1
|
Xu K, Zhu J, Zhai H, Yang Q, Zhou K, Song Q, Wu J, Liu D, Li Y, Xia Z. A single-nucleotide polymorphism in PvPW1 encoding β-1,3-glucanase 9 is associated with pod width in Phaseolus vulgaris L. J Genet Genomics 2024; 51:1413-1422. [PMID: 39389459 DOI: 10.1016/j.jgg.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Pod width influences pod size, shape, yield, and consumer preference in snap beans (Phaseolus vulgaris L.). In this study, we map PvPW1, a quantitative trait locus associated with pod width in snap beans, through genotyping and phenotyping of recombinant plants. We identify Phvul.006G072800, encoding the β-1,3-glucanase 9 protein, as the causal gene for PvPW1. The PvPW1G3555 allele is found to positively regulate pod width, as revealed by an association analysis between pod width phenotype and the PvPW1G3555C genotype across 17 bi-parental F2 populations. In total, 97.7% of the 133 wide pod accessions carry PvPW1G3555, while 82.1% of the 78 narrow pod accessions carry PvPW1C3555, indicating strong selection pressure on PvPW1 during common bean breeding. Re-sequencing data from 59 common bean cultivars identify an 8-bp deletion in the intron linked to PvPW1C3555, leading to the development of the InDel marker of PvM436. Genotyping 317 common bean accessions with PvM436 demonstrated that accessions with PvM436247 and PvM436227 alleles have wider pods compared to those with PvM436219 allele, establishing PvM436 as a reliable marker for molecular breeding in snap beans. These findings highlight PvPW1 as a critical gene regulating pod width and underscore the utility of PvM436 in marker-assisted selection for snap bean breeding.
Collapse
Affiliation(s)
- Kun Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Jinlong Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Hong Zhai
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Qiang Yang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Keqin Zhou
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Qijian Song
- USDA ARS, Soybean Genome & Improvement Lab, Beltsville 20705, USA
| | - Jing Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Dajun Liu
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, Heilongjiang 150000, China.
| | - Yanhua Li
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China.
| | - Zhengjun Xia
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
2
|
Fang S, Shang X, He Q, Li W, Song X, Zhang B, Guo W. A cell wall-localized β-1,3-glucanase promotes fiber cell elongation and secondary cell wall deposition. PLANT PHYSIOLOGY 2023; 194:106-123. [PMID: 37427813 DOI: 10.1093/plphys/kiad407] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
β-1,3-glucanase functions in plant physiological and developmental processes. However, how β-1,3-glucanase participates in cell wall development remains largely unknown. Here, we answered this question by examining the role of GhGLU18, a β-1,3-glucanase, in cotton (Gossypium hirsutum) fibers, in which the content of β-1,3-glucan changes dynamically from 10% of the cell wall mass at the onset of secondary wall deposition to <1% at maturation. GhGLU18 was specifically expressed in cotton fiber with higher expression in late fiber elongation and secondary cell wall (SCW) synthesis stages. GhGLU18 largely localized to the cell wall and was able to hydrolyze β-1,3-glucan in vitro. Overexpression of GhGLU18 promoted polysaccharide accumulation, cell wall reconstruction, and cellulose synthesis, which led to increased fiber length and strength with thicker cell walls and shorter pitch of the fiber helix. However, GhGLU18-suppressed cotton resulted in opposite phenotypes. Additionally, GhGLU18 was directly activated by GhFSN1 (fiber SCW-related NAC1), a NAC transcription factor reported previously as the master regulator in SCW formation during fiber development. Our results demonstrate that cell wall-localized GhGLU18 promotes fiber elongation and SCW thickening by degrading callose and enhancing polysaccharide metabolism and cell wall synthesis.
Collapse
Affiliation(s)
- Shuai Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingfei He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Sun W, Yuan M, Yin L, Ke X, Zuo Y. A natriuretic peptide molecule from Vigna angularis, VaEG45, confers rust resistance by inhibiting fungal development. PLANT CELL REPORTS 2023; 42:409-420. [PMID: 36576553 DOI: 10.1007/s00299-022-02967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Novel function and mechanism of a PNP molecule VaEG45 from adzuki bean involved in plant immunity. Plant natriuretic peptides (PNPs) can affect a broad spectrum of physiological responses in plants acting as peptidic signaling molecules. However, PNPs may play additional roles in plant immunity. Our previous transcriptome data of adzuki bean (Vigna angularis) in response to Uromyces vignae infection revealed association of PNP-encoding gene VaEG45 with U. vignae resistance. To determine the function of VaEG45 in disease resistance, we cloned the 589 bp nucleotide sequence of VaEG45 containing 2 introns, encoding a putative 13.68 kDa protein that is 131 amino acids in length. We analyzed expression in different resistant cultivars of V. angularis and found significant induction of VaEG45 expression after U. vignae infection. Transient expression of VaEG45 improved tobacco resistance against Botrytis cinerea. We next analyzed the mechanism by which VaEG45 protects plants from fungal infection by determination of the biological activity of the prokaryotic expressed VaEG45. The results showed that the fusion protein VaEG45 can significantly inhibit urediospores germination of U. vignae, mycelial growth, and the infection of tobacco by B. cinerea. Further analysis revealed that VaEG45 exhibits β-1, 3-glucanase activity. These findings uncover the function of a novel PNP molecule VaEG45 and provide new evidence about the mechanism of PNPs in plant immunity.
Collapse
Affiliation(s)
- Weina Sun
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, National Coarse Cereals Engineering Research Center, Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mengqi Yuan
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, National Coarse Cereals Engineering Research Center, Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Lihua Yin
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, National Coarse Cereals Engineering Research Center, Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiwang Ke
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, National Coarse Cereals Engineering Research Center, Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Yuhu Zuo
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, National Coarse Cereals Engineering Research Center, Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
4
|
Chavanke SN, Penna S, Dalvi SG. β-Glucan and its nanocomposites in sustainable agriculture and environment: an overview of mechanisms and applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80062-80087. [PMID: 35641741 DOI: 10.1007/s11356-022-20938-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/15/2022] [Indexed: 05/23/2023]
Abstract
β-Glucan is an eco-friendly, biodegradable, and economical biopolymer with important roles for acquiring adaptations to mitigate climate change in crop plants. β-Glucan plays a crucial role in the activation of functional plant innate immune system by triggering the downward signaling cascade/s, resulting in the accumulation of different pathogenesis-related proteins (PR-proteins), reactive oxygen species (ROS), antioxidant defense enzymes, Ca2+-influx as well as activation of mitogen-activated protein kinase (MAPK) pathway. Recent experimental studies have shown that β-glucan recognition is mediated by co-receptor LysMPRR (lysin motif pattern recognition receptor)-CERK1 (chitin elicitor receptor kinase 1), LYK4, and LYK5 (LysM-containing receptor-like kinase), as well as different receptor systems in plants that could be plant species-specific and/or age and/or tissue-dependent. Transgenic overexpression of β-glucanase, chitinase, and/or in combination with other PR-proteins like cationic peroxidase, AP24,thaumatin-likeprotein 1 (TLP-1) has also been achieved for improving plant disease resistance in crop plants, but the transgenic methods have some ethical and environmental concerns. In this regard, elicitation of plant immunity using biopolymer like β-glucan and chitosan offers an economical, safe, and publicly acceptable method. The β-glucan and chitosan nanocomposites have proven to be useful for the activation of plant defense pathways and to enhance plant response/systemic acquired resistance (SAR) against broad types of plant pathogens and mitigating multiple stresses under the changing climate conditions.
Collapse
Affiliation(s)
- Somnath N Chavanke
- Tissue Culture Section, Agri. Sci. & Tech. Dept., Vasantdada Sugar Institute, Pune, India
| | | | - Sunil Govind Dalvi
- Tissue Culture Section, Agri. Sci. & Tech. Dept., Vasantdada Sugar Institute, Pune, India.
| |
Collapse
|
5
|
Ke X, Wang J, Xu X, Guo Y, Zuo Y, Yin L. Histological and molecular responses of Vigna angularis to Uromyces vignae infection. BMC PLANT BIOLOGY 2022; 22:489. [PMID: 36229784 PMCID: PMC9563176 DOI: 10.1186/s12870-022-03869-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/04/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND To advance the understanding of adzuki bean (Vigna angularis) resistance to infection with the rust-causing fungus Uromyces vignae (Uv), we comprehensively analyzed histological events and the transcriptome of Uv-infected adzuki bean. RESULTS Compared with the susceptible cv. Baoqinghong (BQH), the resistant cv. QH1 showed inhibition of uredospore germination and substomatal vesicle development, intense autofluorescence of cells around the infection site, and cell wall deposit formation in response to Uv infection. In cv. QH1, gene set enrichment analysis (GSEA) showed enrichment of chitin catabolic processes and responses to biotic stimuli at 24 h post-inoculation (hpi) and cell wall modification and structural constituent of cytoskeleton at 48 hpi. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated enrichment of WRKY transcription factors (TFs), the calcium binding protein cml, and hydroquinone glucosyltransferase at both 24 and 48 hpi. In total, 1992 and 557 differentially expressed genes (DEGs) were identified at 24 and 48 hpi, respectively. Cell surface pattern-recognition receptors (PRRs), WRKY TFs, defense-associated pathogenesis-related (PR) proteins, and lignin and antimicrobial phenolic compound biosynthesis were significantly induced. Finally, we detected the chitinase (CHI) and phenylalanine ammonia-lyase (PAL) activity were higher in QH1 and increased much earlier than in BQH. CONCLUSION In cv. QH1, cell-surface PRRs rapidly recognize Uv invasion and activate the corresponding TFs to increase the transcription of defense-related genes and corresponding enzymatic activities to prevent fungal development and spread in host tissues.
Collapse
Affiliation(s)
- Xiwang Ke
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Jie Wang
- Department of Biological Center, Harbin Academy of Agricultural Sciences, 150028, Harbin, China
| | - Xiaodan Xu
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Yongxia Guo
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Yuhu Zuo
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Lihua Yin
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, 163319, Daqing, China.
| |
Collapse
|
6
|
Refik Bozbuga. Commonalities of Molecular Response in Tomato Plants against Parasitic Nematodes. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021150036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Wang Y, Liu M, Wang X, Zhong L, Shi G, Xu Y, Li Y, Li R, Huang Y, Ye X, Li Z, Cui Z. A novel β-1,3-glucanase Gns6 from rice possesses antifungal activity against Magnaporthe oryzae. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153493. [PMID: 34403886 DOI: 10.1016/j.jplph.2021.153493] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 05/21/2023]
Abstract
As members of the pathogenesis-related protein (PR)-2 family, β-1,3-glucanases play pivotal roles in plant defense. Previous study showed that the rice genome contains 16 genes encoding putative β-1,3-glucanases, and the β-1,3-glucanases in subfamily A were deduced to be involved in plant defense. However, there was limited direct evidence. In this study, the expression of rice β-1,3-glucanases Gns2-Gns6 belonging to subfamily A in rice plant infection with Magnaporthe oryzae was investigated, and the enhanced expression of Gns6 during infection confirmed its crucial role in the defense of rice seedlings. Enzymological characterization revealed that Gns6 preferentially hydrolyzed laminarin, pachymaran, and yeast glucan. The β-1,3; 1,6-glucanase Gns6 exhibited a specific activity of 1.2 U/mg with laminarin as the substrate. In addition, Gns6 could hydrolyze laminarin via an endo-type mechanism, yielding a series of oligosaccharides with various degrees of polymerization that are known immune elicitors in plants. Moreover, Gns6 exhibited a significant inhibitory effect against the formation of the germ tubes and appressoria, with potential applications in plant protection. Taken together, this study shows that Gns6 is an essential effector in the defensive response of rice against pathogenic fungi.
Collapse
Affiliation(s)
- Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Muxing Liu
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects of Chinese Ministry of Agriculture, College of Plant Protection, Nanjing Agriculture University, 210095, Nanjing, PR China
| | - Xiaowen Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Guolong Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Ye Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yangqing Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Ruolin Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China; Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
8
|
Ali S, Ganai BA, Kamili AN, Bhat AA, Mir ZA, Bhat JA, Tyagi A, Islam ST, Mushtaq M, Yadav P, Rawat S, Grover A. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res 2018; 212-213:29-37. [PMID: 29853166 DOI: 10.1016/j.micres.2018.04.008] [Citation(s) in RCA: 317] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/17/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Abstract
Pathogenesis-related (PR) proteins and antimicrobial peptides (AMPs) are a group of diverse molecules that are induced by phytopathogens as well as defense related signaling molecules. They are the key components of plant innate immune system especially systemic acquired resistance (SAR), and are widely used as diagnostic molecular markers of defense signaling pathways. Although, PR proteins and peptides have been isolated much before but their biological function remains largely enigmatic despite the availability of new scientific tools. The earlier studies have demonstrated that PR genes provide enhanced resistance against both biotic and abiotic stresses, which make them one of the most promising candidates for developing multiple stress tolerant crop varieties. In this regard, plant genetic engineering technology is widely accepted as one of the most fascinating approach to develop the disease resistant transgenic crops using different antimicrobial genes like PR genes. Overexpression of PR genes (chitinase, glucanase, thaumatin, defensin and thionin) individually or in combination have greatly uplifted the level of defense response in plants against a wide range of pathogens. However, the detailed knowledge of signaling pathways that regulates the expression of these versatile proteins is critical for improving crop plants to multiple stresses, which is the future theme of plant stress biology. Hence, this review provides an overall overview on the PR proteins like their classification, role in multiple stresses (biotic and abiotic) as well as in various plant defense signaling cascades. We also highlight the success and snags of transgenic plants expressing PR proteins and peptides.
Collapse
Affiliation(s)
- Sajad Ali
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India; Centre of Research for Development, University of Kashmir, Jammu and Kashmir, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Jammu and Kashmir, India
| | - Azra N Kamili
- Centre of Research for Development, University of Kashmir, Jammu and Kashmir, India
| | - Ajaz Ali Bhat
- Govt Degree College Boys Baramulla, Jammu and Kashmir, India
| | - Zahoor Ahmad Mir
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | | | - Anshika Tyagi
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | | | | | - Prashant Yadav
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Sandhya Rawat
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Anita Grover
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India.
| |
Collapse
|
9
|
Saavedra GM, Sanfuentes E, Figueroa PM, Figueroa CR. Independent Preharvest Applications of Methyl Jasmonate and Chitosan Elicit Differential Upregulation of Defense-Related Genes with Reduced Incidence of Gray Mold Decay during Postharvest Storage of Fragaria chiloensis Fruit. Int J Mol Sci 2017; 18:E1420. [PMID: 28671619 PMCID: PMC5535912 DOI: 10.3390/ijms18071420] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 11/23/2022] Open
Abstract
The Chilean strawberry (Fragaria chiloensis) fruit has interesting organoleptic properties, but its postharvest life is affected by gray mold decay caused by Botrytis cinerea. The effect of preharvest applications of methyl jasmonate (MeJA) or chitosan on the molecular defense-related responses and protection against gray mold decay were investigated in Chilean strawberry fruit during postharvest storage. Specifically, we inoculated harvested fruit with B. cinerea spores and studied the expression of genes encoding for the pathogenesis-related (PR) proteins β-1,3-glucanases (FcBG2-1, FcBG2-2 and FcBG2-3) and chitinases (FcCHI2-2 and FcCHI3-1), and for polygalacturonase inhibiting proteins (FcPGIP1 and FcPGIP2) at 0, 2, 24, 48, and 72 h post inoculation (hpi). Remarkably, MeJA- and chitosan-treated fruit exhibited a lower incidence of B. cinerea infection than the control-treated at 48 and 72 hpi. At the molecular level, both are efficient elicitors for priming in F. chiloensis fruit since we observed an upregulation of the FcBG2-1, FcBG2-3, FcPGIP1, and FcPGIP2 at 0 hpi. Moreover, a chitosan-mediated upregulation of FcPGIPs at early times post inoculation (2-24 hpi) and MeJA upregulated FcBGs (24-72 hpi) and FcPGIP1 at later times could contribute to reduce B. cinerea incidence by differential upregulation of defense genes. We concluded that preharvest applications of MeJA or chitosan had a long-lasting effect on the reduction of B. cinerea incidence during postharvest as well as an enhancer effect on the induction of PR and PGIP gene expression.
Collapse
Affiliation(s)
- Gabriela M Saavedra
- Master Program in Forest Sciences, Faculty of Forest Sciences, University of Concepción, Concepción 4070386, Chile.
| | - Eugenio Sanfuentes
- Forest Pathology Laboratory, Faculty of Forest Sciences, University of Concepción, Concepción 4070386, Chile.
| | - Pablo M Figueroa
- Phytohormone Research Laboratory, Institute of Biological Sciences, University of Talca, Talca 3465548, Chile.
| | - Carlos R Figueroa
- Phytohormone Research Laboratory, Institute of Biological Sciences, University of Talca, Talca 3465548, Chile.
| |
Collapse
|
10
|
Su Y, Wang Z, Liu F, Li Z, Peng Q, Guo J, Xu L, Que Y. Isolation and Characterization of ScGluD2, a New Sugarcane beta-1,3-Glucanase D Family Gene Induced by Sporisorium scitamineum, ABA, H2O2, NaCl, and CdCl2 Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:1348. [PMID: 27642288 PMCID: PMC5009122 DOI: 10.3389/fpls.2016.01348] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/22/2016] [Indexed: 05/02/2023]
Abstract
Beta-1,3-glucanases (EC 3.2.1.39), commonly known as pathogenesis-related (PR) proteins, play an important role not only in plant defense against fungal pathogens but also in plant physiological and developmental processes. However, only a limited number of sugarcane beta-1,3-glucanase genes have been isolated. In the present study, we identified and characterized a new beta-1,3-glucanase gene ScGluD2 (GenBank Acc No. KF664181) from sugarcane. An X8 domain was present at the C terminal region of ScGluD2, suggesting beta-1,3-glucan-binding function. Phylogenetic analysis showed that the predicted ScGluD2 protein was classified into subfamily D beta-1,3-glucanase. Localization of the ScGluD2 protein in the plasma membrane was determined by tagging it with green fluorescent protein. The expression of ScGluD2 was more up-regulated in sugarcane smut-resistant cultivars in the early stage (1 or 3 days) than in the susceptible ones after being challenged by the smut pathogen, revealing that ScGluD2 may be involved in defense against the invasion of Sporisorium scitamineum. Transient overexpression of ScGluD2 in Nicotiana benthamiana leaves induced a defense response and exhibited antimicrobial action on the tobacco pathogens Pseudomonas solanacearum and Botrytis cinerea, further demonstrating that ScGluD2 was related to the resistance to plant pathogens. However, the transcripts of ScGluD2 partially increased (12 h) under NaCl stress, and were steadily up-regulated from 6 to 24 h upon ABA, H2O2, and CdCl2 treatments, suggesting that ABA may be a signal molecule regulating oxidative stress and play a role in the salt and heavy metal stress-induced stimulation of ScGluD2 transcripts. Taken together, ScGluD2, a novel member of subfamily D beta-1,3-glucanase, was a stress-related gene of sugarcane involved in plant defense against smut pathogen attack and salt and heavy metal stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
11
|
Mercado JA, Barceló M, Pliego C, Rey M, Caballero JL, Muñoz-Blanco J, Ruano-Rosa D, López-Herrera C, de Los Santos B, Romero-Muñoz F, Pliego-Alfaro F. Expression of the β-1,3-glucanase gene bgn13.1 from Trichoderma harzianum in strawberry increases tolerance to crown rot diseases but interferes with plant growth. Transgenic Res 2015; 24:979-89. [PMID: 26178245 DOI: 10.1007/s11248-015-9895-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/29/2015] [Indexed: 11/24/2022]
Abstract
The expression of antifungal genes from Trichoderma harzianum, mainly chitinases, has been used to confer plant resistance to fungal diseases. However, the biotechnological potential of glucanase genes from Trichoderma has been scarcely assessed. In this research, transgenic strawberry plants expressing the β-1,3-glucanase gene bgn13.1 from T. harzianum, under the control of the CaMV35S promoter, have been generated. After acclimatization, five out of 12 independent lines analysed showed a stunted phenotype when growing in the greenhouse. Moreover, most of the lines displayed a reduced yield due to both a reduction in the number of fruit per plant and a lower fruit size. Several transgenic lines showing higher glucanase activity in leaves than control plants were selected for pathogenicity tests. When inoculated with Colletotrichum acutatum, one of the most important strawberry pathogens, transgenic lines showed lower anthracnose symptoms in leaf and crown than control. In the three lines selected, the percentage of plants showing anthracnose symptoms in crown decreased from 61 % to a mean value of 16.5 %, in control and transgenic lines, respectively. Some transgenic lines also showed an enhanced resistance to Rosellinia necatrix, a soil-borne pathogen causing root and crown rot in strawberry. These results indicate that bgn13.1 from T. harzianum can be used to increase strawberry tolerance to crown rot diseases, although its constitutive expression affects plant growth and fruit yield. Alternative strategies such as the use of tissue specific promoters might avoid the negative effects of bgn13.1 expression in plant performance.
Collapse
Affiliation(s)
- José A Mercado
- Departamento de Biología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Universidad de Málaga, 29071, Málaga, Spain.
| | | | - Clara Pliego
- IFAPA, Centro de Churriana, 29140, Málaga, Spain
| | - Manuel Rey
- Newbiotechnic S.A., 41110, Seville, Spain
| | - José L Caballero
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - David Ruano-Rosa
- Instituto de Agricultura Sostenible, CSIC, 14080, Córdoba, Spain
| | | | | | | | - Fernando Pliego-Alfaro
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Universidad de Málaga, 29071, Málaga, Spain
| |
Collapse
|
12
|
Li J, Zhang QY, Gao ZH, Wang F, Duan K, Ye ZW, Gao QH. Genome-wide identification and comparative expression analysis of NBS-LRR-encoding genes upon Colletotrichum gloeosporioides infection in two ecotypes of Fragaria vesca. Gene 2013; 527:215-27. [PMID: 23806759 DOI: 10.1016/j.gene.2013.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 11/24/2022]
Abstract
Anthracnose caused by Colletotrichum spp. is one of the most destructive diseases of cultivated strawberry (Fragaria×ananassa Duchesne) worldwide. The correlation between NBS-LRR genes, the largest class of known resistance genes, and strawberry anthracnose resistance has been elusive. BLAST search in NCBI identified 94 FvNBSs in the diploid genome of strawberry Fragaria vesca, with 67 of the TIR-NBS-LRR type. At least 36 FvNBSs were expressed, with 25% being non-coding genes. Two F. vesca ecotypes, HLJ and YW, showed great variations in both morphological and physiological responses upon C. gloeosporioides infection. qRT-PCR revealed that 5 of the 12 leaf-expressed FvNBSs displaying opposite transcription responses to C. gloeosporioides infection in two ecotypes. These results showed that the transcriptional responses of several FvNBSs were involved in the ecotype-specific responses to C. gloeosporioides in F. vesca. These FvNBSs hold potential in characterizing molecular components and developing novel markers associated with anthracnose resistance in strawberry.
Collapse
Affiliation(s)
- Jing Li
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Belchí-Navarro S, Almagro L, Sabater-Jara AB, Fernández-Pérez F, Bru R, Pedreño MA. Induction of trans-resveratrol and extracellular pathogenesis-related proteins in elicited suspension cultured cells of Vitis vinifera cv Monastrell. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:258-64. [PMID: 23127362 DOI: 10.1016/j.jplph.2012.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/04/2012] [Accepted: 10/07/2012] [Indexed: 05/08/2023]
Abstract
Suspension-cultured cells of Vitis vinifera cv Monastrell were used to investigate the effects of methyljasmonate, ethylene and salicylic acid separately or in combination with cyclodextrins on both trans-resveratrol production and the induction of defense responses. The results showed that the addition of methyljasmonate or ethylene to suspension-cultured cells jointly treated with cyclodextrins and salicylic acid provoked a decrease of trans-resveratrol levels suggesting that salicylic acid has a negative and antagonistic effect with methyljasmonate or ethylene on trans-resveratrol production. Likewise, the exogenous application of these compounds induced the accumulation of pathogenesis-related proteins. Analysis of the extracellular proteome showed the presence of amino acid sequences homologous to an specific β-1,3-glucanase, class III peroxidases and a β-1,4-mannanase, which suggests that these signal molecules could play a role in mediating defense-related gene product expression in V. vinifera cv Monastrell. Apart from these inducible proteins, other proteins were found in both the control and elicited cell cultures of V. vinifera. These included class IV chitinase, polygalacturonase inhibitor protein and reticuline oxidase-like protein, suggesting that their expression is constitutive being involved in the modification of the cell wall architecture during cell culture growth and in the prevention of pathogen attack.
Collapse
Affiliation(s)
- Sarai Belchí-Navarro
- Department of Plant Biology, University of Murcia, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol Lett 2012; 34:1983-90. [PMID: 22850791 DOI: 10.1007/s10529-012-1012-6] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
β-1,3-Glucanases are abundant in plants and have been characterized from a wide range of species. They play key roles in cell division, trafficking of materials through plasmodesmata, in withstanding abiotic stresses and are involved in flower formation through to seed maturation. They also defend plants against fungal pathogens either alone or in association with chitinases and other antifungal proteins. They are grouped in the PR-2 family of pathogenesis-related (PR) proteins. Use of β-1,3-glucanase genes as transgenes in combination with other antifungal genes is a plausible strategy to develop durable resistance in crop plants against fungal pathogens. These genes, sourced from alfalfa, barley, soybean, tobacco, and wheat have been co-expressed along with other antifungal proteins, such as chitinases, peroxidases, thaumatin-like proteins and α-1-purothionin, in various crop plants with promising results that are discussed in this review.
Collapse
|
15
|
Fang X, Chen W, Xin Y, Zhang H, Yan C, Yu H, Liu H, Xiao W, Wang S, Zheng G, Liu H, Jin L, Ma H, Ruan S. Proteomic analysis of strawberry leaves infected with Colletotrichum fragariae. J Proteomics 2012; 75:4074-90. [DOI: 10.1016/j.jprot.2012.05.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
|
16
|
Zamora MNGMN, Bournonville CG, Castagnaro AP, Ricci JCDA. Identification and characterisation of a novel class I endo-β-1,3-glucanase regulated by salicylic acid, ethylene and fungal pathogens in strawberry. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:412-420. [PMID: 32480793 DOI: 10.1071/fp11275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/20/2012] [Indexed: 06/11/2023]
Abstract
The identification of a full length cDNA encoding an endo-β-1,3-glucanase (FaOGBG-5) from strawberry (Fragaria×ananassa Duch) is reported. The analysis of the deduced amino acid sequence of FaOGBG-5 showed that it shares typical structural features and a high degree of identity with other plant β-1,3-glucanases of the class I. The expression of FaOGBG-5 in plants infected with a virulent isolate of Colletotrichum acutatum and an avirulent isolate of Colletotrichum fragariae was examined. Induction of expression was observed with both pathogens but exhibited a delayed high expression with the virulent one. Additionally, the accumulation of FaOGBG-5 transcripts was also observed after treatments with the stress related hormones salicylic acid and ethylene. Results obtained suggest that the β-1,3-glucanase encoded by FaOGBG-5 may be implicated in plant defence against biotic and abiotic stress.
Collapse
Affiliation(s)
- Mart N G Mart Nez Zamora
- INSIBIO (CONICET-UNT) - Departamento de Bioquímica de la Nutrición e Instituto de Qca Biológica 'Dr Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia (UNT), Chacabuco 461 (4000) Tucumán, Argentina
| | - Carlos Grellet Bournonville
- INSIBIO (CONICET-UNT) - Departamento de Bioquímica de la Nutrición e Instituto de Qca Biológica 'Dr Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia (UNT), Chacabuco 461 (4000) Tucumán, Argentina
| | - Atilio P Castagnaro
- Sección Biotecnología, Estación Experimental Agroindustrial O. Colombres-Unidad asociada al INSIBIO, CC No. 9 (4101) Las Talitas, Tucumán, Argentina
| | - Juan C D Az Ricci
- INSIBIO (CONICET-UNT) - Departamento de Bioquímica de la Nutrición e Instituto de Qca Biológica 'Dr Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia (UNT), Chacabuco 461 (4000) Tucumán, Argentina
| |
Collapse
|
17
|
Amil-Ruiz F, Blanco-Portales R, Muñoz-Blanco J, Caballero JL. The Strawberry Plant Defense Mechanism: A Molecular Review. ACTA ACUST UNITED AC 2011; 52:1873-903. [DOI: 10.1093/pcp/pcr136] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Roy Choudhury S, Roy S, Singh SK, Sengupta DN. Molecular characterization and differential expression of beta-1,3-glucanase during ripening in banana fruit in response to ethylene, auxin, ABA, wounding, cold and light-dark cycles. PLANT CELL REPORTS 2010; 29:813-28. [PMID: 20467747 DOI: 10.1007/s00299-010-0866-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/20/2010] [Accepted: 04/28/2010] [Indexed: 05/09/2023]
Abstract
beta-1,3-Glucanases (E.C. 3.2.1.39) are widely distributed enzyme among bacteria, fungi, and higher plants. Analyses of accumulation levels of beta-1,3-glucanase protein in various tissues in banana have clearly indicated abundance of beta-1,3-glucanase protein accumulation in ripe pulp tissue. After cloning of beta-1,3-glucanase from banana pulp (cultivar Cavendish), we have carried out an in silico analysis to investigate the sequential, structural, and phylogenetic characteristics of the putative banana beta-1,3-glucanase protein. As like other ripening specific genes, beta-1,3-glucanase is regulated in response to a wide variety of factors. Therefore, we have analyzed the transcript accumulation pattern and protein levels of beta-1,3-glucanase in response to ethylene, auxin, ABA, wounding and, low temperature in preclimacteric banana fruit. Expression profile analyses have indicated that whereas exogenous application of ethylene strongly stimulated beta-1,3-glucanase transcript accumulation, ABA partially induced the expression of the gene. On the other hand, wound treatment did not induce beta-1,3-glucanase expression. Conversely, auxin and cold treatment negatively regulated beta-1,3-glucanase gene expression and thus inhibited glucanase activity. In addition, beta-1,3-glucanase transcript level was markedly decreased by constant exposure to white light. Protein level and enzymatic activity of beta-1,3-glucanase were substantially increased with considerable decrease in fruit firmness by ethylene treatment and reduced exposure to white light conditions as compared with other treatments. Together, the overall study of beta-1,3-glucanase expression pattern, glucanase activity, and changes in fruit firmness during ripening in various conditions suggest the possible physiological function of beta-1,3-glucanase in fruit pulp softening.
Collapse
Affiliation(s)
- Swarup Roy Choudhury
- Division of Plant Biology, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata, West Bengal, 700 009, India.
| | | | | | | |
Collapse
|
19
|
Roy Choudhury S, Roy S, Sengupta DN. Characterization of cultivar differences in beta-1,3 glucanase gene expression, glucanase activity and fruit pulp softening rates during fruit ripening in three naturally occurring banana cultivars. PLANT CELL REPORTS 2009; 28:1641-53. [PMID: 19697038 DOI: 10.1007/s00299-009-0764-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/03/2009] [Accepted: 08/06/2009] [Indexed: 05/04/2023]
Abstract
beta-1,3 glucanase (E.C.3.2.1.39) is the key enzyme involved in the hydrolytic cleavage of 1,3 beta-D glucosidic linkages in beta-1,3 glucans. This work describes a comparative analysis of expression patterns of beta-1,3 glucanase gene in relation to changes in fruit pulp softening rates in three banana cultivars, Rasthali (AAB), Kanthali (AB), and Monthan (ABB). Analysis of transcript and protein levels of beta-1,3 glucanase gene during ripening revealed differential timing in expression of the gene which correlated well with the variation in enzymatic activity of glucanase and fruit pulp softening rates in the three cultivars. Exogenously applied ethylene strongly induced beta-1,3 glucanase expression during the early ripening days in Rasthali, while the expression of the gene was marginally stimulated following ethylene treatment in preclimacteric Kanthali fruit. Conversely, in Monthan, beta-1,3 glucanase expression was very low throughout the ripening stages, and ethylene treatment did not induce the expression of the gene in this cultivar. Analysis of glucanase activity using protein extracts from unripe and ripe fruit of Monthan with crude cell wall polysaccharide fractions (used as substrate) indicated that the natural substrate for glucanase remained almost unutilized in this cultivar due to low in vivo glucanase activity. Furthermore, the recombinant beta-1,3 glucanase protein, overexpressed in E. coli, showed requirement for substrates with contiguous beta-1,3 linkages for optimal activity. Overall, our results provide new information on the expression profile of beta-1,3 glucanase gene in connection with the pattern of changes in fruit firmness at the physiological and molecular levels during ripening in three banana cultivars.
Collapse
|
20
|
Rosli HG, Civello PM, Martínez GA. alpha-l-Arabinofuranosidase from strawberry fruit: cloning of three cDNAs, characterization of their expression and analysis of enzymatic activity in cultivars with contrasting firmness. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:272-81. [PMID: 19153050 DOI: 10.1016/j.plaphy.2008.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 12/10/2008] [Accepted: 12/14/2008] [Indexed: 05/23/2023]
Abstract
Softening of fleshy fruits during ripening is associated to catabolism of cell wall components. In strawberry, pectin degradation, as well as loss of neutral sugars (mainly arabinose), increases during ripening, and probably contributes to fruit softening. In this work, we report the activity of alpha-l-arabinofuranosidase (alpha-l-arafase) and the expression of related genes in strawberry. Activity of alpha-l-arafase was measured during ripening of cultivars with contrasting firmness. An important increment in the specific activity of alpha-l-arafase was detected during ripening in both cultivars. However, in the softest one (Toyonoka) the specific activities were higher than in the firmest (Camarosa). A combination of semi quantitative reverse transcriptase-PCR (RT-PCR) with degenerate primers and a screening of a cDNA library allowed the isolation and cloning of three cDNAs encoding putative alpha-l-arafases (FaAra1, FaAra2 and FaAra3). The deduced proteins revealed that FaAras belong to the glycoside hydrolase family 51 and not to glycoside hydrolase family 3. Expression studies, carried out by means of Northern-blot and semi quantitative RT-PCR, revealed that FaAras were predominantly expressed in fruit tissue and detected over the entire ripening process. Due to similarity of FaAras sequences, Northern-blot analysis probably grouped the expression of the three genes. The expression was high at small green stage, decreased at white stage and increased thereafter. The increment of the expression from white to 50% red stage was more evident in the softest cultivar (Toyonoka). Semi quantitative RT-PCR analysis allowed determining the expression of individual FaAras. The expression of the three genes was detected in all developmental and ripening stages. However, differences in expression levels could be detected between cultivars. In the softest cultivar, the expression of the three FaAras was higher at 50% and 75% red stages, and in the case of FaAra3 a higher expression was found also at 100% red stage. Overall, specific activity of alpha-l-arafase was higher in the softest cultivar; such activity reflects the expression of at least three putative FaAra genes.
Collapse
Affiliation(s)
- Hernán G Rosli
- IIB-INTECH (Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús) (CONICET-UNSAM), Camino de Circunvalación Laguna Km 6, B7130IWA Chascomús, Argentina
| | | | | |
Collapse
|
21
|
Huang H, Yang P, Luo H, Tang H, Shao N, Yuan T, Wang Y, Bai Y, Yao B. High-level expression of a truncated 1,3-1,4-beta-D-glucanase from Fibrobacter succinogenes in Pichia pastoris by optimization of codons and fermentation. Appl Microbiol Biotechnol 2007; 78:95-103. [PMID: 18080120 DOI: 10.1007/s00253-007-1290-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/14/2007] [Accepted: 11/15/2007] [Indexed: 11/25/2022]
Abstract
1,3-1,4-beta-D-glucanase is an important endoglycosidase in the brewing and animal feed industries. To achieve high-level expression of recombinant glucanase in Pichia pastoris, we designed sequences encoding the alpha-factor signal peptide from Saccharomyces cerevisiae and the truncated 1,3-1,4-beta-D-glucanase from Fibrobacter succinogenes as a whole. The codons encoding the 52 amino acids of the signal peptide and 106 residues of the glucanase protein were optimized for expression in P. pastoris; 189 nucleotides were changed. The G + C content was adjusted to 48-49%, and AT-rich stretches were eliminated to avoid premature termination. The messenger ribonucleic acid secondary structure near the AUG start codon was also adjusted to ensure efficient translation; the resulting glucanase production was twofold higher compared with that achieved with gene structure optimization alone. We also propose a new fermentation strategy for the induction phase, in which 5/95% glycerol/methanol mixed feed was used in days 1-3 and 100% methanol was used on days 4-6. By comparison with methanol feed and glycerol/methanol-mixed feed alone, the yield of recombinant glucanase increased by 38.5 and 16.5%, respectively. The expressed optimized recombinant 1,3-1,4-beta-D-glucanase constituted approximately 90% of the total secreted protein, reaching up to 3 g l(-1) in the medium.
Collapse
Affiliation(s)
- Huoqing Huang
- Department of Microbial Engineering, Feed Research Institute, Chinese Academy of Agricultural Sciences, no. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|