1
|
Paschold A, Starke N, Rothemund S, Binder WH. Spiropyran as Building Block in Peptide Synthesis and Modulation of Photochromic Properties. Org Lett 2024; 26:10542-10547. [PMID: 39622009 DOI: 10.1021/acs.orglett.4c03929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Light-controlled triggering of materials requires efficient embedding of molecular photoswitches into larger molecules. We herein present the synthesis of two new building blocks for the synthesis of photoswitchable peptides, embedding spiropyranes as a central unit into peptide-backbones via a novel, yet unreported approach. The synthesis presented here allows us to embed spiropyranes directly into solid-phase peptide synthesis (SPPS), further describing the resulting photophysical properties of the as-prepared photoswitchable peptides.
Collapse
Affiliation(s)
- André Paschold
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Niclas Starke
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Sven Rothemund
- Core Unit Peptide-Technologies, University of Leipzig Medical Center, Liebigstraße 21, 04103 Leipzig, Germany
| | - Wolfgang H Binder
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany
| |
Collapse
|
2
|
Pradhan S, Sarker S, Thilagar P. Azobenzene-Tagged Photopeptides Exhibiting Excellent Selectivity and Light-Induced Cytotoxicity in MCF-7 Cells over HeLa and A549. J Med Chem 2024; 67:18794-18806. [PMID: 39487790 DOI: 10.1021/acs.jmedchem.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The precise regulation of proteasome activity has become a focal point in current research, particularly its implications in cancer treatment. Bortezomib is used for treating multiple myeloma and is found to be ineffective against solid tumors. A spatiotemporal control over the proteasome is one of the solutions to resolve these issues using external stimuli, such as light. Thus, we designed and synthesized azobenzene-containing tripeptide vinyl sulfones 1, 2, 3, and 4, as the azobenzene moiety can impart E↔Z isomerism upon exposure to UV light. Further, the hydrophobicity of these peptides was fine-tuned by systematically varying the size of hydrophobic amino acids at the P1, P2, and P3 positions. The light-induced Z isomers of these photopeptides showed excellent cellular potency in HeLa, MCF-7, and A549 cell lines. Photopeptide 4 with valine at the proximal position, phenylalanine at P2, and leucine at the P1 positions exhibited 19.3- and 6.6-fold cellular potency in MCF-7 and A549 cells, respectively.
Collapse
Affiliation(s)
- Sambit Pradhan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, INDIA
| | - Surajit Sarker
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, INDIA
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, INDIA
| |
Collapse
|
3
|
Santhosh Kumar S, Srinivasa H, Harish Kumar M, Devarajegowda HC, Palakshamurthy BS. Crystal structure, Hirshfeld surface, DFT and mol-ecular docking studies of 2-{4-[( E)-(4-acetylphen-yl)diazen-yl]phen-yl}-1-(5-bromo-thio-phen-2-yl)ethanone; a compound with bromine⋯oxygen-type contacts. Acta Crystallogr E Crystallogr Commun 2024; 80:1308-1312. [PMID: 39906775 PMCID: PMC11789173 DOI: 10.1107/s2056989024010776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/07/2024] [Indexed: 02/06/2025]
Abstract
The title compound, C19H13BrN2O3S, a non-liquid crystal mol-ecule, crystallizes in the ortho-rhom-bic system, space group Pna21. The torsion angles associated with ester and azo groups are -177.0 (4)°, -anti-periplanar, and 179.0 (4)°, +anti-periplanar, respectively. The packing is consolidated by a weak C-Br⋯O=C contact, forming infinite chains running along the [001] direction. A Hirshfeld surface analysis revealed that the major contributions to the crystal surface are from H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, Br⋯H/H⋯Br and S⋯H/H⋯S inter-actions. The computed three-dimensional energy inter-actions using the basis set B3LYP\631-G(d,p) show that Edis (217.6 kJ mol-1) is the major component in the structure. The DFT calculations performed at the B3LYP/6-311+ G(d,p) level indicate that the energy gap between HOMO and LUMO is 3.6725 (2) eV. The mol-ecular electrostatic potential (MEP) map generated supports the existence of the Br⋯O type contact, formed between the electrophilic site of the bromine atom and the nucleophilic site of the ketonic oxygen atom. The mol-ecular docking between the ligand and the Mycobacterium Tuberculosis (PDB ID:1HZP) receptor shows a good binding affinity value of -8.5 kcal mol-1.
Collapse
Affiliation(s)
- S. Santhosh Kumar
- Department of PG Studies and Research in Physics Albert Einstein Block UCS Tumkur University, Tumkur Karnataka-572103 India
| | - H.T Srinivasa
- Raman Research Institute, C V Raman Avenue Sadashivanagar Bangalore KarnatakaIndia
| | - M. Harish Kumar
- Department of Physics Yuvaraja's College University of Mysore,Mysore 570005 Karnataka India
| | - H. C. Devarajegowda
- Department of Physics Yuvaraja's College University of Mysore,Mysore 570005 Karnataka India
| | - B. S. Palakshamurthy
- Department of PG Studies and Research in Physics Albert Einstein Block UCS Tumkur University, Tumkur Karnataka-572103 India
| |
Collapse
|
4
|
Hayward D, Goddard ZR, Cominetti MMD, Searcey M, Beekman AM. Light-activated azobenzene peptide inhibitor of the PD-1/PD-L1 interaction. Chem Commun (Camb) 2024; 60:8228-8231. [PMID: 39007209 PMCID: PMC11293026 DOI: 10.1039/d4cc01249f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Inhibiting the PD-1/PD-L1 protein-protein interaction is a key immunotherapy for cancer. Antibodies dominate the clinical space but are costly, with limited applicability and immune side effects. We developed a photo-controlled azobenzene peptide that selectively inhibits the PD-1/PD-L1 interaction when in the cis isomer only. Activity is demonstrated in in vitro and cellular assays.
Collapse
Affiliation(s)
- Deanne Hayward
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR47TJ, UK.
| | - Zoë R Goddard
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR47TJ, UK.
| | - Marco M D Cominetti
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR47TJ, UK.
| | - Mark Searcey
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR47TJ, UK.
| | - Andrew M Beekman
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR47TJ, UK.
| |
Collapse
|
5
|
Paschold A, Schäffler M, Miao X, Gardon L, Krüger S, Heise H, Röhr MIS, Ott M, Strodel B, Binder WH. Photocontrolled Reversible Amyloid Fibril Formation of Parathyroid Hormone-Derived Peptides. Bioconjug Chem 2024; 35:981-995. [PMID: 38865349 PMCID: PMC11261605 DOI: 10.1021/acs.bioconjchem.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
Peptide fibrillization is crucial in biological processes such as amyloid-related diseases and hormone storage, involving complex transitions between folded, unfolded, and aggregated states. We here employ light to induce reversible transitions between aggregated and nonaggregated states of a peptide, linked to the parathyroid hormone (PTH). The artificial light-switch 3-{[(4-aminomethyl)phenyl]diazenyl}benzoic acid (AMPB) is embedded into a segment of PTH, the peptide PTH25-37, to control aggregation, revealing position-dependent effects. Through in silico design, synthesis, and experimental validation of 11 novel PTH25-37-derived peptides, we predict and confirm the amyloid-forming capabilities of the AMPB-containing peptides. Quantum-chemical studies shed light on the photoswitching mechanism. Solid-state NMR studies suggest that β-strands are aligned parallel in fibrils of PTH25-37, while in one of the AMPB-containing peptides, β-strands are antiparallel. Simulations further highlight the significance of π-π interactions in the latter. This multifaceted approach enabled the identification of a peptide that can undergo repeated phototriggered transitions between fibrillated and defibrillated states, as demonstrated by different spectroscopic techniques. With this strategy, we unlock the potential to manipulate PTH to reversibly switch between active and inactive aggregated states, representing the first observation of a photostimulus-responsive hormone.
Collapse
Affiliation(s)
- André Paschold
- Macromolecular
Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle Wittenberg, von-Danckelmann-Platz 4, Halle 06120, Germany
| | - Moritz Schäffler
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Xincheng Miao
- Center
for Nanosystems Chemistry (CNC), Theodor-Boveri Weg, Universität Würzburg, Würzburg 97074, Germany
| | - Luis Gardon
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52425, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Stephanie Krüger
- Biozentrum,
Martin Luther University Halle-Wittenberg, Weinberweg 22, Halle 06120, Germany
| | - Henrike Heise
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52425, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Merle I. S. Röhr
- Center
for Nanosystems Chemistry (CNC), Theodor-Boveri Weg, Universität Würzburg, Würzburg 97074, Germany
| | - Maria Ott
- Institute
of Biophysics, Faculty of Natural Science I, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle 06120, Germany
| | - Birgit Strodel
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Wolfgang H. Binder
- Macromolecular
Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle Wittenberg, von-Danckelmann-Platz 4, Halle 06120, Germany
| |
Collapse
|
6
|
Peelikuburage BGD, Martens WN, Waclawik ER. Light switching for product selectivity control in photocatalysis. NANOSCALE 2024; 16:10168-10207. [PMID: 38722105 DOI: 10.1039/d4nr00885e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Artificial switchable catalysis is a new, rapidly expanding field that offers great potential advantages for both homogeneous and heterogeneous catalytic systems. Light irradiation is widely accepted as the best stimulus to artificial switchable chemical systems. In recent years, tremendous progress has been made in the synthesis and application of photo-switchable catalysts that can control when and where bond formation and dissociation take place in reactant molecules. Photo-switchable catalysis is a niche area in current catalysis, on which systematic analysis and reviews are still lacking in the scientific literature, yet it offers many intriguing and versatile applications, particularly in organic synthesis. This review aims to highlight the recent advances in photo-switchable catalyst systems that can result in two different chemical product outcomes and thus achieve a degree of control over organic synthetic reactions. Furthermore, this review evaluates different approaches that have been employed to achieve dynamic control over both the catalytic function and the selectivity of several different types of synthesis reactions, along with the remaining challenges and potential opportunities. Owing to the great diversity of the types of reactions and conditions adopted, a quantitative comparison of efficiencies between considered systems is not the focus of this review, instead the review showcases how insights from successful adopted strategies can help better harness and channel the power of photoswitchability in this new and promising area of catalysis research.
Collapse
Affiliation(s)
- Bayan G D Peelikuburage
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| | - Wayde N Martens
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| | - Eric R Waclawik
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
7
|
Matsuura K, Inaba H. Photoresponsive peptide materials: Spatiotemporal control of self-assembly and biological functions. BIOPHYSICS REVIEWS 2023; 4:041303. [PMID: 38505425 PMCID: PMC10903425 DOI: 10.1063/5.0179171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Peptides work as both functional molecules to modulate various biological phenomena and self-assembling artificial materials. The introduction of photoresponsive units to peptides allows the spatiotemporal remote control of their structure and function upon light irradiation. This article overviews the photoresponsive peptide design, interaction with biomolecules, and applications in self-assembling materials over the last 30 years. Peptides modified with photochromic (photoisomerizable) molecules, such as azobenzene and spiropyran, reversibly photo-controlled the binding to biomolecules and nanostructure formation through self-assembly. Photocleavable molecular units irreversibly control the functions of peptides through cleavage of the main chain and deprotection by light. Photocrosslinking between peptides or between peptides and other biomolecules enhances the structural stability of peptide assemblies and complexes. These photoresponsive peptides spatiotemporally controlled the formation and dissociation of peptide assemblies, gene expressions, protein-drug interactions, protein-protein interactions, liposome deformation and motility, cytoskeleton structure and stability, and cell functions by appropriate light irradiation. These molecular systems can be applied to photo-control biological functions, molecular robots, artificial cells, and next-generation smart drug delivery materials.
Collapse
|
8
|
González R, Murillo-López J, Rabanal-León W, Prent-Peñaloza L, Concepción O, Olivares P, Duarte Y, de la Torre AF, Gutiérrez M, Caballero J. Multicomponent synthesis and photophysical study of novel α,β-unsaturated carbonyl depsipeptides and peptoids. Front Chem 2023; 11:1245941. [PMID: 37663141 PMCID: PMC10471130 DOI: 10.3389/fchem.2023.1245941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
Multicomponent reactions were performed to develop novel α,β-unsaturated carbonyl depsipeptides and peptoids incorporating various chromophores such as cinnamic, coumarin, and quinolines. Thus, through the Passerini and Ugi multicomponent reactions (P-3CR and U-4CR), we obtained thirteen depsipeptides and peptoids in moderate to high yield following the established protocol and fundamentally varying the electron-rich carboxylic acid as reactants. UV/Vis spectroscopy was utilized to study the photophysical properties of the newly synthesized compounds. Differences between the carbonyl-substituted chromophores cause differences in electron delocalization that can be captured in the spectra. The near UV regions of all the compounds exhibited strong absorption bands. Compounds P2, P5, U2, U5, and U7 displayed absorption bands in the range of 250-350 nm, absorbing radiation in this broad region of the electromagnetic spectrum. A photostability study for U5 showed that its molecular structure does not change after exposure to UV radiation. Fluorescence analysis showed an incipient emission of U5, while U6 showed blue fluorescence under UV radiation. The photophysical properties and electronic structure were also determined by TD-DFT theoretical study.
Collapse
Affiliation(s)
- Ricelia González
- Doctorado en Ciencias Mención I + D de Productos Bioactivos, Laboratorio de Síntesis Orgánica y Actividad Biológica, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| | - Juliana Murillo-López
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Walter Rabanal-León
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Luis Prent-Peñaloza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Viña del Mar, Chile
| | - Odette Concepción
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Pedro Olivares
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Yorley Duarte
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexander F. de la Torre
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Margarita Gutiérrez
- Laboratorio de Síntesis Orgánica y Actividad Biológica, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| | - Julio Caballero
- Departamento de Bioinformática, Facultad de Ingeniería, Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Talca, Chile
| |
Collapse
|
9
|
Lāce I, Bazzi S, Uranga J, Schirmacher A, Diederichsen U, Mata RA, Simeth NA. Modulating Secondary Structure Motifs Through Photo-Labile Peptide Staples. Chembiochem 2023; 24:e202300270. [PMID: 37216330 DOI: 10.1002/cbic.202300270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
Peptide-protein interactions (PPIs) are facilitated by the well-defined three-dimensional structure of bioactive peptides, interesting compounds for the development of new therapeutic agents. Their secondary structure and thus their propensity to engage in PPIs can be influenced by the introduction of peptide staples on the side chains. In particular, light-controlled staples based on azobenzene photoswitches and their structural influence on helical peptides have been studied extensively. In contrast, photolabile staples bearing photocages as a structural key motif, have mainly been used to block supramolecular interactions. Their influence on the secondary structure of the target peptide is under-investigated. Thus, in this study we use a combination of spectroscopic techniques and in silico simulations to systematically study a series of helical peptides with varying length of the photo-labile staple to obtain a detailed insight into the structure-property relationship in such photoresponsive biomolecules.
Collapse
Affiliation(s)
- Ilze Lāce
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Sophia Bazzi
- Institute for Physical Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 6, 37077, Göttingen, Germany
| | - Jon Uranga
- Institute for Physical Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 6, 37077, Göttingen, Germany
| | - Anastasiya Schirmacher
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Ulf Diederichsen
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Ricardo A Mata
- Institute for Physical Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 6, 37077, Göttingen, Germany
| | - Nadja A Simeth
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
10
|
Janosko C, Shade O, Courtney TM, Horst TJ, Liu M, Khare SD, Deiters A. Genetic Encoding of Arylazopyrazole Phenylalanine for Optical Control of Translation. ACS OMEGA 2023; 8:26590-26596. [PMID: 37521667 PMCID: PMC10373180 DOI: 10.1021/acsomega.3c03512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
An arylazopyrazole was explored for its use as an enhanced photoswitchable amino acid in genetic code expansion. This new unnatural amino acid was successfully incorporated into proteins in both bacterial and mammalian cells. While photocontrol of translation required pulsed irradiations, complete selectivity for the trans-configuration by the pyrrolysyl tRNA synthetase was observed, demonstrating expression of a gene of interest selectively controlled via light exposure.
Collapse
Affiliation(s)
- Chasity
P. Janosko
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Taylor M. Courtney
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Trevor J. Horst
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Melinda Liu
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Sagar D. Khare
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Alexander Deiters
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
11
|
Shamsipur M, Ghavidast A, Pashabadi A. Phototriggered structures: Latest advances in biomedical applications. Acta Pharm Sin B 2023; 13:2844-2876. [PMID: 37521863 PMCID: PMC10372844 DOI: 10.1016/j.apsb.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/12/2023] [Accepted: 04/11/2023] [Indexed: 08/01/2023] Open
Abstract
Non-invasive control of the drug molecules accessibility is a key issue in improving diagnostic and therapeutic procedures. Some studies have explored the spatiotemporal control by light as a peripheral stimulus. Phototriggered drug delivery systems (PTDDSs) have received interest in the past decade among biological researchers due to their capability the control drug release. To this end, a wide range of phototrigger molecular structures participated in the DDSs to serve additional efficiency and a high-conversion release of active fragments under light irradiation. Up to now, several categories of PTDDSs have been extended to upgrade the performance of controlled delivery of therapeutic agents based on well-known phototrigger molecular structures like o-nitrobenzyl, coumarinyl, anthracenyl, quinolinyl, o-hydroxycinnamate and hydroxyphenacyl, where either of one endows an exclusive feature and distinct mechanistic approach. This review conveys the design, photochemical properties and essential mechanism of the most important phototriggered structures for the release of single and dual (similar or different) active molecules that have the ability to quickly reason of the large variety of dynamic biological phenomena for biomedical applications like photo-regulated drug release, synergistic outcomes, real-time monitoring, and biocompatibility potential.
Collapse
|
12
|
Kaygisiz K, Ender AM, Gačanin J, Kaczmarek LA, Koutsouras DA, Nalakath AN, Winterwerber P, Mayer FJ, Räder HJ, Marszalek T, Blom PWM, Synatschke CV, Weil T. Photoinduced Amyloid Fibril Degradation for Controlled Cell Patterning. Macromol Biosci 2023; 23:e2200294. [PMID: 36281903 DOI: 10.1002/mabi.202200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Indexed: 11/12/2022]
Abstract
Amyloid-like fibrils are a special class of self-assembling peptides that emerge as a promising nanomaterial with rich bioactivity for applications such as cell adhesion and growth. Unlike the extracellular matrix, the intrinsically stable amyloid-like fibrils do not respond nor adapt to stimuli of their natural environment. Here, a self-assembling motif (CKFKFQF), in which a photosensitive o-nitrobenzyl linker (PCL) is inserted, is designed. This peptide (CKFK-PCL-FQF) assembles into amyloid-like fibrils comparable to the unsubstituted CKFKFQF and reveals a strong response to UV-light. After UV irradiation, the secondary structure of the fibrils, fibril morphology, and bioactivity are lost. Thus, coating surfaces with the pre-formed fibrils and exposing them to UV-light through a photomask generate well-defined areas with patterns of intact and destroyed fibrillar morphology. The unexposed, fibril-coated surface areas retain their ability to support cell adhesion in culture, in contrast to the light-exposed regions, where the cell-supportive fibril morphology is destroyed. Consequently, the photoresponsive peptide nanofibrils provide a facile and efficient way of cell patterning, exemplarily demonstrated for A549, Chinese Hamster Ovary, and Raw Dual type cells. This study introduces photoresponsive amyloid-like fibrils as adaptive functional materials to precisely arrange cells on surfaces.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Adriana M Ender
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jasmina Gačanin
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - L Alix Kaczmarek
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dimitrios A Koutsouras
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Abin N Nalakath
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Pia Winterwerber
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Franz J Mayer
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hans-Joachim Räder
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tomasz Marszalek
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz, 90-924, Poland
| | - Paul W M Blom
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Christopher V Synatschke
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tanja Weil
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
13
|
Feng Z, Ducos B, Scerbo P, Aujard I, Jullien L, Bensimon D. The Development and Application of Opto-Chemical Tools in the Zebrafish. Molecules 2022; 27:6231. [PMID: 36234767 PMCID: PMC9572478 DOI: 10.3390/molecules27196231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
The zebrafish is one of the most widely adopted animal models in both basic and translational research. This popularity of the zebrafish results from several advantages such as a high degree of similarity to the human genome, the ease of genetic and chemical perturbations, external fertilization with high fecundity, transparent and fast-developing embryos, and relatively low cost-effective maintenance. In particular, body translucency is a unique feature of zebrafish that is not adequately obtained with other vertebrate organisms. The animal's distinctive optical clarity and small size therefore make it a successful model for optical modulation and observation. Furthermore, the convenience of microinjection and high embryonic permeability readily allow for efficient delivery of large and small molecules into live animals. Finally, the numerous number of siblings obtained from a single pair of animals offers large replicates and improved statistical analysis of the results. In this review, we describe the development of opto-chemical tools based on various strategies that control biological activities with unprecedented spatiotemporal resolution. We also discuss the reported applications of these tools in zebrafish and highlight the current challenges and future possibilities of opto-chemical approaches, particularly at the single cell level.
Collapse
Affiliation(s)
- Zhiping Feng
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Bertrand Ducos
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- High Throughput qPCR Core Facility, Ecole Normale Supérieure, Paris Sciences Letters University, 46 Rue d’Ulm, 75005 Paris, France
| | - Pierluigi Scerbo
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Isabelle Aujard
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - Ludovic Jullien
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - David Bensimon
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Senturk B, Akdag A. Amino Acid Conjugated Spiropyrans: Synthesis and Photoisomerization Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202202998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bengi Senturk
- Department of Chemistry Middle East Technical University Üniversiteler Mahallesi, Dumlupınar Bulvarı 1/6 D:133 06800 Çankaya-Ankara/ Turkey
| | - Akin Akdag
- Department of Chemistry Middle East Technical University Üniversiteler Mahallesi, Dumlupınar Bulvarı 1/6 D:133 06800 Çankaya-Ankara/ Turkey
| |
Collapse
|
15
|
Volarić J, Thallmair S, Feringa BL, Szymanski W. Photoswitchable, Water‐soluble Bis‐azobenzene Cross‐linkers with Enhanced Properties for Biological Applications. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jana Volarić
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Sebastian Thallmair
- Frankfurt Institute for Advanced Studies Frankfurt Institute for Advanced Studies GERMANY
| | - Ben L. Feringa
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Wiktor Szymanski
- University Medical Center Groningen Department of Radiology Hanzeplein 1 9747AG Groningen NETHERLANDS
| |
Collapse
|
16
|
Di Martino M, Sessa L, Di Matteo M, Panunzi B, Piotto S, Concilio S. Azobenzene as Antimicrobial Molecules. Molecules 2022; 27:5643. [PMID: 36080413 PMCID: PMC9457709 DOI: 10.3390/molecules27175643] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Azo molecules, characterized by the presence of a -N=N- double bond, are widely used in various fields due to their sensitivity to external stimuli, ch as light. The emergence of bacterial resistance has pushed research towards designing new antimicrobial molecules that are more efficient than those currently in use. Many authors have attempted to exploit the antimicrobial activity of azobenzene and to utilize their photoisomerization for selective control of the bioactivities of antimicrobial molecules, which is necessary for antibacterial therapy. This review will provide a systematic and consequential approach to coupling azobenzene moiety with active antimicrobial molecules and drugs, including small and large organic molecules, such as peptides. A selection of significant cutting-edge articles collected in recent years has been discussed, based on the structural pattern and antimicrobial performance, focusing especially on the photoactivity of azobenzene and the design of smart materials as the most targeted and desirable application.
Collapse
Affiliation(s)
- Miriam Di Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Martina Di Matteo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Barbara Panunzi
- Department of Agriculture, University of Napoli Federico II, 80126 Naples, Italy
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Bionam Research Center for Biomaterials, University of Salerno, 84084 Fisciano, Italy
| | - Simona Concilio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Bionam Research Center for Biomaterials, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
17
|
Komarov IV, Tolstanova G, Kuznietsova H, Dziubenko N, Yanchuk PI, Shtanova LY, Veselsky SP, Garmanchuk LV, Khranovska N, Gorbach O, Dovbynchuk T, Borysko P, Babii O, Schober T, Ulrich AS, Afonin S. Towards in vivo photomediated delivery of anticancer peptides: Insights from pharmacokinetic and -dynamic data. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112479. [PMID: 35660309 DOI: 10.1016/j.jphotobiol.2022.112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
An in vivo study of a photoswitchable cytotoxic peptide LMB040 has been undertaken on a chemically induced hepatocellular carcinoma model in immunocompetent rats. We analysed the pharmacokinetic profile of the less toxic photoform ("ring-closed" dithienylethene) of the compound in tumors, plasma, and healthy liver. Accordingly, the peptide can reach a tumor concentration sufficiently high to exert a cytotoxic effect upon photoconversion into the more active ("ring-open") photoform. Tissue morphology, histology, redox state of the liver, and hepatic biochemical parameters in blood serum were analysed upon treatment with (i) the less active photoform, (ii) the in vivo light-activated alternative photoform, and (iii) compared with a reference chemotherapeutic 5-fluorouracil. We found that application of the less toxic form followed by a delayed in vivo photoconversion into the more toxic ring-open form of LMB040 led to a higher overall survival of the animals, and signs of enhanced immune response were observed compared to the untreated animals.
Collapse
Affiliation(s)
- Igor V Komarov
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; Lumobiotics, Karlsruhe, Germany; Enamine, Kyiv, Ukraine.
| | | | - Halyna Kuznietsova
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; Enamine, Kyiv, Ukraine
| | | | | | | | | | | | | | | | | | | | - Oleg Babii
- Lumobiotics, Karlsruhe, Germany; Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tim Schober
- Lumobiotics, Karlsruhe, Germany; Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology, Karlsruhe, Germany; Institute of Organic Chemistry of Karlsruhe KIT, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany..
| | - Sergii Afonin
- Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
18
|
Abstract
The natural function of many proteins depends on their ability to switch their conformation driven by environmental changes. In this work, we present a small, monomeric β-sheet peptide that switches between a molten globule and a folded state through Zn(II) binding. The solvent-exposed hydrophobic core on the β-sheet surface was substituted by a His3-site, whereas the internal hydrophobic core was left intact. Zn(II) is specifically recognized by the peptide relative to other divalent metal ions, binds in the lower micromolar range, and can be removed and re-added without denaturation of the peptide. In addition, the peptide is fully pH-switchable, has a pKa of about 6, and survives several cycles of acidification and neutralization. In-depth structural characterization of the switch was achieved by concerted application of circular dichroism (CD) and multinuclear NMR spectroscopy. Thus, this study represents a viable approach toward a globular β-sheet Zn(II) mini-receptor prototype.
Collapse
Affiliation(s)
- Truc Lam Pham
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Centre for Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Michael Kovermann
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Centre for Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Jeong M, Park J, Seo Y, Lee KJ, Pramanik S, Ahn S, Kwon S. Hydrazone Photoswitches for Structural Modulation of Short Peptides. Chemistry 2021; 28:e202103972. [PMID: 34962683 DOI: 10.1002/chem.202103972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/11/2022]
Abstract
Molecules that undergo light-driven structural transformations constitute the core components in photoswitchable molecular systems and materials. Among various families of photoswitches, photochromic hydrazones have recently emerged as a novel class of photoswitches with superb properties, such as high photochemical conversion, spectral tunability, thermal stability, and fatigue resistance. Hydrazone photoswitches have been adopted in various adaptive materials at different length scales, however, their utilization for modulating biomolecules still has not been explored. Herein we present new hydrazone switches that can photomodulate the structures of short peptides. Systematic investigation on a set of hydrazone derivatives revealed that installation of the amide group does not significantly alter the photoswitching behaviors. Importantly, a hydrazone switch comprising an upper phenyl ring and a lower quinolinyl ring was effective for structural control of peptides. We anticipate that this work, as a new milestone in the research of hydrazone switches, will open a new avenue for structural and functional control of biomolecules.
Collapse
Affiliation(s)
- Myeongsu Jeong
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Jiyoon Park
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Yejin Seo
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Kwon Jung Lee
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Susnata Pramanik
- SRM Institute of Science and Technology, Department of Chemistry, INDIA
| | - Sangdoo Ahn
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Sunbum Kwon
- Chung-Ang University, Chemistry, 84 Heukseok-ro, Bldg106 Rm401-2, 06974, Seoul, KOREA, REPUBLIC OF
| |
Collapse
|
20
|
Bozovic O, Jankovic B, Hamm P. Using azobenzene photocontrol to set proteins in motion. Nat Rev Chem 2021; 6:112-124. [PMID: 37117294 DOI: 10.1038/s41570-021-00338-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 02/06/2023]
Abstract
Controlling the activity of proteins with azobenzene photoswitches is a potent tool for manipulating their biological function. With the help of light, it is possible to change binding affinities, control allostery or manipulate complex biological processes, for example. Additionally, owing to their intrinsically fast photoisomerization, azobenzene photoswitches can serve as triggers that initiate out-of-equilibrium processes. Such switching of the activity initiates a cascade of conformational events that can be accessed with time-resolved methods. In this Review, we show how the potency of azobenzene photoswitching can be combined with transient spectroscopic techniques to disclose the order of events and experimentally observe biomolecular interactions in real time. This strategy will further our understanding of how a protein can accommodate, adapt and readjust its structure to answer an incoming signal, revealing more of the dynamical character of proteins.
Collapse
|
21
|
Zhu C, Kou T, Kadi AA, Li J, Zhang Y. Molecular platforms based on biocompatible photoreactions for photomodulation of biological targets. Org Biomol Chem 2021; 19:9358-9368. [PMID: 34632469 DOI: 10.1039/d1ob01613j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoirradiation provides a convenient and biocompatible approach for spatiotemporal modulation of biological systems with photoresponsive components. The construction of molecular platforms with a photoresponse to be integrated into biomolecules for photomodulation has been of great research interest in optochemical biology. In this review, we summarize typical molecular platforms that are integratable with biomolecules for photomodulation purposes. We categorize these molecular platforms according to their excitation light source, namely ultraviolet (UV), visible (Vis) or near-infrared (NIR) light. The protype chemistry of these molecular platforms is introduced along with an overview of their most recent applications for spatiotemporal regulation of biomolecular function in living cells or mice models. Challenges and the outlook are also presented. We hope this review paper will contribute to further progress in the development of molecular platforms and their biomedical use.
Collapse
Affiliation(s)
- Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Tianzhang Kou
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Kingdom of Saudi Arabia.
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
22
|
Berdnikova DV. Photoswitches for controllable RNA binding: a future approach in the RNA-targeting therapy. Chem Commun (Camb) 2021; 57:10819-10826. [PMID: 34585681 DOI: 10.1039/d1cc04241f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNA is an emerging drug target that opens new perspectives in the treatment of viral and bacterial infections, cancer and a range of so far incurable genetic diseases. Among the various strategies towards the design and development of selective and efficient ligands for targeting and detection of therapeutically relevant RNA, photoswitchable RNA binders represent a very promising approach due to the possibility to control the ligand-RNA and protein-RNA interactions by light with high spatiotemporal resolution. However, the field of photoswitchable RNA binders still remains underexplored due to challenging design of lead structures that should combine high RNA binding selectivity with efficient photochemical performance. The aim of this highlight article is to describe the development of photoswitchable noncovalent RNA binders and to outline the current situation and perspectives of this emerging interdisciplinary field.
Collapse
Affiliation(s)
- Daria V Berdnikova
- Universität Siegen, Organische Chemie II, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.
| |
Collapse
|
23
|
Optical Fibre-Enabled Photoswitching for Localised Activation of an Anti-Cancer Therapeutic Drug. Int J Mol Sci 2021; 22:ijms221910844. [PMID: 34639185 PMCID: PMC8509559 DOI: 10.3390/ijms221910844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
Local activation of an anti-cancer drug when and where needed can improve selectivity and reduce undesirable side effects. Photoswitchable drugs can be selectively switched between active and inactive states by illumination with light; however, the clinical development of these drugs has been restricted by the difficulty in delivering light deep into tissue where needed. Optical fibres have great potential for light delivery in vivo, but their use in facilitating photoswitching in anti-cancer compounds has not yet been explored. In this paper, a photoswitchable chemotherapeutic is switched using an optical fibre, and the cytotoxicity of each state is measured against HCT-116 colorectal cancer cells. The performance of optical-fibre-enabled photoswitching is characterised through its dose response. The UV–Vis spectra confirm light delivered by an optical fibre effectively enables photoswitching. The activated drug is shown to be twice as effective as the inactive drug in causing cancer cell death, characterised using an MTT assay and fluorescent microscopy. This is the first study in which a photoswitchable anti-cancer compound is switched using an optical fibre and demonstrates the feasibility of using optical fibres to activate photoswitchable drugs for potential future clinical applications.
Collapse
|
24
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
25
|
Scherbakov AM, Balakhonov RY, Salnikova DI, Sorokin DV, Yadykov AV, Markosyan AI, Shirinian VZ. Light-driven photoswitching of quinazoline analogues of combretastatin A-4 as an effective approach for targeting skin cancer cells. Org Biomol Chem 2021; 19:7670-7677. [PMID: 34524348 DOI: 10.1039/d1ob01362a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel quinazoline series of photoswitchable combretastatin A-4 (CA-4) analogues were synthesized and their photochemical properties and antiproliferative activity against A431 epidermoid carcinoma cells were studied. It was found that quinazoline analogues, in contrast to the majority of the known CA-4, exhibit high antiproliferative activity in the E-form as well. Photoswitching of the E-form to the Z-form resulted in a multiple (9-fold) increase in antiproliferative activity. 1H NMR monitoring showed that these compounds are very resistant to UV (λ = 365 nm) or sunlight irradiation and do not undergo photodegradation with a loss of antiproliferative activity that is inherent in heterocyclic analogues of CA-4. Similar photoswitching and an increase in antiproliferative activity are observed on exposure to sunlight. A selected compound (1a-Z51) in sub-micromolar concentrations induced apoptosis in A431 cells, while rad50/ATM/p53 were not involved in cell death. The growth of A431 cells was significantly inhibited after combination treatment with compound 1a-Z51 and chemotherapy drugs (cisplatin or 5-fluorouracil). In summary, the quinazoline analogues of CA-4 represent a promising strategy to achieve a photoswitchable potency for the treatment of cancers, including the development of combination therapies.
Collapse
Affiliation(s)
- A M Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye sh. 24, Moscow 115522, Russian Federation
| | - R Yu Balakhonov
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Moscow, Russian Federation.
| | - D I Salnikova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye sh. 24, Moscow 115522, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - D V Sorokin
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye sh. 24, Moscow 115522, Russian Federation
| | - A V Yadykov
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Moscow, Russian Federation.
| | - A I Markosyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry, NAS RA, Yerevan, Armenia
| | - V Z Shirinian
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Moscow, Russian Federation.
| |
Collapse
|
26
|
Just‐Baringo X, Yeste‐Vázquez A, Moreno‐Morales J, Ballesté‐Delpierre C, Vila J, Giralt E. Controlling Antibacterial Activity Exclusively with Visible Light: Introducing a Tetra-ortho-Chloro-Azobenzene Amino Acid. Chemistry 2021; 27:12987-12991. [PMID: 34227716 PMCID: PMC8518743 DOI: 10.1002/chem.202102370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 11/30/2022]
Abstract
The introduction of a novel tetra-ortho-chloroazobenzene amino acid (CEBA) has enabled photoswitching of the antimicrobial activity of tyrocidine A analogues by using exclusively visible light, granting spatiotemporal control under benign conditions. Compounds bearing this photoswitchable amino acid become active upon irradiation with red light, but quickly turn-off upon exposure to other visible light wavelengths. Critically, sunlight quickly triggers isomerisation of the red light-activated compounds into their original trans form, offering an ideal platform for self-deactivation upon release into the environment. Linear analogues of tyrocidine A were found to provide the best photocontrol of their antimicrobial activity, leading to compounds active against Acinetobacter baumannii upon isomerisation. Exploration of their N- and C-termini has provided insights into key elements of their structure and has allowed obtaining new antimicrobials displaying excellent strain selectivity and photocontrol.
Collapse
Affiliation(s)
- Xavier Just‐Baringo
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 1008028BarcelonaSpain
- Laboratori de Química OrgànicaFacultat de FarmàciaIBUBUniversitat de Barcelona08028BarcelonaSpain
| | - Alejandro Yeste‐Vázquez
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 1008028BarcelonaSpain
| | - Javier Moreno‐Morales
- Institute for Global Health (ISGlobal)Hospital Clínic - Universitat de BarcelonaBarcelonaSpain
| | | | - Jordi Vila
- Institute for Global Health (ISGlobal)Hospital Clínic - Universitat de BarcelonaBarcelonaSpain
- Department of Clinical Microbiology – CDBHospital Clínic - University of BarcelonaBarcelonaSpain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 1008028BarcelonaSpain
| |
Collapse
|
27
|
Uhl E, Wolff F, Mangal S, Dube H, Zanin E. Light-Controlled Cell-Cycle Arrest and Apoptosis. Angew Chem Int Ed Engl 2020; 60:1187-1196. [PMID: 33035402 PMCID: PMC7839536 DOI: 10.1002/anie.202008267] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 12/19/2022]
Abstract
Cell‐cycle interference by small molecules has widely been used to study fundamental biological mechanisms and to treat a great variety of diseases, most notably cancer. However, at present only limited possibilities exist for spatio‐temporal control of the cell cycle. Here we report on a photocaging strategy to reversibly arrest the cell cycle at metaphase or induce apoptosis using blue‐light irradiation. The versatile proteasome inhibitor MG132 is photocaged directly at the reactive aldehyde function effectively masking its biological activity. Upon irradiation reversible cell‐cycle arrest in the metaphase is demonstrated to take place in vivo. Similarly, apoptosis can efficiently be induced by irradiation of human cancer cells. With the developed photopharmacological approach spatio‐temporal control of the cell cycle is thus enabled with very high modulation, as caged MG132 shows no effect on proliferation in the dark. In addition, full compatibility of photo‐controlled uncaging with dynamic microscopy techniques in vivo is demonstrated. This visible‐light responsive tool should be of great value for biological as well as medicinal approaches in need of high‐precision targeting of the proteasome and thereby the cell cycle and apoptosis.
Collapse
Affiliation(s)
- Edgar Uhl
- Ludwig-Maximilians-Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Butenandtstr. 5-13, 81377, München, Germany
| | - Friederike Wolff
- Ludwig-Maximilians-Universität München, Center for Integrated Protein Science CIPSM, Department Biology II, Planegg-Martinsried, 82152, München, Germany
| | - Sriyash Mangal
- Ludwig-Maximilians-Universität München, Center for Integrated Protein Science CIPSM, Department Biology II, Planegg-Martinsried, 82152, München, Germany
| | - Henry Dube
- Ludwig-Maximilians-Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Butenandtstr. 5-13, 81377, München, Germany.,Current address: Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Esther Zanin
- Ludwig-Maximilians-Universität München, Center for Integrated Protein Science CIPSM, Department Biology II, Planegg-Martinsried, 82152, München, Germany
| |
Collapse
|
28
|
Uhl E, Wolff F, Mangal S, Dube H, Zanin E. Light‐Controlled Cell‐Cycle Arrest and Apoptosis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Edgar Uhl
- Ludwig-Maximilians-Universität München Department of Chemistry and Center for Integrated Protein Science CIPSM Butenandtstr. 5–13 81377 München Germany
| | - Friederike Wolff
- Ludwig-Maximilians-Universität München Center for Integrated Protein Science CIPSM Department Biology II Planegg-Martinsried 82152 München Germany
| | - Sriyash Mangal
- Ludwig-Maximilians-Universität München Center for Integrated Protein Science CIPSM Department Biology II Planegg-Martinsried 82152 München Germany
| | - Henry Dube
- Ludwig-Maximilians-Universität München Department of Chemistry and Center for Integrated Protein Science CIPSM Butenandtstr. 5–13 81377 München Germany
- Current address: Friedrich-Alexander-Universität Erlangen-Nürnberg Department of Chemistry and Pharmacy Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Esther Zanin
- Ludwig-Maximilians-Universität München Center for Integrated Protein Science CIPSM Department Biology II Planegg-Martinsried 82152 München Germany
| |
Collapse
|
29
|
Chu W, Prodromou R, Day KN, Schneible JD, Bacon KB, Bowen JD, Kilgore RE, Catella CM, Moore BD, Mabe MD, Alashoor K, Xu Y, Xiao Y, Menegatti S. Peptides and pseudopeptide ligands: a powerful toolbox for the affinity purification of current and next-generation biotherapeutics. J Chromatogr A 2020; 1635:461632. [PMID: 33333349 DOI: 10.1016/j.chroma.2020.461632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Following the consolidation of therapeutic proteins in the fight against cancer, autoimmune, and neurodegenerative diseases, recent advancements in biochemistry and biotechnology have introduced a host of next-generation biotherapeutics, such as CRISPR-Cas nucleases, stem and car-T cells, and viral vectors for gene therapy. With these drugs entering the clinical pipeline, a new challenge lies ahead: how to manufacture large quantities of high-purity biotherapeutics that meet the growing demand by clinics and biotech companies worldwide. The protein ligands employed by the industry are inadequate to confront this challenge: while featuring high binding affinity and selectivity, these ligands require laborious engineering and expensive manufacturing, are prone to biochemical degradation, and pose safety concerns related to their bacterial origin. Peptides and pseudopeptides make excellent candidates to form a new cohort of ligands for the purification of next-generation biotherapeutics. Peptide-based ligands feature excellent target biorecognition, low or no toxicity and immunogenicity, and can be manufactured affordably at large scale. This work presents a comprehensive and systematic review of the literature on peptide-based ligands and their use in the affinity purification of established and upcoming biological drugs. A comparative analysis is first presented on peptide engineering principles, the development of ligands targeting different biomolecular targets, and the promises and challenges connected to the industrial implementation of peptide ligands. The reviewed literature is organized in (i) conventional (α-)peptides targeting antibodies and other therapeutic proteins, gene therapy products, and therapeutic cells; (ii) cyclic peptides and pseudo-peptides for protein purification and capture of viral and bacterial pathogens; and (iii) the forefront of peptide mimetics, such as β-/γ-peptides, peptoids, foldamers, and stimuli-responsive peptides for advanced processing of biologics.
Collapse
Affiliation(s)
- Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kevin N Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kaitlyn B Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Carly M Catella
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Matthew D Mabe
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kawthar Alashoor
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642
| | - Yiman Xu
- College of Material Science and Engineering, Donghua University, 201620 Shanghai, People's Republic of China
| | - Yuanxin Xiao
- College of Textile, Donghua University, Songjiang District, Shanghai, 201620, People's Republic of China
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606.
| |
Collapse
|
30
|
Jwad R, Weissberger D, Hunter L. Strategies for Fine-Tuning the Conformations of Cyclic Peptides. Chem Rev 2020; 120:9743-9789. [PMID: 32786420 DOI: 10.1021/acs.chemrev.0c00013] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic peptides are promising scaffolds for drug development, attributable in part to their increased conformational order compared to linear peptides. However, when optimizing the target-binding or pharmacokinetic properties of cyclic peptides, it is frequently necessary to "fine-tune" their conformations, e.g., by imposing greater rigidity, by subtly altering certain side chain vectors, or by adjusting the global shape of the macrocycle. This review systematically examines the various types of structural modifications that can be made to cyclic peptides in order to achieve such conformational control.
Collapse
Affiliation(s)
- Rasha Jwad
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| |
Collapse
|
31
|
Vyasamudri S, Yang DY. Regiodivergent Synthesis of Bis(4-oxycoumarin)-based Dioxabicycles: Exploration of [4 + 4] (Heterocyclo)reversion/addition and 1,5-Hydrogen Shift Photochromism. Org Lett 2020; 22:3166-3170. [PMID: 32253913 DOI: 10.1021/acs.orglett.0c00904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two isomeric dioxabicyclic molecular skeletons were constructed by employing the concepts of divergent synthesis. A base-mediated and an acid-catalyzed pseudo-three-component reaction of two equivalents of 4-hydroxycoumarin and (Z)-3-chloro-3-phenylacrylaldehyde yielded the corresponding bis(4-oxycoumarin)-based 2,6- and 2,8-dioxabicycles, respectively. The prepared colorless 2,6-dioxabicycles turned red upon UV irradiation and underwent the reverse reaction when exposed to visible light. The photochromism was proposed to proceed via a sequential [4 + 4] (heterocyclo)addition/reversion and 1,5-hydrogen shift on the basis of photogenerated product-trapping experiments.
Collapse
Affiliation(s)
- Sameer Vyasamudri
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 40704, Taiwan, Republic of China
| | - Ding-Yah Yang
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 40704, Taiwan, Republic of China
| |
Collapse
|
32
|
Afonin S, Babii O, Reuter A, Middel V, Takamiya M, Strähle U, Komarov IV, Ulrich AS. Light-controllable dithienylethene-modified cyclic peptides: photoswitching the in vivo toxicity in zebrafish embryos. Beilstein J Org Chem 2020; 16:39-49. [PMID: 31976015 PMCID: PMC6964649 DOI: 10.3762/bjoc.16.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
This study evaluates the embryotoxicity of dithienylethene-modified peptides upon photoswitching, using 19 analogues based on the β-hairpin scaffold of the natural membranolytic peptide gramicidin S. We established an in vivo assay in two variations (with ex vivo and in situ photoisomerization), using larvae of the model organism Danio rerio, and determined the toxicities of the peptides in terms of 50% lethal doses (LD50). This study allowed us to: (i) demonstrate the feasibility of evaluating peptide toxicity with D. rerio larvae at 3–4 days post fertilization, (ii) determine the phototherapeutic safety windows for all peptides, (iii) demonstrate photoswitching of the whole-body toxicity for the dithienylethene-modified peptides in vivo, (iv) re-analyze previous structure–toxicity relationship data, and (v) select promising candidates for potential clinical development.
Collapse
Affiliation(s)
- Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Aline Reuter
- Institute of Organic Chemistry (IOC), KIT, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Volker Middel
- Institute of Toxicology and Genetics (ITG), KIT, POB 3640, 76021 Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Toxicology and Genetics (ITG), KIT, POB 3640, 76021 Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics (ITG), KIT, POB 3640, 76021 Karlsruhe, Germany
| | - Igor V Komarov
- Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 1601 Kyiv, Ukraine.,Lumobiotics GmbH, Auerstr. 2, 76227 Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), KIT, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|