1
|
Suzuki Y, Kaseda R, Nakagawa Y, Watanabe H, Otsuka T, Yamamoto S, Kaneko Y, Goto S, Matsusaka T, Narita I. Nephrotic syndrome induces the upregulation of cell proliferation-related genes in tubular cells in mice. Clin Exp Nephrol 2025; 29:393-404. [PMID: 39666151 PMCID: PMC11937209 DOI: 10.1007/s10157-024-02608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Massive proteinuria, dyslipidemia, and hypoalbuminemia induced by nephrotic syndrome (NS) secondarily affect tubular cells. We conducted an RNA sequencing (RNA-seq) analysis using a mouse model of focal segmental glomerulosclerosis to clarify the impact of NS on tubular cells. METHODS We used transgenic mice expressing hCD25 in podocytes (Nep25) to induce NS by injecting human CD25-specific immunotoxin (LMB2) at a dose of 0.625 ng/g body weight. Seven days after LMB2 injection, we extracted RNA from the whole kidney and conducted an RNA-seq analysis. Subsequently, we conducted multiple immunostaining and in situ hybridization (ISH) of differentially expressed genes (DEGs) to identify their locations and associated cell types. We also investigated the expression levels of DEGs in an additional mouse model of NS induced by adriamycin. RESULTS After NS induction, 562 upregulated and 430 downregulated DEGs were identified using RNA-seq. An enrichment analysis revealed the upregulation of cell proliferation-related genes. We observed significant upregulation of Foxm1, a transcription factor linked to cell proliferation. Immunostaining and ISH showed that various tubular cells expressed Mki67 and Foxm1 during NS development. The adriamycin-induced NS model also demonstrated the upregulation of Mki67 and Foxm1 in tubular cells. CONCLUSIONS NS induced the upregulation of cell proliferation-related genes in tubular cells without detectable renal dysfunction. Our findings may contribute to understanding the pathological effects of nephrotic syndrome on tubular cells.
Collapse
Affiliation(s)
- Yuya Suzuki
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Ryohei Kaseda
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan.
| | - Yusuke Nakagawa
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Hirofumi Watanabe
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Tadashi Otsuka
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Yoshikatsu Kaneko
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Taiji Matsusaka
- Institute of Medical Sciences and Department of Molecular Life Sciences, Tokai University School of Medicine, Kanagawa, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
2
|
Yang B, Lu L, Xiong T, Fan W, Wang J, Barbier-Torres L, Chhimwal J, Sinha S, Tsuchiya T, Mavila N, Tomasi ML, Cao D, Zhang J, Peng H, Mato JM, Liu T, Yang X, Kalinichenko VV, Ramani K, Han J, Seki E, Yang H, Lu SC. The role of forkhead box M1-methionine adenosyltransferase 2 A/2B axis in liver inflammation and fibrosis. Nat Commun 2024; 15:8388. [PMID: 39333125 PMCID: PMC11436801 DOI: 10.1038/s41467-024-52527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
Methionine adenosyltransferase 2 A (MAT2A) and MAT2B are essential for hepatic stellate cells (HSCs) activation. Forkhead box M1 (FOXM1) transgenic mice develop liver inflammation and fibrosis. Here we examine if they crosstalk in male mice. We found FOXM1/MAT2A/2B are upregulated after bile duct ligation (BDL) and carbon tetrachloride (CCl4) treatment in hepatocytes, HSCs and Kupffer cells (KCs). FDI-6, a FOXM1 inhibitor, attenuates the development and reverses the progression of CCl4-induced fibrosis while lowering the expression of FOXM1/MAT2A/2B, which exert reciprocal positive regulation on each other transcriptionally. Knocking down any of them lowers HSCs and KCs activation. Deletion of FOXM1 in hepatocytes, HSCs, and KCs protects from BDL-mediated inflammation and fibrosis comparably. Interestingly, HSCs from Foxm1Hep-/-, hepatocytes from Foxm1HSC-/-, and HSCs and hepatocytes from Foxm1KC-/- have lower FOXM1/MAT2A/2B after BDL. This may be partly due to transfer of extracellular vesicles between different cell types. Altogether, FOXM1/MAT2A/MAT2B axis drives liver inflammation and fibrosis.
Collapse
Affiliation(s)
- Bing Yang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Liqing Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ting Xiong
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, 410015, China
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Jiaohong Wang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Jyoti Chhimwal
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Sonal Sinha
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Takashi Tsuchiya
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Maria Lauda Tomasi
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - DuoYao Cao
- Department of Biomedical Sciences, CSMC LA, Los Angeles, CA, 90048, USA
| | - Jing Zhang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Peng
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, 48120, Derio, Bizkaia, Spain
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Key Laboratory of Cancer proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xi Yang
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Vladimir V Kalinichenko
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, 85004, USA
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, AZ, 85016, USA
| | - Komal Ramani
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Jenny Han
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Department of Society and Genetics, UCLA LA, Los Angeles, CA, 92620, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Heping Yang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA.
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA.
| |
Collapse
|
3
|
Noonan ML, Muto Y, Yoshimura Y, Leckie-Harre A, Wu H, Kalinichenko VV, Humphreys BD, Chang-Panesso M. Injury-induced Foxm1 expression in the mouse kidney drives epithelial proliferation by a cyclin F-dependent mechanism. JCI Insight 2024; 9:e175416. [PMID: 38916959 PMCID: PMC11383596 DOI: 10.1172/jci.insight.175416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Acute kidney injury (AKI) strongly upregulates the transcription factor Foxm1 in the proximal tubule in vivo, and Foxm1 drives epithelial proliferation in vitro. Here, we report that deletion of Foxm1 either with a nephron-specific Cre driver or by inducible global deletion reduced proximal tubule proliferation after ischemic injury in vivo. Foxm1 deletion led to increased AKI to chronic kidney disease transition, with enhanced fibrosis and ongoing tubule injury 6 weeks after injury. We report ERK mediated FOXM1 induction downstream of the EGFR in primary proximal tubule cells. We defined FOXM1 genomic binding sites by cleavage under targets and release using nuclease (CUT&RUN) and compared the genes located near FOXM1 binding sites with genes downregulated in primary proximal tubule cells after FOXM1 knockdown. The aligned data sets revealed the cell cycle regulator cyclin F (CCNF) as a putative FOXM1 target. We identified 2 cis regulatory elements that bound FOXM1 and regulated CCNF expression, demonstrating that Ccnf is strongly induced after kidney injury and that Foxm1 deletion abrogates Ccnf expression in vivo and in vitro. Knockdown of CCNF also reduced proximal tubule proliferation in vitro. These studies identify an ERK/FOXM1/CCNF signaling pathway that regulates injury-induced proximal tubule cell proliferation.
Collapse
Affiliation(s)
- Megan L Noonan
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Aidan Leckie-Harre
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Vladimir V Kalinichenko
- Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine, Phoenix, Arizona, USA
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Monica Chang-Panesso
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Xue M, Li B, Lu Y, Zhang L, Yang B, Shi L. FOXM1 Participates in Scleral Remodeling in Myopia by Upregulating APOA1 Expression Through METTL3/YTHDF2. Invest Ophthalmol Vis Sci 2024; 65:19. [PMID: 38190128 PMCID: PMC10777875 DOI: 10.1167/iovs.65.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose Apolipoprotein A1 (APOA1) is a potential crucial protein and treatment goal for pathological myopia in humans. This study set out to discover the function of APOA1 in scleral remodeling in myopia and its underlying mechanisms. Methods A myopic cell model was induced using hypoxia. Following loss- and gain-of function experiments, the expression of the myofibroblast transdifferentiation-related and collagen production-related factors Forkhead box M1 (FOXM1), APOA1, and methyltransferase-like 3 (METTL3) in the myopic cell model was examined by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting. The proliferation and apoptosis were determined by Cell Counting Kit-8 assay and flow cytometry, respectively. Chromatin immunoprecipitation (ChIP) was employed to examine FOXM1 enrichment in the METTL3 promoter, methylated RNA immunoprecipitation (Me-RIP) to examine the N6-methyladenosine (m6A) modification level of APOA1, and photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) to examine the binding between METTL3 and APOA1. Results Hypoxia-induced human scleral fibroblasts (HSFs) had high APOA1 and FOXM1 expression and low METTL3 expression. FOXM1 knockdown elevated METTL3 expression and downregulated APOA1 expression. FOXM1 was enriched in METTL3 promoter. APOA1 or FOXM1 knockdown or METTL3 overexpression reversed the hypoxia-induced elevation in vinculin, paxillin, and α-smooth muscle actin (α-SMA) levels and apoptosis and the reduction in collagen, type I, alpha 1 (COL1A1) level and cell proliferation in HSFs. METTL3 or YTH N6-methyladenosine RNA binding protein F2 (YTHDF2) knockdown or APOA1 overexpression reversed the impacts of FOXM1 knockdown on vinculin, paxillin, α-SMA, and COL1A1 expression and cell proliferation and apoptosis. Conclusions FOXM1 elevated the m6A methylation level of APOA1 by repressing METTL3 transcription and enhanced APOA1 mRNA stability and transcription by reducing the YTHDF2-recognized m6A methylated transcripts.
Collapse
Affiliation(s)
- Min Xue
- Department of Ophthalmology, Anhui No. 2 Provincial People's Hospital/Anhui No. 2 Provincial People's Hospital Clinical College, Anhui Medical University/Anhui No. 2 Provincial People's Hospital Clinical College, Bengbu Medical University/Anhui Eye Hospital, Hefei, Anhui, China
| | - Boai Li
- Dehong People's Hospital, The Affiliated Dehong Hospital of Kunming Medical University, Dehong, Yunan, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
| | - Yao Lu
- Graduate School of Bengbu Medical University, Bengbu, Anhui, China
- Department of Ophthalmology, Anhui No. 2 Provincial People's Hospital/Anhui Eye Hospital, Hefei, Anhui, China
| | - Luyuan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Bing Yang
- School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Lei Shi
- Department of Ophthalmology, Anhui No. 2 Provincial People's Hospital/Anhui No. 2 Provincial People's Hospital Clinical College, Anhui Medical University/Anhui No. 2 Provincial People's Hospital Clinical College, Bengbu Medical University/Anhui Eye Hospital, Hefei, Anhui, China
| |
Collapse
|
5
|
Hu J, Zhang X, Ma F, Huang C, Jiang Y. LncRNA CASC2 Alleviates Renal Interstitial Inflammation and Fibrosis through MEF2C Downregulation-Induced Hinderance of M1 Macrophage Polarization. Nephron Clin Pract 2023; 148:245-263. [PMID: 38142674 DOI: 10.1159/000531919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/25/2023] [Indexed: 12/26/2023] Open
Abstract
INTRODUCTION Long noncoding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) alleviates the progression of diabetic nephropathy by inhibiting inflammation and fibrosis. This study investigated how CASC2 impacts renal interstitial fibrosis (RIF) through regulating M1 macrophage (M1) polarization. METHOD Nine-week-old mice underwent unilateral ureteral obstruction (UUO) establishment. Macrophages were induced toward M1 polarization using lipopolysaccharide (LPS) in vitro and cocultured with fibroblasts to examine how M1 polarization influences RIF. LnCeCell predicted that CASC2 interacted with myocyte enhancer factor 2 C (MEF2C), which was validated by dual-luciferase reporter assay. CASC2/MEF2C overexpression was achieved by lentivirus-expressing lncRNA CASC2 injection in vivo or CASC2 and MEF2C transfection in vitro. Renal injury was evaluated through biochemical analysis and hematoxylin-eosin/Masson staining. Macrophage infiltration and M1 polarization in the kidney and/or macrophages were detected by immunofluorescence, flow cytometry, and/or quantitative reverse transcription polymerase chain reaction (qRT-PCR). Expressions of CASC2, MEF2C, and markers related to inflammation/M1/fibrosis in the kidney/macrophages/fibroblasts were analyzed by qRT-PCR, fluorescence in situ hybridization, enzyme-linked immunosorbent assay, and/or Western blot. RESULT In the kidneys of mice, CASC2 was downregulated and macrophage infiltration was promoted time-dependently from days 3 to 14 post-UUO induction; CASC2 overexpression alleviated renal histological abnormalities, hindered macrophage infiltration and M1 polarization, downregulated renal function markers serum creatinine and blood urea nitrogen and inflammation/M1/fibrosis-related makers, and offset UUO-induced MEF2C upregulation. LncRNA CASC2 overexpression inhibited fibroblast fibrosis and M1 polarization in cocultured fibroblasts with LPS-activated macrophages. Also, CASC2 bound to MEF2C and inhibited its expression in LPS-activated macrophages. Furthermore, MEF2C reversed the inhibitory effects of lncRNA CASC2 overexpression. CONCLUSION CASC2 alleviates RIF by inhibiting M1 polarization through directly downregulating MEF2C expression. CASC2 might represent a promising value of future investigations on treatment for RIF.
Collapse
Affiliation(s)
- Jinping Hu
- Department of Nephrology, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Ma
- Department of Nephrology, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chen Huang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yali Jiang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Shi N, Zhang J, Chen SY. DOCK2 Promotes Asthma Development by Eliciting Airway Epithelial-Mesenchymal Transition. Am J Respir Cell Mol Biol 2023; 69:310-320. [PMID: 36883952 PMCID: PMC10503310 DOI: 10.1165/rcmb.2022-0273oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) contributes to airway remodeling, a predominant feature of asthma. DOCK2 (dedicator of cytokinesis 2) is an innate immune signaling molecule involved in vascular remodeling. However, it is unknown if DOCK2 plays a role in airway remodeling during asthma development. In this study, we found that DOCK2 is highly induced in both normal human bronchial epithelial cells treated with house dust mite (HDM) extract and human asthmatic airway epithelium. DOCK2 is also upregulated by TGF-β1 (transforming growth factor β1) during EMT of human bronchial epithelial cells. Importantly, knockdown of DOCK2 inhibits, and overexpression of DOCK2 promotes, TGF-β1-induced EMT. Consistently, DOCK2 deficiency suppresses the EMT of airway epithelium, attenuates the subepithelial fibrosis, and improves pulmonary function in HDM-induced asthmatic lungs. These data suggest that DOCK2 plays an important role in EMT and asthma development. Mechanistically, DOCK2 interacts with transcription factor FoxM1 (forkhead box M1), which enhances FoxM1 binding to mesenchymal marker gene promoters and further promotes mesenchymal marker gene transcription and expression, leading to EMT. Taken together, our study identifies DOCK2 as a novel regulator for airway EMT in an HDM-induced asthma model, thus providing a potential therapeutic target for treatment of asthma.
Collapse
Affiliation(s)
- Ning Shi
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Jing Zhang
- Department of Neurological Intensive Care Unit, Taihe Hospital, Shiyan, China; and
| | - Shi-You Chen
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
- The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| |
Collapse
|
7
|
Chen M, Zuo S, Chen S, Li X, Zhang T, Yang D, Zou X, Yang Y, Long H, Peng R, Yuan H, Guo B, Liu L. Pharmacological inhibition of SMYD2 protects against cisplatin-induced renal fibrosis and inflammation. J Pharmacol Sci 2023; 153:38-45. [PMID: 37524453 DOI: 10.1016/j.jphs.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 07/04/2023] [Indexed: 08/02/2023] Open
Abstract
SET and MYND domain protein 2 (SMYD2) can methylate histone H3 at lysine36 (H3K36) and some non-histone substrates to play a role in tumorigenesis. However, It is unclear how SMYD2 contributes to chronic kidney disease (CKD). Here, AZ505 or LLY507, which could inhibit SMYD2, were used in cisplatin-induced CKD to investigate the effects and possible mechanisms by which they might act. We found that high expression of SMYD2 in cisplatin-induced CKD. However, AZ505 or LLY507 can significantly inhibit its expression, improve renal function injury and fibrosis induced by cisplatin, inhibit the transition of epithelial cells to a fibrogenic phenotype and fibrosis-related proteins, inhibit the expression of Inflammatory Cytokines (such as IL-6 and TNF-α), And inhibit the phosphorylation of pro-fibrosis molecule Smad3 and signal transduction and transcription activator-3 (STAT3) and up-regulated the expression of renal protective factor Smad7. In cultured tubular epithelial cells, AZ505 also can inhibit the expression of EMT, fibrosis-related proteins, and inflammatory cytokines in cisplatin-induced tubular epithelial cells. Based on these findings, SMYD2 may be a critical regulator of cisplatin-induced CKD and targeted pharmacological inhibition of SMYD2 may prevent cisplatin-induced CKD through Smad3 or STAT3-related signaling pathways.
Collapse
Affiliation(s)
- Min Chen
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China; Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Siyang Zuo
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China; Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Siyu Chen
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China; Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Xia Li
- Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Center for Clinical Medical Research, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Tian Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, 550025, China.
| | - Dan Yang
- Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Center for Clinical Medical Research, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Xue Zou
- Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Center for Clinical Medical Research, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Yuan Yang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China; Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Hehua Long
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China; Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Rui Peng
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China; Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Huixiong Yuan
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China; Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, 550025, China.
| | - Lirong Liu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China; Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
8
|
Zhang Z, Li M, Sun T, Zhang Z, Liu C. FOXM1: Functional Roles of FOXM1 in Non-Malignant Diseases. Biomolecules 2023; 13:biom13050857. [PMID: 37238726 DOI: 10.3390/biom13050857] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Forkhead box (FOX) proteins are a wing-like helix family of transcription factors in the DNA-binding region. By mediating the activation and inhibition of transcription and interactions with all kinds of transcriptional co-regulators (MuvB complexes, STAT3, β-catenin, etc.), they play significant roles in carbohydrate and fat metabolism, biological aging and immune regulation, development, and diseases in mammals. Recent studies have focused on translating these essential findings into clinical applications in order to improve quality of life, investigating areas such as diabetes, inflammation, and pulmonary fibrosis, and increase human lifespan. Early studies have shown that forkhead box M1 (FOXM1) functions as a key gene in pathological processes in multiple diseases by regulating genes related to proliferation, the cell cycle, migration, and apoptosis and genes related to diagnosis, therapy, and injury repair. Although FOXM1 has long been studied in relation to human diseases, its role needs to be elaborated on. FOXM1 expression is involved in the development or repair of multiple diseases, including pulmonary fibrosis, pneumonia, diabetes, liver injury repair, adrenal lesions, vascular diseases, brain diseases, arthritis, myasthenia gravis, and psoriasis. The complex mechanisms involve multiple signaling pathways, such as WNT/β-catenin, STAT3/FOXM1/GLUT1, c-Myc/FOXM1, FOXM1/SIRT4/NF-κB, and FOXM1/SEMA3C/NRP2/Hedgehog. This paper reviews the key roles and functions of FOXM1 in kidney, vascular, lung, brain, bone, heart, skin, and blood vessel diseases to elucidate the role of FOXM1 in the development and progression of human non-malignant diseases and makes suggestions for further research.
Collapse
Affiliation(s)
- Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mengxi Li
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Sun
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhengrong Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
9
|
Lukovic D, Hasimbegovic E, Winkler J, Mester-Tonczar J, Müller-Zlabinger K, Han E, Spannbauer A, Traxler-Weidenauer D, Bergler-Klein J, Pavo N, Goliasch G, Batkai S, Thum T, Zannad F, Gyöngyösi M. Identification of Gene Expression Signatures for Phenotype-Specific Drug Targeting of Cardiac Fibrosis. Int J Mol Sci 2023; 24:ijms24087461. [PMID: 37108624 PMCID: PMC10139067 DOI: 10.3390/ijms24087461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
We have designed translational animal models to investigate cardiac profibrotic gene signatures. Domestic pigs were treated with cardiotoxic drugs (doxorubicin, DOX, n = 5 or Myocet®, MYO, n = 5) to induce replacement fibrosis via cardiotoxicity. Reactive interstitial fibrosis was triggered by LV pressure overload by artificial isthmus stenosis with stepwise developing myocardial hypertrophy and final fibrosis (Hyper, n = 3) or by LV volume overload in the adverse remodeled LV after myocardial infarction (RemoLV, n = 3). Sham interventions served as controls and healthy animals (Control, n = 3) served as a reference in sequencing study. Myocardial samples from the LV of each group were subjected to RNA sequencing. RNA-seq analysis revealed a clear distinction between the transcriptomes of myocardial fibrosis (MF) models. Cardiotoxic drugs activated the TNF-alpha and adrenergic signaling pathways. Pressure or volume overload led to the activation of FoxO pathway. Significant upregulation of pathway components enabled the identification of potential drug candidates used for the treatment of heart failure, such as ACE inhibitors, ARB, ß-blockers, statins and diuretics specific to the distinct MF models. We identified candidate drugs in the groups of channel blockers, thiostrepton that targets the FOXM1-regulated ACE conversion to ACE2, tyrosine kinases or peroxisome proliferator-activated receptor inhibitors. Our study identified different gene targets involved in the development of distinct preclinical MF protocols enabling tailoring expression signature-based approach for the treatment of MF.
Collapse
Affiliation(s)
- Dominika Lukovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ena Hasimbegovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Winkler
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Mester-Tonczar
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Katrin Müller-Zlabinger
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Emilie Han
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Spannbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Denise Traxler-Weidenauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Jutta Bergler-Klein
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Noemi Pavo
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Goliasch
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sandor Batkai
- Hannover Medical School Institute of Molecular and Translational Therapeutic Strategies (IMTTS), 30625 Hannover, Germany
| | - Thomas Thum
- Hannover Medical School Institute of Molecular and Translational Therapeutic Strategies (IMTTS), 30625 Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625 Hannover, Germany
| | - Faiez Zannad
- Inserm Clinical Investigation Centre, Université de Lorraine, CHU, 54052 Nancy, France
| | - Mariann Gyöngyösi
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
10
|
Wei H, Li D, Luo Y, Wang Y, Lin E, Wei X. Aluminum exposure induces nephrotoxicity via fibrosis and apoptosis through the TGF-β1/Smads pathway in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114422. [PMID: 36521267 DOI: 10.1016/j.ecoenv.2022.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Aluminum (Al), the most common element in nature, can enter the body through various routes. Unfortunately, excessive accumulation of Al in the body can cause chronic toxicity. In this study, rats were randomly allocated to 4 groups and intraperitoneally injected with AlCl3 solution at 0, 5, 10, and 20 mg/(kg·d), respectively, for 4 weeks. The kidney function of rats and Al contents in the kidney were measured, and the pathological structural changes and apoptosis of the kidney were observed. Meanwhile, the expression of fibrosis- and apoptosis-related proteins was detected with western blot. For the in vitro assay, HK-2 cells were used to construct a model to evaluate the effects of Al exposure on cell viability, cell apoptosis, and the expression of fibrosis- and apoptosis-related proteins. Additionally, the TGF-β1/Smads pathway was also altered in HK-2 cells, followed by the measurement of changes in apoptosis and fibrosis-related proteins. The results revealed that Al could accumulate in kidney tissues, then leading to histopathological changes and kidney function impairment, promoting renal tubular cell apoptosis and renal collagen fiber deposition, and also elevating the expression of TGF-β1/Smads pathway-related proteins. In vitro experiments also exhibited that Al exposure increased apoptosis and the expression of fibrosis-related factors in HK-2 cells, accompanied by activation of the TGF-β1/Smads pathway. Further modulation of the TGF-β1/Smads pathway manifested that activation of the TGF-β1/Smads pathway facilitated Al-induced apoptosis and fibrosis-related factor expression, while inhibition of the pathway negated this effect of Al. In conclusion, the findings of the present study illustrate that Al exposure damages kidney function and facilitate apoptosis and kidney fibrosis, which may be achieved through the activation of the TGF-β1/Smads pathway. This study provides a new theoretical basis for the study of nephrotoxicity induced by excessive Al exposure.
Collapse
Affiliation(s)
- Hua Wei
- Department of General Medicine, Affiliated Hospital of YouJiang Medical University for Nationalities, Zhongshan No 2 Road 18, Baise 533000, China
| | - Dong Li
- Department of Oncology, Affiliated Hospital of YouJiang Medical University for Nationalities, Zhongshan No 2 Road 18, Baise 533000, China
| | - Yueling Luo
- Department of Health Supervision Center, Affiliated Hospital of YouJiang Medical University for Nationalities, Zhongshan No 2 Road 18, Baise 533000, China
| | - Yingchuan Wang
- Department of General Medicine, Affiliated Hospital of YouJiang Medical University for Nationalities, Zhongshan No 2 Road 18, Baise 533000, China
| | - Erbing Lin
- Department of General Medicine, Affiliated Hospital of YouJiang Medical University for Nationalities, Zhongshan No 2 Road 18, Baise 533000, China
| | - Xi Wei
- Department of Health Supervision Center, Affiliated Hospital of YouJiang Medical University for Nationalities, Zhongshan No 2 Road 18, Baise 533000, China.
| |
Collapse
|
11
|
Williams BM, Cliff CL, Demirel I, Squires PE, Hills CE. Blocking connexin 43 hemichannel-mediated ATP release reduces communication within and between tubular epithelial cells and medullary fibroblasts in a model of diabetic nephropathy. Diabet Med 2022; 39:e14963. [PMID: 36256487 PMCID: PMC9828766 DOI: 10.1111/dme.14963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Fibrosis of renal tubules is the final common pathway in diabetic nephropathy and develops in the face of tubular injury and fibroblast activation. Aberrant connexin 43 (Cx43) hemichannel activity has been linked to this damage under euglycaemic conditions, however, its role in glycaemic injury is unknown. This study investigated the effect of a Cx43 blocker (Tonabersat) on hemichannel activity and cell-cell interactions within and between tubular epithelial cells and fibroblasts in an in vitro model of diabetic nephropathy. METHODS Human kidney (HK2) proximal tubule epithelial cells and medullary fibroblasts (TK173) were treated in low (5 mM) or high (25 mM) glucose ± transforming growth factor beta-1 (TGFβ1) ± Tonabersat in high glucose. Carboxyfluorescein dye uptake and ATPlite luminescence assessed changes in hemichannel-mediated ATP release, while immunoblotting determined protein expression. Co-incubation with the ATP-diphosphohydrolase apyrase or a P2X7R inhibitor (A438079) assessed ATP-P2X7R signalling. Indirect co-culture with conditioned media from the alternate cell type evaluated paracrine-mediated heterotypic interactions. RESULTS Tonabersat partially negated glucose/TGFβ1-induced increases in Cx43 hemichannel-mediated ATP release and downstream changes in adherens junction and extracellular matrix (ECM) protein expression in HK2 and TK173 cells. Apyrase and A438079 highlighted the role for ATP-P2X7R in driving changes in protein expression in TK173 fibroblasts. Indirect co-culture studies suggest that epithelial cell secretome increases Tonabersat-sensitive hemichannel-mediated dye uptake in fibroblasts and downstream protein expression. CONCLUSION Tonabersat-sensitive hemichannel-mediated ATP release enhances TGFβ1-driven heterotypic cell-cell interaction and favours myofibroblast activation. The data supports the potential benefit of Cx43 inhibition in reducing tubulointerstitial fibrosis in late-stage diabetic nephropathy.
Collapse
Affiliation(s)
| | | | - Isak Demirel
- School of Medical SciencesÖrebro UniversityÖrebroSweden
| | | | | |
Collapse
|
12
|
Bailly C. The bacterial thiopeptide thiostrepton. An update of its mode of action, pharmacological properties and applications. Eur J Pharmacol 2022; 914:174661. [PMID: 34863996 DOI: 10.1016/j.ejphar.2021.174661] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
The bacterial thiopeptide thiostrepton (TS) is used as a veterinary medicine to treat bacterial infections. TS is a protein translation inhibitor, essentially active against Gram-positive bacteria and some Gram-negative bacteria. In procaryotes, TS abrogates binding of GTPase elongation factors to the 70S ribosome, by altering the structure of rRNA-L11 protein complexes. TS exerts also antimalarial effects by disrupting protein synthesis in the apicoplast genome of Plasmodium falciparum. Interestingly, the drug targets both the infectious pathogen (bacteria or parasite) and host cell, by inducing endoplasmic reticulum stress-mediated autophagy which contributes to enhance the host cell defense. In addition, TS has been characterized as a potent chemical inhibitor of the oncogenic transcription factor FoxM1, frequently overexpressed in cancers or other diseases. The capacity of TS to crosslink FoxM1, and a few other proteins such as peroxiredoxin 3 (PRX3) and the 19S proteasome, contributes to the anticancer effects of the thiopeptide. The anticancer activities of TS evidenced using diverse tumor cell lines, in vivo models and drug combinations are reviewed here, together with the implicated targets and mechanisms. The difficulty to formulate TS is a drag on the pharmaceutical development of the natural product. However, the design of hemisynthetic analogues and the use of micellar drug delivery systems should facilitate a broader utilization of the compound in human and veterinary medicines. This review shed light on the many pharmacological properties of TS, with the objective to promote its use as a pharmacological tool and medicinal product.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal, 59290, France.
| |
Collapse
|
13
|
Epithelial Mesenchymal Transition and its transcription factors. Biosci Rep 2021; 42:230017. [PMID: 34708244 PMCID: PMC8703024 DOI: 10.1042/bsr20211754] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial–mesenchymal transition or EMT is an extremely dynamic process involved in conversion of epithelial cells into mesenchymal cells, stimulated by an ensemble of signaling pathways, leading to change in cellular morphology, suppression of epithelial characters and acquisition of properties such as enhanced cell motility and invasiveness, reduced cell death by apoptosis, resistance to chemotherapeutic drugs etc. Significantly, EMT has been found to play a crucial role during embryonic development, tissue fibrosis and would healing, as well as during cancer metastasis. Over the years, work from various laboratories have identified a rather large number of transcription factors (TFs) including the master regulators of EMT, with the ability to regulate the EMT process directly. In this review, we put together these EMT TFs and discussed their role in the process. We have also tried to focus on their mechanism of action, their interdependency, and the large regulatory network they form. Subsequently, it has become clear that the composition and structure of the transcriptional regulatory network behind EMT probably varies based upon various physiological and pathological contexts, or even in a cell/tissue type-dependent manner.
Collapse
|
14
|
Luo M, Liu M, Liu W, Cui X, Zhai S, Gu H, Wang H, Wu K, Zhang W, Li K, Xia Y. Inhibition of fibroblast growth factor-inducible 14 attenuates experimental tubulointerstitial fibrosis and profibrotic factor expression of proximal tubular epithelial cells. Inflamm Res 2021; 70:553-568. [PMID: 33755760 DOI: 10.1007/s00011-021-01455-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/21/2021] [Accepted: 03/12/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND AIM As a proinflammatory cytokine, tumor necrosis factor-like weak inducer of apoptosis (TWEAK) participates in the progression of renal fibrosis by binding to its receptor, fibroblast growth factor-inducible 14 (Fn14). However, the effect of Fn14 inhibition on tubular epithelial cell-mediated tubulointerstitial fibrosis remains unclear. This study aimed to elucidate the role of TWEAK/Fn14 interaction in the development of experimental tubulointerstitial fibrosis as well as the protective effect of Fn14 knockdown on proximal tubular epithelial cells. METHODS A murine model of unilateral ureteral obstruction was constructed in both wild-type and Fn14-deficient BALB/c mice, followed by observation of the tubulointerstitial pathologies. RESULTS Fn14 deficiency ameliorated the pathological changes, including inflammatory cell infiltration and cell proliferation, accompanied by reduced production of profibrotic factors and extracellular matrix deposition. In vitro experiments showed that TWEAK dose-dependently enhanced the expression of collagen I, fibronectin, and α-smooth muscle actin in proximal tubular epithelial cells. Interestingly, TWEAK also upregulated the expression levels of Notch1/Jagged1. Fn14 knockdown and Notch1/Jagged1 inhibition also mitigated the effect of TWEAK on these cells. CONCLUSIONS In conclusion, TWEAK/Fn14 signals contributed to tubulointerstitial fibrosis by acting on proximal tubular epithelial cells. Fn14 inhibition might be a therapeutic strategy for protecting against renal interstitial fibrosis.
Collapse
Affiliation(s)
- Mai Luo
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Mengmeng Liu
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wei Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiao Cui
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Siyue Zhai
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hanjiang Gu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Huixia Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wen Zhang
- College of Military Basic Education, Engineering University of PAP, Xi'an, China
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
15
|
Yang N, Cao DF, Yin XX, Zhou HH, Mao XY. Lysyl oxidases: Emerging biomarkers and therapeutic targets for various diseases. Biomed Pharmacother 2020; 131:110791. [PMID: 33152948 DOI: 10.1016/j.biopha.2020.110791] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Therapeutic targeting of extracellular proteins has attracted huge attention in treating human diseases. The lysyl oxidases (LOXs) are a family of secreted copper-dependent enzymes which initiate the covalent crosslinking of collagen and elastin fibers in the extracellular microenvironment, thereby facilitating extracellular matrix (ECM) remodeling and ECM homeostasis. Apart from ECM-dependent roles, LOXs are also involved in other biological processes such as epithelial-to-mesenchymal transition (EMT) and transcriptional regulation, especially following hypoxic stress. Dysregulation of LOXs is found to underlie the onset and progression of multiple pathologies, such as carcinogenesis and cancer metastasis, fibrotic diseases, neurodegeneration and cardiovascular diseases. In this review, we make a comprehensive summarization of clinical and experimental evidences that support roles of for LOXs in disease pathology and points out LOXs as promising therapeutic targets for improving prognosis. Additionally, we also propose that LOXs reshape cell-ECM interaction or cell-cell interaction due to ECM-dependent and ECM-independent roles for LOXs. Therapeutic intervention of LOXs may have advantages in the maintenance of communication between ECM and cell or intercellular signaling, finally recovering organ function.
Collapse
Affiliation(s)
- Nan Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
| | - Dan-Feng Cao
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, PR China
| | - Xi-Xi Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
| |
Collapse
|