- Faculty
of Humanities and Sciences, Sri Lanka Institute
of Information Technology, Malabe, Colombo 10115, Sri Lanka
| | - Ramanee Wijesekera
- Department
of Chemistry, Faculty of Science, University
of Colombo, Colombo
3 00300, Sri Lanka
| | - Saravanamuthu Vigneswaran
- Faculty
of Engineering, University of Technology
Sydney (UTS), P.O. Box 123, Broadway, NSW 2127, Australia
- Faculty
of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box N-1432 Ås 1430, Norway
| | - Murthi Kandanapitiye
- Department
of Nano Science Technology, Wayamba University
of Sri Lanka, Kuliyapitiya 60200, Sri Lanka
| |
Collapse
|
31
|
NOx Photooxidation over Different Noble Metals Modified TiO2. Catalysts 2022. [DOI: 10.3390/catal12080857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We compared the activity enhancement effect of noble metal deposited on TiO2 in photocatalytic nitrogen oxides oxidation. Titanium dioxide was decorated with Ag, Au, Pt or Pd in the sol-gel process. Synthesized catalysts were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller measurement (BET), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX). All catalysts together with pure TiO2 obtained by sol-gel (SG) technique were tested for their photocatalytic activity towards nitrogen oxide oxidation (high concentrations of 50, 150 and 250 ppm). FTIR spectrometry was used to determine the gas phase composition and identify TiO2 surface species. The Ag0.1 sample turned out to be deactivated within 60 min of UV/Vis irradiation. Photocatalytic oxidation rate towards NO2 turned to be the highest over SG (photocatalyst without metal deposition). NO2 formation was also observed for Au0.1, Au0.5, Pt0.1, Pt0.5 and Pd0.1. The best NOx removal, i.e., conversion to final product HNO3 was obtained with the Au0.5 photocatalyst.
Collapse
|
32
|
Manda AA, Drmosh Q, Elsayed KA, Al-Alotaibi AL, Olanrewaju Alade I, Onaizi SA, Dafalla HD, Elhassan A. Highly efficient UV–visible absorption of TiO2/Y2O3 nanocomposite prepared by nanosecond pulsed laser ablation technique. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
33
|
Wang K, Yoshiiri K, Rosa L, Wei Z, Juodkazis S, Ohtani B, Kowalska E. TiO2/Au/TiO2 plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible-light irradiation. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Chowdhury AP, Anantharaju KS, Umare SS, Dhar SS. Facile fabrication of binary BiOCl-Cu2CoSnS4 and ternary BiOCl-Cu2CoSnS4-TiO2 heterojunction nano photocatalyst for efficient sunlight-driven removal of direct blue 71 in an aqueous medium. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
TiO2/Au/TiO2 Plasmonic Photocatalysts: The Influence of Titania Matrix and Gold Properties. INVENTIONS 2022. [DOI: 10.3390/inventions7030054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasmonic photocatalysts have gained more and more attention because of possible applications for solar energy conversion, environmental decontamination, and water treatment. However, the activity under visible light is usually very low, and the property-governed activity as well as the mechanisms are not fully understood yet. Accordingly, this study examines four different titania photocatalysts (anatase and rutile with fine and large crystallites) modified with gold by photodeposition. Three kinds of samples were prepared, as follows: (i) gold-modified titania (Au/TiO2), (ii) physically mixed Au/TiO2 samples (Au/TiO2(1) + Au/TiO2(2)), and (iii) Au/(TiO2(1) + Au/TiO2(2)) samples, prepared by subsequent deposition of gold on the mixture of bare and gold-modified titania. In total, twelve samples were prepared and well characterized, including diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy (STEM). The photocatalytic activity was examined in three reaction systems: (i) methanol dehydrogenation during gold photodeposition under UV/vis irradiation, (ii) oxidative decomposition of acetic acid (UV/vis), and (iii) oxidation of 2-propanol to acetone under visible light irradiation (λ > 450 nm). It was found that during subsequent deposition, gold is mainly formed on the surface of pre-deposited Au nanoparticles (NPs), localized on fine titania NPs, through the electrostatic attractions (negatively charged gold resulting from photogenerated electrons’ accumulation). This gold aggregation, though detrimental for UV activity (many “naked” large titania with low activity), is highly beneficial for vis activity because of efficient light harvesting and increased interface between gold and titania (gold deposits surrounded by fine titania NPs). Moreover, it was found that rutile is more active than anatase for plasmonic photocatalysis, probably due to easier electron transfer from gold via titania to adsorbed oxygen (more negative conduction band), which might hinder the back reaction (electron transfer: Au→TiO2→Au).
Collapse
|
36
|
Yoshiiri K, Karabiyik B, Wang K, Wei Z, Colbeau-Justin C, Kowalska E. The property-governed activity of silver-modified titania photocatalysts: The influence of titania matrix. J Chem Phys 2022; 156:244706. [DOI: 10.1063/5.0097762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Commercial titania photocatalysts were modified with silver nanoparticles (NPs) by the photodeposition method in the presence/absence of methanol. The obtained photocatalysts were characterized by XRD, XPS, diffuse reflectance spectroscopy, STEM, and time-resolved microwave conductivity (TRMC) methods. The photocatalytic activity was tested under UV/vis irradiation for (i) methanol dehydrogenation (during silver deposition), (ii) oxygen evolution with in situ silver deposition, and (iii) oxidative decomposition of acetic acid, as well as under vis irradiation for 2-propanol oxidation. The action spectra of 2-propanol oxidation were also performed. It has been confirmed that modification of titania with silver causes significant improvement of photocatalytic activity under both UV and vis irradiation as silver works as an electron scavenger (TRMC data) and vis activator (possibly by an energy transfer mechanism). The obtained activities differ between titania samples significantly, suggesting that the type of crystalline phase, particle/crystallite sizes, and electron traps’ density are crucial for both the properties of formed silver deposits and resultant photocatalytic activity. It might be concluded that, under UV irradiation, (i) high crystallinity and large specific surface area are recommended for rutile- and anatase-rich samples, respectively, during hydrogen evolution, (ii) mixed crystalline phases cause a high rate of oxygen evolution from water, and (iii) anatase phase with fine silver NPs results in efficient decomposition of acetic acid, whereas under vis irradiation the aggregated silver NPs (broad localized surface plasmon resonance peak) on the rutile phase are promising for oxidation reactions.
Collapse
Affiliation(s)
- Kenta Yoshiiri
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Institute for Catalysis (ICAT), Hokkaido University, Sapporo, Japan
| | - Baris Karabiyik
- Institute for Catalysis (ICAT), Hokkaido University, Sapporo, Japan
| | - Kunlei Wang
- Institute for Catalysis (ICAT), Hokkaido University, Sapporo, Japan
- Northwest Research Institute, Co. Ltd. of C.R.E.C., Lanzhou, China
| | - Zhishun Wei
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, People's Republic of China
| | | | - Ewa Kowalska
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Institute for Catalysis (ICAT), Hokkaido University, Sapporo, Japan
| |
Collapse
|
37
|
Recent Advances in Solar Rechargeable Seawater Batteries Based on Semiconductor Photoelectrodes. Top Curr Chem (Cham) 2022; 380:28. [PMID: 35662375 DOI: 10.1007/s41061-022-00380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
With the ever-increasing demand for energy in the world, the tendency to use renewable energies has been growing rapidly. Sunlight, as an inexhaustible energy source, and the oceans, as one of the most valuable treasures on Earth, are available for free. Simultaneous exploitation of these two sources of energy and matter (sunlight and oceans) in one configuration can provide a sustainable solution for future energy supply. Among the various types of such energy storage and conversion systems, solar rechargeable seawater batteries (SRSBs) can meet this need by storing the chemical energy of seawater by receiving solar energy. SRSBs consist of two compartments: a closed compartment including a sodium metal anode in an organic liquid electrolyte, and an open compartment containing a semiconductor photoelectrode immersed in seawater, which are separated from each other by a ceramic solid electrolyte membrane. In this complex system, the photoelectrode is irradiated by sunlight, whereby electrons are excited and reach the Na metal anode after passing though the external circuit. The ceramic solid electrolyte harvests only sodium ions from seawater and transfers them to the anodic part, where the transferred ions are reduced to sodium metal atoms. At the same time, an oxygen evolution reaction takes place at the cathodic part. In this way, the battery is charged. The use of a photoelectrode in the charging process significantly increases the voltage efficiency of SRSBs to more than 90%, whereas a cell with only the seawater compartment (without a photoelectrode) will not deliver satisfactory performance. Therefore, to achieve very high efficiencies, designing an accurate system with the best components is absolutely necessary. This review focuses on the working principle of SRSBs, at the same time explaining the effect of key components on the performance and stability of SRSBs. The role of the semiconductor photoelectrode in improving the voltage efficiency of SRSBs is also described in detail, and finally strategies proposed to overcome obstacles to the commercialization of SRSBs are introduced.
Collapse
|
38
|
Recent Review of Titania-Clay-Based Composites Emerging as Advanced Adsorbents and Photocatalysts for Degradation of Dyes over the Last Decade. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/3823008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Textile industry being one of the most flourishing industries keeps growing and developing every year, and the consequences are not very pleasant. Even though its contribution towards economy of a country is indisputable, there are many pros and cons associated with it that should not be brushed aside, one of them being textile dye waste which is also growing at alarming rate. Many techniques have been designed to deal with this environmental crisis including adsorption and photodegradation of dye waste by various substances, both natural and synthetic. TiO2 and clay both have gained immense popularity in this area. Over the last decade, many successful attempts have been made to design TiO2-clay-based composites to combine and make the most of their individual capabilities to degrade textile dye waste. While clay is an effective adsorbent, inexpensive, innocuous, and a great ion exchanger, TiO2 provides supplementary active sites and free radicals and speeds up the degradation rate of dyes. This review summarizes various features of TiO2-clay-based composites including their surface characteristics, their role as dye adsorbents and photocatalysts, challenges in their implementation, and modifications to overcome these challenges made over the last decade.
Collapse
|
39
|
Effect of size distribution, skewness and roughness on the optical properties of colloidal plasmonic nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Dursun S, Ayturan ZC. Simultaneous removal of gaseous benzene and toluene with photocatalytic oxidation process at high temperatures under UVC irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38232-38247. [PMID: 35079968 DOI: 10.1007/s11356-022-18790-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Organic air pollutants represent many different pollutants, including persistent toxic organics and volatile organic compounds (VOC). The VOC group includes about 150 different compounds, the majority of which are considered harmful and toxic to human health. Considering all these features, the removal of VOC is of great importance. According to the Industrial Air Pollution Control Regulation, VOCs in flue gases are classified, and the limit value for the most dangerous group is specified as 20 mg/m3 according to the degree of damage. From past to present, many different removal technologies have been developed and continue to be developed. Removal of pollutants at low concentrations by conventional methods is more inadequate than those above certain concentrations. Photocatalytic oxidation (PCO) is one of the technologies used for VOC removal recently. It has been determined that many different organic pollutants can be removed with this method. Within the scope of this study, the removal of benzene and toluene pollutants, which are two important VOCs frequently encountered in flue gases, by the photocatalytic oxidation method has been studied under UVC irradiation. In this study, a new photocatalyst by doping silver (Ag), a noble metal, and nickel (Ni), one of the transition metals, on TiO2 nanoparticles was developed and a laboratory-scale reactor system was designed. Many experiments were carried out by changing the system parameters such as ambient temperature (120 °C, 150 °C, 180 °C), humidity (25% and 50%), and percentage of Ag and Ni doping on TiO2 (0.5%, 1%, 2.5%, %5) and the most successful conditions for the removal of benzene and toluene contaminants were tried to be determined based on the results obtained. When all experiments carried out within the scope of this study were considered, the average removal efficiency for benzene was found as 89.33%, while the average removal efficiency for toluene was 88.23%. According to the obtained results, the most suitable conditions for the simultaneous removal of benzene and toluene pollutants with photocatalytic oxidation method under UVC light were determined as 120 °C temperature, 25% humidity, and 0.5% doping photocatalyst.
Collapse
Affiliation(s)
- Sukru Dursun
- Department of Environmental Engineering, Engineering and Natural Science Faculty, Konya Technical University, Konya, Turkey
| | - Zeynep Cansu Ayturan
- Department of Environmental Engineering, Engineering and Natural Science Faculty, Konya Technical University, Konya, Turkey.
| |
Collapse
|
41
|
Zheng ALT, Ohno T, Andou Y. Recent Progress in Photocatalytic Efficiency of Hybrid Three-Dimensional (3D) Graphene Architectures for Pollution Remediation. Top Catal 2022. [DOI: 10.1007/s11244-022-01610-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Enhanced Photocatalytic Activity of Hierarchical Bi2WO6 Microballs by Modification with Noble Metals. Catalysts 2022. [DOI: 10.3390/catal12020130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Visible-responsive photocatalysts for environmental purification and fuel generation are, currently, highly sought after. Among the possible candidates, Bi2WO6 (BWO) has been considered due to its efficient light harvesting, stability, and promising activities. Here, hierarchical BWO microballs have been prepared using a hydrothermal method, and additionally modified with deposits of noble metals (gold, silver, copper, palladium and platinum) by the photodeposition method. The structure, morphology, photoabsorption properties, and surface composition of bare and metal-modified BWO samples were investigated by XRD, SEM, DRS and XPS analyses. The photocatalytic activity was evaluated by the oxidative degradation of model dye (methyl orange (MO)) under UV/vis, and hydrogen generation under vis and/or UV irradiation. It was found that hierarchical morphology is detrimental for high photocatalytic activity in both tested systems, resulting in the improved degradation of MO (ca. 65% during 90 min of UV/vis irradiation), and hydrogen evolution (0.1 and 0.4 μmol h−1 under vis and UV/vis irradiation, respectively). Moreover, the type of noble metal and its properties influence the overall photocatalytic performance. It was found that, under UV/vis irradiation, only platinum accelerates hydrogen evolution, whereas under vis irradiation the activity follows the order: BWO < BWO/Cu < BWO/Ag < BWO/Pt < BWO/Pd < BWO/Au. It was concluded that zero-valent metal is recommended for high vis response, probably due to plasmonic photocatalysis, efficient light harvesting ability, and co-catalytic role.
Collapse
|
43
|
Liu J, Ji Y, Zhu S, Guo T, Xu L, Dong J, Cheng P. C-dot doping for enhanced catalytic performance of TiO 2/5A for toluene degradation in non-thermal plasma-catalyst system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2480-2492. [PMID: 34374012 DOI: 10.1007/s11356-021-15840-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Non-thermal plasma (NTP) is gaining attention as a powerful tool to induce various reactions. The combination of NTP with catalysts has been successfully used to degrade volatile organic compounds (VOCs) for pollution control. In this study, a series of TiO2-C/5A catalysts, synthesized by carbon dots (C-dots) that decorate TiO2 by sol-gel and wetness impregnation methods, were incorporated with a dielectric barrier discharge (DBD) reactor in a single-stage structure to degrade toluene at atmospheric pressure and room temperature. A proton-transfer reaction mass spectrometer and a CO2 analyzer were used to monitor the concentration variations of organic by-products and CO2 online. The effects of input power, mass ratio of C-dots/TiO2 (TiO2/5A (0 wt%), TiO2-C1/5A (2.5 wt%), TiO2-C2/5A (5 wt%), TiO2-C3/5A (10 wt%)), gas flow rate, initial concentration of toluene on the toluene degradation efficiency, and CO2 selectivity were studied. The plasma-catalyst hybrid system could effectively improve the energy efficiency and reaction selectivity, attaining a maximum toluene degradation efficiency of 99.6% and CO2 selectivity of 83.0% compared to 79.5% and 37.5%, respectively, using the conventional plasma alone. Moreover, the generation of organic by-products also declined dramatically, averaging only half as much in plasma alone. The results also indicated that the appropriate amount of C-dot doping could greatly improve the catalyst efficiency in the hybrid plasma system. This is because the interaction between C-dots and TiO2 favors the formation of photoelectron holes and reduces the energy band gap and the recombination rate of photogenerated electron holes, which facilitates the generation of more active species on the catalyst surface, thereby leading to a more effective degradation reaction. These observations will provide guidance for the interaction studies between NTP and catalysts, not only for the exploration of new chemical mechanisms of aromatic compounds, but also for the screening of favorable materials for the desired reactions.
Collapse
Affiliation(s)
- Jixing Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yanyan Ji
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Shuping Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Teng Guo
- Institute of Environment Safety and Pollution Control, Jinan University, Guangzhou, 510632, China
| | - Li Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Junguo Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ping Cheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
44
|
Priya AK, Suresh R, Kumar PS, Rajendran S, Vo DVN, Soto-Moscoso M. A review on recent advancements in photocatalytic remediation for harmful inorganic and organic gases. CHEMOSPHERE 2021; 284:131344. [PMID: 34225112 DOI: 10.1016/j.chemosphere.2021.131344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Due to the continuous increase in industrial pollution and modern lifestyle, several types of air contaminants and their concentrations are emerging in the atmosphere. Besides, photocatalysis has gained much attention in the elimination of air pollution. Several ultraviolet and visible light active photocatalysts were tested in air pollutant treatment and thereby, the number of reports was increased in the past few years. In this context, this review describes the photocatalytic treatment of gaseous inorganic contaminants like NOx, H2S, and organic pollutants like formaldehyde, acetaldehyde, and benzene derivatives. Different photocatalysts with their air pollutant removal efficiency were explained. Improving strategies such as metal/non-metal doping, composite formation for photocatalyst activities have been studied. Moreover, an analysis is presented from each of the existing photocatalytic immobilization approaches. Also, factors responsible for effective photocatalysis were explained. Overall, the photocatalytic abatement technique is an auspicious way to eliminate different air contaminants. Besides, existing drawbacks and future challenges are also discussed.
Collapse
Affiliation(s)
- A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - R Suresh
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Matias Soto-Moscoso
- Departamento de Física, Facultad de Ciencias, Universidad del Bío-bío, Avenida Collao 1202, Casilla 15-C, Concepción, Chile
| |
Collapse
|
45
|
Kuchmiy SY. Photocatalytic Air Decontamination from Volatile Organic Pollutants Using Graphite-Like Carbon Nitride: a Review. THEOR EXP CHEM+ 2021. [DOI: 10.1007/s11237-021-09693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Morphology-Governed Performance of Multi-Dimensional Photocatalysts for Hydrogen Generation. ENERGIES 2021. [DOI: 10.3390/en14217223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the past few decades, extensive studies have been performed to utilize the solar energy for photocatalytic water splitting; however, up to the present, the overall efficiencies reported in the literature are still unsatisfactory for commercialization. The crucial element of this challenging concept is the proper selection and design of photocatalytic material to enable significant extension of practical application perspectives. One of the important features in describing photocatalysts, although underestimated, is particle morphology. Accordingly, this review presents the advances achieved in the design of photocatalysts that are dedicated to hydrogen generation, with an emphasis on the particle morphology and its potential correlation with the overall reaction performance. The novel concept of this work—with the content presented in a clear and logical way—is based on the division into five parts according to dimensional arrangement groups of 0D, 1D, 2D, 3D, and combined systems. In this regard, it has been shown that the consideration of the discussed aspects, focusing on different types of particle morphology and their correlation with the system’s efficiency, could be a promising route for accelerating the development of photocatalytic materials oriented for solar-driven hydrogen generation. Finally, concluding remarks (additionally including the problems connected with experiments) and potential future directions of particle morphology-based design of photocatalysts for hydrogen production systems have been presented.
Collapse
|
47
|
The TiO 2-ZnO Systems with Multifunctional Applications in Photoactive Processes-Efficient Photocatalyst under UV-LED Light and Electrode Materials in DSSCs. MATERIALS 2021; 14:ma14206063. [PMID: 34683655 PMCID: PMC8538394 DOI: 10.3390/ma14206063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
The main goal of the study was the hydrothermal-assisted synthesis of TiO2-ZnO systems and their subsequent use in photoactive processes. Additionally, an important objective was to propose a method for synthesizing TiO2-ZnO systems enabling the control of crystallinity and morphology through epitaxial growth of ZnO nanowires. Based on the results of X-ray diffraction analysis, in the case of materials containing a small addition of ZnO (≥5 wt.%), no crystalline phase of wurtzite was observed, proving that a high amount of modified titanium dioxide can inhibit the crystallization of ZnO. The transmission electron microscopy (TEM) results confirmed the formation of ZnO nanowires for systems containing ≥ 5% ZnO. Moreover, for the synthesized systems, there were no significant changes in the band gap energy. One of the primary purposes of this study was to test the TiO2-ZnO system in the photodegradation process of 4-chlorophenol using low-power UV-LED lamps. The results of photo-oxidation studies showed that the obtained binary systems exhibit good photodegradation and mineralization efficiency. Additionally, it was also pointed out that the dye-sensitized solar cells can be a second application for the synthesized TiO2-ZnO binary systems.
Collapse
|
48
|
Layer-by-Layer-Stabilized Plasmonic Gold-Silver Nanoparticles on TiO 2: Towards Stable Solar Active Photocatalysts. NANOMATERIALS 2021; 11:nano11102624. [PMID: 34685070 PMCID: PMC8540643 DOI: 10.3390/nano11102624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022]
Abstract
To broaden the activity window of TiO2, a broadband plasmonic photocatalyst has been designed and optimized. This plasmonic ‘rainbow’ photocatalyst consists of TiO2 modified with gold–silver composite nanoparticles of various sizes and compositions, thus inducing a broadband interaction with polychromatic solar light. However, these nanoparticles are inherently unstable, especially due to the use of silver. Hence, in this study the application of the layer-by-layer technique is introduced to create a protective polymer shell around the metal cores with a very high degree of control. Various TiO2 species (pure anatase, PC500, and P25) were loaded with different plasmonic metal loadings (0–2 wt %) in order to identify the most solar active composite materials. The prepared plasmonic photocatalysts were tested towards stearic acid degradation under simulated sunlight. From all materials tested, P25 + 2 wt % of plasmonic ‘rainbow’ nanoparticles proved to be the most promising (56% more efficient compared to pristine P25) and was also identified as the most cost-effective. Further, 2 wt % of layer-by-layer-stabilized ‘rainbow’ nanoparticles were loaded on P25. These layer-by-layer-stabilized metals showed superior stability under a heated oxidative atmosphere, as well as in a salt solution. Finally, the activity of the composite was almost completely retained after 1 month of aging, while the nonstabilized equivalent lost 34% of its initial activity. This work shows for the first time the synergetic application of a plasmonic ‘rainbow’ concept and the layer-by-layer stabilization technique, resulting in a promising solar active, and long-term stable photocatalyst.
Collapse
|
49
|
Mendonça CD, Khan SU, Rahemi V, Verbruggen SW, Machado SA, De Wael K. Surface plasmon resonance-induced visible light photocatalytic TiO2 modified with AuNPs for the quantification of hydroquinone. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Lan J, Wang Y, Huang B, Xiao Z, Wu P. Application of polyoxometalates in photocatalytic degradation of organic pollutants. NANOSCALE ADVANCES 2021; 3:4646-4658. [PMID: 36134316 PMCID: PMC9417141 DOI: 10.1039/d1na00408e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 05/30/2023]
Abstract
Organic pollutants are highly toxic, accumulative, and difficult to degrade or eliminate. As a low-cost, high-efficiency and energy-saving environmental purification technology, photocatalytic technology has shown great advantages in solving increasingly serious environmental pollution problems. The development of efficient and durable photocatalysts for the degradation of organic pollutants is the key to the extensive application of photocatalysis technology. Polyoxometalates (POMs) are a kind of discrete metal-oxide clusters with unique photo/electric properties which have shown promising applications in photocatalytic degradation. This review summarizes the recent advances in the design and synthesis of POM-based photocatalysts, as well as their application in the degradation of organic dyes, pesticides and other pollutants. In-depth perspective views are also proposed in this review.
Collapse
Affiliation(s)
- Jin Lan
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| | - Yu Wang
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| | - Bo Huang
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| | - Zicheng Xiao
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| | - Pingfan Wu
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| |
Collapse
|