1
|
Huang J, Zhou H, Zhou M, Li N, Jiang B, He Y. Functional Analysis of Type III Effectors in Xanthomonas campestris pv. campestris Reveals Distinct Roles in Modulating Arabidopsis Innate Immunity. Pathogens 2024; 13:448. [PMID: 38921746 PMCID: PMC11206781 DOI: 10.3390/pathogens13060448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Xanthomonas campestris pv. campestris (Xcc) is a significant phytopathogen causing black rot disease in crucifers. Its virulence relies heavily on the type III secretion system (T3SS), facilitating effector translocation into plant cells. The type III effectors (T3Es) disrupt cellular processes, promoting pathogen proliferation. However, only a few T3Es from Xcc have been thoroughly characterized. In this study, we further investigated two effectors using the T3Es-deficient mutant and the Arabidopsis protoplast system. XopE2Xcc triggers Arabidopsis immune responses via an unidentified activator of the salicylic acid (SA) signaling pathway, whereas XopLXcc suppresses the expression of genes associated with patterns-triggered immunity (PTI) and the SA signaling pathway. These two effectors exert opposing effects on Arabidopsis immune responses. Additionally, we examined the relationship between the specific domains and functions of these two effector proteins. Our findings demonstrate that the N-myristoylation motif and N-terminal domain are essential for the subcellular localization and virulence of XopE2Xcc and XopLXcc, respectively. These novel insights enhance our understanding of the pathogenic mechanisms of T3Es and contribute to developing effective strategies for controlling bacterial disease.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
| | - Hao Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530006, China
| | - Min Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
| | - Nana Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
| | - Bole Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
| | - Yongqiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
| |
Collapse
|
2
|
Zhang YQ, Wang X, Shi H, Siddique F, Xian J, Song A, Wang B, Wu Z, Cui ZN. Design and Synthesis of Mandelic Acid Derivatives for Suppression of Virulence via T3SS against Citrus Canker. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9611-9620. [PMID: 38646906 DOI: 10.1021/acs.jafc.3c07681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Citrus canker, a highly contagious bacterial disease caused by Xanthomonas citri subsp. citri (Xcc), poses a substantial threat to citrus crops, leading to serious reductions in fruit yield and economic losses. Most commonly used bactericides against Xcc lead to the rapid development of resistant subpopulations. Therefore, it is imperative to create novel drugs, such as type III secretion system (T3SS) inhibitors, that specifically target bacterial virulence factors rather than bacterial viability. In our study, we designed and synthesized a series of mandelic acid derivatives including 2-mercapto-1,3,4-thiazole. Seven substances were found to reduce the level of transcription of hpa1 without affecting bacterial viability. In vivo bioassays indicated that compound F9 significantly inhibited hypersensitive response and pathogenicity. RT-qPCR assays showed that compound F9 visibly suppressed the expression of Xcc T3SS-related genes as well as citrus canker susceptibility gene CsLOB1. Furthermore, the combination with compound F9 and quorum-quenching bacteria HN-8 can also obviously alleviate canker symptoms.
Collapse
Affiliation(s)
- Yu-Qing Zhang
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wang
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Huabin Shi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Faisal Siddique
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jiaxin Xian
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Aiting Song
- Guangdong ZhenGe Biotechnology Co., Ltd., Zhaoqing 526040, China
| | - Boli Wang
- Guangdong ZhenGe Biotechnology Co., Ltd., Zhaoqing 526040, China
| | - Zhibing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zi-Ning Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Shao J, Zhang ZJ, Shi Y, Jiang WQ, Siddique F, Chen L, Liu G, Zhu J, Luo XF, Liu YQ, An JX, Yang CJ, Cui ZN. Application and Mechanism of Cryptolepine and Neocryptolepine Derivatives as T3SS Inhibitors for Control of Bacterial Leaf Blight on Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6988-6997. [PMID: 38506764 DOI: 10.1021/acs.jafc.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv oryzae (Xoo) is extremely harmful to rice production. The traditional control approach is to use bactericides that target key bacterial growth factors, but the selection pressure on the pathogen makes resistant strains the dominant bacterial strains, leading to a decline in bactericidal efficacy. Type III secretion system (T3SS) is a conserved and critical virulence factor in most Gram-negative bacteria, and its expression or absence does not affect bacterial growth, rendering it an ideal target for creating drugs against Gram-negative pathogens. In this work, we synthesized a range of derivatives from cryptolepine and neocryptolepine. We found that compound Z-8 could inhibit the expression of Xoo T3SS-related genes without affecting the growth of bacteria. an in vivo bioassay showed that compound Z-8 could effectively reduce the hypersensitive response (HR) induced by Xoo in tobacco and reduce the pathogenicity of Xoo in rice. Furthermore, it exhibited synergy in control of bacterial leaf blight when combined with the quorum quenching bacterial F20.
Collapse
Affiliation(s)
- Jiang Shao
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yu Shi
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wei-Qi Jiang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Faisal Siddique
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Liangye Chen
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiakai Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zi-Ning Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Gao D, Li H, Shao J, He L, Fu C, Lai H, O'Neill Rothenberg D, Xu X, Song G, Deng X, Cui ZN. Novel Ethyl-3-Aryl-2-Nitroacrylate Derivatives as Potential T3SS Inhibitors against Xanthomonas oryzae pv. oryzae on Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37285515 DOI: 10.1021/acs.jafc.3c00838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a highly destructive bacterial disease. Traditional prevention methods have utilized antibiotics to target bacterial growth, which has accelerated the emergence of resistant strains. New prevention techniques are developing agents such as type III secretion system (T3SS) inhibitors that target bacterial virulence factors without affecting bacterial growth. To explore novel T3SS inhibitors, a series of ethyl-3-aryl-2-nitroacrylate derivatives were designed and synthesized. Preliminary screening of T3SS inhibitors was based on the inhibition of the hpa1 gene promoter and showed no effect on bacterial growth. Compounds B9 and B10, obtained in the primary screening, significantly inhibited the hypersensitive response (HR) in tobacco and the expression of T3SS genes in the hrp cluster including key regulatory genes. In vivo bioassays showed that T3SS inhibitors obviously inhibited BLB and appeared to be more effective when combined with quorum quenching bacteria F20.
Collapse
Affiliation(s)
- Dongni Gao
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hui Li
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jiang Shao
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lulu He
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Chen Fu
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hongyu Lai
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | | | - Xiaoli Xu
- Instrumental Analysis & Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Zi-Ning Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Li R, Peng J, Liu Q, Chang Z, Huang Y, Tang J, Lu G. Xanthomonas campestris VemR enhances the transcription of the T3SS key regulator HrpX via physical interaction with HrpG. MOLECULAR PLANT PATHOLOGY 2023; 24:232-247. [PMID: 36626275 PMCID: PMC9923393 DOI: 10.1111/mpp.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
VemR is a response regulator of the two-component signalling systems (TCSs). It consists solely of a receiver domain. Previous studies have shown that VemR plays an important role in influencing the production of exopolysaccharides and exoenzymes, cell motility, and virulence of Xanthomonas campestris pv. campestris (Xcc). However, whether VemR is involved in the essential pathogenicity determinant type III secretion system (T3SS) is unclear. In this work, we found by transcriptome analysis that VemR modulates about 10% of Xcc genes, which are involved in various cellular processes including the T3SS. Further experiments revealed that VemR physically interacts with numerous proteins, including the TCS sensor kinases HpaS and RavA, and the TCS response regulator HrpG, which directly activates the transcription of HrpX, a key regulator controlling T3SS expression. It has been demonstrated previously that HpaS composes a TCS with HrpG or VemR to control the expression of T3SS or swimming motility, while RavA and VemR form a TCS to control the expression of flagellar genes. Mutation analysis and in vitro transcription assay revealed that phosphorylation might be essential for the function of VemR and phosphorylated VemR could significantly enhance the activation of hrpX transcription by HrpG. We infer that the binding of VemR to HrpG can modulate the activity of HrpG to the hrpX promoter, thereby enhancing hrpX transcription. Although further studies are required to validate this inference and explore the detailed functional mechanism of VemR, our findings provide some insights into the complex regulatory cascade of the HpaS/RavA-VemR/HrpG-HrpX signal transduction system in the control of T3SS.
Collapse
Affiliation(s)
- Rui‐Fang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsPlant Protection Research Institute, Guangxi Academy of Agricultural SciencesNanningChina
| | - Jian‐Ling Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Qian‐Qian Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Zheng Chang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Yi‐Xin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| |
Collapse
|
6
|
Klein-Gordon JM, Guingab-Cagmat J, Minsavage GV, Meke L, Vallad GE, Goss EM, Garrett TJ, Jones JB. Strength in Numbers: Density-Dependent Volatile-Induced Antimicrobial Activity by Xanthomonas perforans. PHYTOPATHOLOGY 2023; 113:160-169. [PMID: 36129764 DOI: 10.1094/phyto-04-22-0131-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For most of the 20th century, Xanthomonas euvesicatoria was the only known bacterium associated with bacterial spot of tomato in Florida. X. perforans quickly replaced X. euvesicatoria, mainly because of production of three bacteriocins (BCNs) against X. euvesicatoria; however, X. perforans outcompeted X. euvesicatoria even when the three known BCNs were deleted. Surprisingly, we observed antimicrobial activity against X. euvesicatoria in the BCN triple mutant when the triple mutant was grown in Petri plates containing multiple spots but not in Petri plates containing only one spot. We determined that changes in the headspace composition (i.e., volatiles) rather than a diffusible signal in the agar were required for induction of the antimicrobial activity. Other Xanthomonas species also produced volatile-induced antimicrobial compounds against X. euvesicatoria and elicited antimicrobial activity by X. perforans. A wide range of plant pathogenic bacteria, including Clavibacter michiganensis subsp. michiganensis, Pantoea stewartii, and Pseudomonas cichorii, also elicited antimicrobial activity by X. perforans when multiple spots of the species were present. To identify potential antimicrobial compounds, we performed liquid chromatography with high-resolution mass spectrometry of the agar surrounding the spot in the high cell density Petri plates where the antimicrobial activity was present compared with agar surrounding the spot in Petri plates with one spot where antimicrobial activity was not observed. Among the compounds identified in the zone of inhibition were N-butanoyl-L-homoserine lactone and N-(3-hydroxy-butanoyl)-homoserine lactone, which are known quorum-sensing metabolites in other bacteria.
Collapse
Affiliation(s)
- Jeannie M Klein-Gordon
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI
| | - Joy Guingab-Cagmat
- Southeast Center for Integrated Metabolomics (SECIM), University of Florida, Gainesville, FL
| | - Gerald V Minsavage
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL
| | - Laurel Meke
- Southeast Center for Integrated Metabolomics (SECIM), University of Florida, Gainesville, FL
| | - Gary E Vallad
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL
- Gulf Coast Research and Education Center, IFAS, University of Florida, Balm, FL
| | - Erica M Goss
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL
- Emerging Pathogens Institute, University of Florida, Gainesville, FL
| | - Timothy J Garrett
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Jeffrey B Jones
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL
| |
Collapse
|
7
|
Zhao G, Lu D, Wang S, Zhang H, Zhu X, Hao Z, Dawood A, Chen Y, Schieck E, Hu C, Chen X, Yang L, Guo A. Novel mycoplasma nucleomodulin MbovP475 decreased cell viability by regulating expression of CRYAB and MCF2L2. Virulence 2022; 13:1590-1613. [PMID: 36121023 PMCID: PMC9487752 DOI: 10.1080/21505594.2022.2117762] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleomodulins are secreted bacterial proteins whose molecular targets are located in host cell nuclei. They are gaining attention as critical virulence factors that either modify the epigenetics of host cells or directly regulate host gene expression. Mycoplasma bovis is a major veterinary pathogen that secretes several potential virulence factors. The aim of this study was to determine whether any of their secreted proteins might function as nucleomodulins. After an initial in silico screening, the nuclear localization of the secreted putative lipoprotein MbovP475 of M. bovis was demonstrated in bovine macrophage cell line (BoMac) experimentally infected with M. bovis. Through combined application of ChIP-seq, Electrophoretic mobility shift assay (EMSA) and surface plasmon resonance (SPR) analysis, MbovP475 was determined to bind the promoter regions of the cell cycle central regulatory genes CRYAB and MCF2L2. MbovP475 has similar secondary structures with the transcription activator-like effectors (TALEs). Screening of various mutants affecting the potential DNA binding sites indicated that the residues 242NI243 within MbovP475 loop region of the helix-loop-helix domain were essential to its DNA binding activity, thereby contributing to decrease in BoMac cell viability. In conclusion, this is the first report to confirm M. bovis secretes a conserved TALE-like nucleomodulin that binds the promoters of CRYAB and MCF2L2 genes, and subsequently down-regulates their expression and decreases BoMac cell viability. Therefore, this study offers a new understanding of mycoplasma pathogenesis.
Collapse
Affiliation(s)
- Gang Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Animal Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shujuan Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xifang Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ali Dawood
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Ruminant Bio-products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China.,International Livestock Research Institute, Nairobi, Kenya
| | - Elise Schieck
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liguo Yang
- College of Animal Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Effector-Dependent and -Independent Molecular Mechanisms of Soybean-Microbe Interaction. Int J Mol Sci 2022; 23:ijms232214184. [PMID: 36430663 PMCID: PMC9695568 DOI: 10.3390/ijms232214184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Soybean is a pivotal staple crop worldwide, supplying the main food and feed plant proteins in some countries. In addition to interacting with mutualistic microbes, soybean also needs to protect itself against pathogens. However, to grow inside plant tissues, plant defense mechanisms ranging from passive barriers to induced defense reactions have to be overcome. Pathogenic but also symbiotic micro-organisms effectors can be delivered into the host cell by secretion systems and can interfere with the immunity system and disrupt cellular processes. This review summarizes the latest advances in our understanding of the interaction between secreted effectors and soybean feedback mechanism and uncovers the conserved and special signaling pathway induced by pathogenic soybean cyst nematode, Pseudomonas, Xanthomonas as well as by symbiotic rhizobium.
Collapse
|
9
|
Transient expression of an scFvG8 antibody in plants and characterization of its effects on the virulence factor pthA of Xanthomonas citri subsp. citri. Transgenic Res 2022; 31:269-283. [PMID: 35237898 DOI: 10.1007/s11248-022-00301-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/11/2022] [Indexed: 10/18/2022]
Abstract
Citrus bacterial canker, caused by Xanthomonas citri subsp. citri (Xcc), is a major disease of citrus plants, causing a significant loss in the citrus industry. The pthA is a bacterial effector protein mediates protein-protein and protein-DNA interactions and modulates host transcription. Injection of pthA effector protein into the host cell induces the expression of the susceptibility gene CsLOB1 which is required for citrus canker disease development. In this study, we described in planta expression of a specific anti-pthA single-chain variable fragment (scFv) recombinant antibody, scFvG8, and assessed its function using molecular docking, immunoblotting, and indirect enzyme-linked immunosorbent assay (ELISA). Based on the results, homology-based molecular docking suggested that at least eight intermolecular hydrogen bonds are involved in pthA-scFvG8 interactions. Immunoblotting and indirect ELISA results reconfirmed specific binding of scFvG8 to pthA protein. Moreover, gene fragment encoding scFvG8 was cloned into plant expression vector and transiently expressed in leaves of Nicotiana tabacum cv. Samson by agroinfiltration method. Transient expression of scFvG8 (at the expected size of 35 kDa) in N. tabacum leaves was confirmed by western blotting. Also, immunoblotting and indirect ELISA showed that the plant-derived scFvG8 had similar activity to purified scFvG8 antibody in detecting pthA. Additionally, in scFvG8-expressing tobacco leaves challenged with Xcc, a reduction (for up to 70%) of hypersensitive response (HR) possibly via direct interaction with pthA, was observed in the necrotic leaf area compared to control plants infected with empty vector. The results obtained in this study confirm that scFvG8 can suppress the function of pthA effector protein within plant cells, thus the induction of stable expression of scFvG8 in lime trees can be considered as an appropriate approach to confer resistance to Xcc.
Collapse
|
10
|
Genomic and Functional Dissections of Dickeya zeae Shed Light on the Role of Type III Secretion System and Cell Wall-Degrading Enzymes to Host Range and Virulence. Microbiol Spectr 2022; 10:e0159021. [PMID: 35107329 PMCID: PMC8809351 DOI: 10.1128/spectrum.01590-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dickeya zeae is a worldwide destructive pathogen that causes soft rot diseases on various hosts such as rice, maize, banana, and potato. The strain JZL7 we recently isolated from clivia represents the first monocot-specific D. zeae and also has reduced pathogenicity compared to that of other D. zeae strains (e.g., EC1 and MS2). To elucidate the molecular mechanisms underlying its more restricted host range and weakened pathogenicity, we sequenced the complete genome of JZL7 and performed comparative genomic and functional analyses of JZL7 and other D. zeae strains. We found that, while having the largest genome among D. zeae strains, JZL7 lost almost the entire type III secretion system (T3SS), which is a key component of the virulence suite of many bacterial pathogens. Importantly, the deletion of T3SS in MS2 substantially diminished the expression of most type III secreted effectors (T3SEs) and MS2's pathogenicity on both dicots and monocots. Moreover, although JZL7 and MS2 share almost the same repertoire of cell wall-degrading enzymes (CWDEs), we found broad reduction in the production of CWDEs and expression levels of CWDE genes in JZL7. The lower expression of CWDEs, pectin lyases in particular, would probably make it difficult for JZL7 to break down the cell wall of dicots, which is rich in pectin. Together, our results suggest that the loss of T3SS and reduced CWDE activity together might have contributed to the host specificity and virulence of JZL7. Our findings also shed light on the pathogenic mechanism of Dickeya and other soft rot Pectobacteriaceae species in general. IMPORTANCE Dickeya zeae is an important, aggressive bacterial phytopathogen that can cause severe diseases in many crops and ornamental plants, thus leading to substantial economic losses. Strains from different sources showed significant diversity in their natural hosts, suggesting complicated evolution history and pathogenic mechanisms. However, molecular mechanisms that cause the differences in the host range of D. zeae strains remain poorly understood. This study carried out genomic and functional dissections of JZL7, a D. zeae strain with restricted host range, and revealed type III secretion system (T3SS) and cell wall-degrading enzymes (CWDEs) as two major factors contributing to the host range and virulence of D. zeae, which will provide a valuable reference for the exploration of pathogenic mechanisms in other bacteria and present new insights for the control of bacterial soft rot diseases on crops.
Collapse
|
11
|
Wu T, Zhang H, Yuan B, Liu H, Kong L, Chu Z, Ding X. Tal2b targets and activates the expression of OsF3H 03g to hijack OsUGT74H4 and synergistically interfere with rice immunity. THE NEW PHYTOLOGIST 2022; 233:1864-1880. [PMID: 34812496 DOI: 10.1111/nph.17877] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Transcription activator-like (TAL) effectors are major virulence factors secreted by the type III secretion systems of Xanthomonas oryzae pv. oryzicola (Xoc) and X. oryzae pv. oryzae (Xoo), causing bacterial leaf streak and bacterial blight, respectively, in rice. However, the knowledge of Xoc TAL effector function in promoting bacterial virulence remains limited. Here, we isolated the highly virulent Xoc strain HGA4 from the outbreak region of Huanggang (Hubei, China), which contains four TAL effectors not found in the Chinese model strain RS105. Among these, Tal2b was selected for introduction into RS105, which resulted in a longer lesion length than that in the control. Tal2b directly binds to the promoter region of the gene and activates the expression of OsF3H03g , which encodes 2-oxoglutarate-dependent dioxygenase in rice. OsF3H03g negatively regulates salicylic acid (SA)-related defense by directly reducing SA, and it plays a positive role in susceptibility to both Xoc and Xoo in rice. OsF3H03g interacts with a uridine diphosphate-glycosyltransferase protein (OsUGT74H4), which positively regulates bacterial leaf streak susceptibility and may inactivate SA via glycosylation modification.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Bin Yuan
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Lingguang Kong
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan University, Wuhan, Hubei, 430070, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
12
|
Deb S, Madhavan VN, Gokulan CG, Patel HK, Sonti RV. Arms and ammunitions: effectors at the interface of rice and it's pathogens and pests. RICE (NEW YORK, N.Y.) 2021; 14:94. [PMID: 34792681 PMCID: PMC8602583 DOI: 10.1186/s12284-021-00534-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has evolved to resist attack by pathogens and pests. However, successful phytopathogens deliver effector proteins into plant cells where they hijack the host cellular machinery to suppress the plant immune responses and promote infection. This manipulation of the host cellular pathways is done by the pathogen using various enzymatic activities, protein- DNA or protein- protein interactions. Rice is one the major economically important crops and its yield is affected by several pathogens and pests. In this review, we summarize the various effectors at the plant- pathogen/ pest interface for the major pathogens and pests of rice, specifically, on the mode of action and target genes of the effector proteins. We then compare this across the major rice pathogens and pests in a bid to understand probable conserved pathways which are under attack from pathogens and pests in rice. This analysis highlights conserved patterns of effector action, as well as unique host pathways targeted by the pathogens and pests.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | | | - C. G. Gokulan
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Hitendra K. Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507 India
| |
Collapse
|
13
|
Potnis N. Harnessing Eco-Evolutionary Dynamics of Xanthomonads on Tomato and Pepper to Tackle New Problems of an Old Disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:289-310. [PMID: 34030449 DOI: 10.1146/annurev-phyto-020620-101612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial spot is an endemic seedborne disease responsible for recurring outbreaks on tomato and pepper around the world. The disease is caused by four diverse species, Xanthomonas gardneri, Xanthomonas euvesicatoria, Xanthomonas perforans, and Xanthomonas vesicatoria. There are no commercially available disease-resistant tomato varieties, and the disease is managed by chemical/biological control options, although these have not reduced the incidence of outbreaks. The disease on peppers is managed by disease-resistant cultivars that are effective against X. euvesicatoria but not X. gardneri. A significant shift in composition and prevalence of different species and races of the pathogen has occurred over the past century. Here, I attempt to review ecological and evolutionary processes associated with the population dynamics leading to disease emergence and spread. The goal of this review is to integrate the knowledge on population genomics and molecular plant-microbe interactions for this pathosystem to tailor disease management strategies.
Collapse
Affiliation(s)
- Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama 36849, USA;
| |
Collapse
|
14
|
Assis RAB, Varani AM, Sagawa CHD, Patané JSL, Setubal JC, Uceda-Campos G, da Silva AM, Zaini PA, Almeida NF, Moreira LM, Dandekar AM. A comparative genomic analysis of Xanthomonas arboricola pv. juglandis strains reveal hallmarks of mobile genetic elements in the adaptation and accelerated evolution of virulence. Genomics 2021; 113:2513-2525. [PMID: 34089784 DOI: 10.1016/j.ygeno.2021.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/01/2021] [Accepted: 06/01/2021] [Indexed: 01/25/2023]
Abstract
Xanthomonas arboricola pv. juglandis (Xaj) is the most significant aboveground walnut bacterial pathogen. Disease management uses copper-based pesticides which induce pathogen resistance. We examined the genetic repertoire associated with adaptation and virulence evolution in Xaj. Comparative genomics of 32 Xaj strains reveal the possible acquisition and propagation of virulence factors via insertion sequences (IS). Fine-scale annotation revealed a Tn3 transposon (TnXaj417) encoding copper resistance genes acquired by horizontal gene transfer and associated with adaptation and tolerance to metal-based pesticides commonly used to manage pathogens in orchard ecosystems. Phylogenomic analysis reveals IS involvement in acquisition and diversification of type III effector proteins ranging from two to eight in non-pathogenic strains, 16 to 20 in pathogenic strains, besides six other putative effectors with a reduced identity degree found mostly among pathogenic strains. Yersiniabactin, xopK, xopAI, and antibiotic resistance genes are also located near ISs or inside genomic islands and structures resembling composite transposons.
Collapse
Affiliation(s)
- Renata A B Assis
- Center of Research in Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Department of Plant Sciences, University of California, Davis, CA, USA
| | - Alessandro M Varani
- Faculty of Agricultural and Veterinary Sciences of Jaboticabal (FCAV), Universidade Estadual Paulista (UNESP), Department of Technology, Jaboticabal, SP, Brazil
| | - Cintia H D Sagawa
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - José S L Patané
- Cell Cycle Laboratory, Butantan Institute, Sao Paulo, SP, Brazil
| | - João Carlos Setubal
- Department of Biochemistry, Chemistry Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Guillermo Uceda-Campos
- Department of Biochemistry, Chemistry Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Aline Maria da Silva
- Department of Biochemistry, Chemistry Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Nalvo F Almeida
- School of Computing, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, MS, Brazil
| | - Leandro Marcio Moreira
- Center of Research in Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Department of Biological Science, Institute of Exact and Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil.
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
15
|
Zittersteijn HA, Gonçalves MA, Hoeben RC. A primer to gene therapy: Progress, prospects, and problems. J Inherit Metab Dis 2021; 44:54-71. [PMID: 32510617 PMCID: PMC7891367 DOI: 10.1002/jimd.12270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Genetic therapies based on gene addition have witnessed a variety of clinical successes and the first therapeutic products have been approved for clinical use. Moreover, innovative gene editing techniques are starting to offer new opportunities in which the mutations that underlie genetic diseases can be directly corrected in afflicted somatic cells. The toolboxes underpinning these DNA modifying technologies are expanding with great pace. Concerning the ongoing efforts for their implementation, viral vector-based gene delivery systems have acquired center-stage, providing new hopes for patients with inherited and acquired disorders. Specifically, the application of genetic therapies using viral vectors for the treatment of inborn metabolic disorders is growing and clinical applications are starting to appear. While the field has matured from the technology perspective and has yielded efficacious products, it is the perception of many stakeholders that from the regulatory side further developments are urgently needed. In this review, we summarize the features of state-of-the-art viral vector systems and the corresponding gene-centered therapies they seek to deliver. Moreover, a brief summary is also given on emerging gene editing approaches built on CRISPR-Cas9 nucleases and, more recently, nickases, including base editors and prime editors. Finally, we will point at some regulatory aspects that may deserve further attention for translating these technological developments into actual advanced therapy medicinal products (ATMPs).
Collapse
Affiliation(s)
- Hidde A. Zittersteijn
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Manuel A.F.V. Gonçalves
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Rob C. Hoeben
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
16
|
Jiang S, He M, Xiang XW, Adnan M, Cui ZN. Novel S-Thiazol-2-yl-furan-2-carbothioate Derivatives as Potential T3SS Inhibitors Against Xanthomonas oryzae on Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11867-11876. [PMID: 31584805 DOI: 10.1021/acs.jafc.9b04085] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv oryzae (Xoo) is considered as the most destructive disease of rice. The use of bactericides is among the most widely used traditional methods to control this destructive disease. The excessive and repeated use of the same bactericides is also becoming the reason behind the development of bactericide resistance. The widely used method for finding the new antimicrobial agents often involves the bacterial virulence factors as a target without affecting bacterial growth. Type III secretion system (T3SS) is a protein appendage and is considered as having essential virulence factors in most Gram-negative bacteria. Due to the conserved construct, T3SS has been regarded as an important mark for the blooming of novel antimicrobial drugs. Toward the search of new T3SS inhibitors, an alternative series of 1,3-thiazole derivatives were designed and synthesized. Their structures were characterized and confirmed by 1H NMR, 13C NMR, MS, and elemental analysis. All the title compounds inhibited the promoter activity of hpa1 gene significantly. Eight of them showed better inhibition than our previous T3SS inhibitor TS006 (o-coumaric acid, OCA). The treatment of Xoo with eight compounds significantly attenuated HR without affecting bacterial growth. The mRNA levels of some representative genes (hrp/hrc genes) were reduced up to different extents. In vivo bioassay results showed that eight T3SS inhibitors could reduce bacterial leaf blight and bacterial leaf streak symptoms on rice, significantly.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control , South China Agricultural University , Guangzhou 510642 , China
| | - Min He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control , South China Agricultural University , Guangzhou 510642 , China
| | - Xu-Wen Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control , South China Agricultural University , Guangzhou 510642 , China
| | - Muhammad Adnan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control , South China Agricultural University , Guangzhou 510642 , China
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control , South China Agricultural University , Guangzhou 510642 , China
| |
Collapse
|
17
|
Tao H, Tian H, Jiang S, Xiang X, Lin Y, Ahmed W, Tang R, Cui ZN. Synthesis and biological evaluation of 1,3,4-thiadiazole derivatives as type III secretion system inhibitors against Xanthomonas oryzae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:87-94. [PMID: 31519261 DOI: 10.1016/j.pestbp.2019.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) infection directly leads to a severe disease known as leaf blight, which is a major cause of yield loss of rice. Use of traditional bactericides has resulted in severe resistance in pathogenic bacteria. A new approach screening compounds that target the virulence factors rather than killing bacterial pathogens is imperative. In gram-negative bacteria, the type III secretion system (T3SS) is a conserved and significant virulence factor considered as a target for drug development. Therefore, we designed and synthesized a new series of 5-phenyl-2-furan carboxylic acid derivatives stitched with 2-mercapto-1,3,4-thiadiazole. Bioassays revealed that the title candidates attenuated the hypersensitive response through suppressing the promoter activity of a harpin gene hpa1 without affecting bacterial growth. Quantitative real time polymerase chain reaction (qRT-PCR) analysis demonstrated reduced the expression of several genes associated with T3SS, when title compounds were applied. Additionally, hrp gene cluster members, including hrpG and hrpX, had reduced mRNA levels. In vivo greenhouse tests showed that candidate compounds could alleviate the effects of Xoo infection in rice (Oryza sativa) and possess better protective activity against rice bacterial leaf blight than bismerthiazol and thiodiazole copper. All tested compounds were safe to rice. This work suggests there are new safe options for Xoo control in rice from these 1,3,4-thiadiazole derivatives.
Collapse
Affiliation(s)
- Hui Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Hao Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Shan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Xuwen Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yinuo Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Wasim Ahmed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Riyuan Tang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Jiang S, Li H, Ahmed W, Xiang X, Song G, Cui ZN. Discovery of Ethyl 2-Nitro-3-Arylacrylates Molecules as T3SS Inhibitor Reducing the Virulence of Plant Pathogenic Bacteria Xanthomonas. Front Microbiol 2019; 10:1874. [PMID: 31481941 PMCID: PMC6710329 DOI: 10.3389/fmicb.2019.01874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a gram-negative pathogen which causes leaf blight disease. Known traditional bactericides are not much more effective in inhibiting this bacteria than before. Selecting the virulence factor of the bacteria as the target without affecting their growth has been considered as a novel method for developing new anti-microbial drugs. Type III secretion systems (T3SS) are one of the important and highly conserved virulence factors in most gram-negative pathogens, which has been considered as an effective target to develop new anti-microbial drugs. In order to discover potential anti-microbial drugs against Xoo pathogens, a series of ethyl 2-nitro-3-arylacrylates compounds were screened. Among them, the compounds I-9, I-12, and I-13 could highly inhibit the promoter activity of a harpin gene hpa1, which were used to further check for the influence on bacterial growth and on the hypersensitive response (HR) caused by Xoo bacteria on non-host plants. The results showed that above compounds could reduce HR without affecting bacterial growth and survival. Moreover, qRT-PCR analysis indicated that treatment with the three inhibitors (I-9, I-12, and I-13) could suppress the expression of the Xoo T3SS in different extent. The mRNA levels of representative genes in the hrp cluster, including the key regulatory genes hrpG and hrpX, were decreased. Last but not least, in vivo test ensured that the above compounds reduced the disease symptoms of Xoo on the rice and Xcc on the Chinese radish.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Hui Li
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Wasim Ahmed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Xuwen Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Shah SMA, Haq F, Ma W, Xu X, Wang S, Xu Z, Zou L, Zhu B, Chen G. Tal1 NXtc01 in Xanthomonas translucens pv. cerealis Contributes to Virulence in Bacterial Leaf Streak of Wheat. Front Microbiol 2019; 10:2040. [PMID: 31551976 PMCID: PMC6737349 DOI: 10.3389/fmicb.2019.02040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Xanthomonas translucens pv. cerealis (Xtc) causes bacterial leaf streak (BLS) of important cereal crops, including wheat (Triticum aestivum) and barley (Hordeum vulgare). Transcription activator-like effectors (TALEs) play vital roles in many plant diseases caused by Xanthomonas spp., however, TALEs have not been previously characterized in Xtc. In this study, the whole genome of NXtc01, a virulent strain of Xtc from Xinjiang, China, was sequenced and compared with genomes of other Xanthomonas spp. Xtc NXtc01 consists of a single 4,622,298 bp chromosome that encodes 4,004 genes. Alignment of the NXtc01 sequence with the draft genome of Xtc strain CFBP 2541 (United States) revealed a single giant inversion and differences in the location of two tal genes, which were designated tal1 and tal2. In NXtc01, both tal genes are located on the chromosome, whereas tal2 is plasmid-encoded in CFBP 2541. The repeat variable diresidues (RVDs) at the 12th and 13th sites within Tal2 repeat units were identical in both strains, whereas Tal1 showed differences in the third RVD. Xtc NXtc01 and CFBP 2541 encoded 35 and 33 non-TALE type III effectors (T3Es), respectively. tal1, tal2, and tal-free deletion mutants of Xtc NXtc01 were constructed and evaluated for virulence. The tal1 and tal-free deletion mutants were impaired with respect to symptom development and growth in wheat, suggesting that tal1 is a virulence factor in NXtc01. This was confirmed in gain-of-function experiments that showed the introduction of tal1, but not tal2, restored virulence to the tal-free mutant. Furthermore, we generated a hrcC deletion mutant of NXtc01; the hrcC mutant was non-pathogenic on wheat and unable to elicit a hypersensitive response in the non-host Nicotiana benthamiana. Our data provide a platform for exploring the roles of both TALEs and non-TALEs in promoting BLS on wheat.
Collapse
Affiliation(s)
- Syed Mashab Ali Shah
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Fazal Haq
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiu Ma
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xiameng Xu
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Sai Wang
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengyin Xu
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Lifang Zou
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Zhu
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Gongyou Chen
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Synthesis and bioactivity of 1,3-thiazolidine-2-thione derivatives against type III secretion system of Xanthomonas oryzae. Bioorg Med Chem 2019; 27:3364-3371. [PMID: 31204227 DOI: 10.1016/j.bmc.2019.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 11/23/2022]
Abstract
Targeting virulence factors of bacterial without affecting their growth and survival, has been an initiative strategy for the development of novel anti-microbial agents. The type III secretion system (T3SS), one of essential and highly conserved virulence factors in most Gram-negative pathogenic bacteria, has been regarded as an effective target that developed new anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) is one of the most important bacterial pathogens on rice, which causes leaf blight disease. To discover potential anti-virulence agents against the pathogens, a new series of 1,3-thiazolidine-2-thione derivatives containing 5-phenyl-2-furan were designed and synthesized. Their structures were characterized by 1H NMR, 13C NMR, MS, and elemental analysis. All the title compounds inhibited the promoter activity of a harpin gene hpa1, significantly, that were further checked for the impact on bacterial growth. The results indicated that treatment of Xoo with the title compound III-7 did not affect bacterial growth or survival. Moreover, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that the expression of the Xoo T3SS was suppressed by treatment with the inhibitor. The mRNA levels of representative genes in the hrp (hypersensitive response and pathogenicity) cluster, as well as the regulatory genes hrpG and hrpX, were reduced. Finally, the in vivo test demonstrated that the compounds could reduce the disease symptoms of Xoo on the rice cultivar (Oryza sativa) IR24.
Collapse
|
21
|
Tao H, Fan SS, Jiang S, Xiang X, Yan X, Zhang LH, Cui ZN. Small Molecule Inhibitors Specifically Targeting the Type III Secretion System of Xanthomonas oryzae on Rice. Int J Mol Sci 2019; 20:E971. [PMID: 30813400 PMCID: PMC6412923 DOI: 10.3390/ijms20040971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/27/2019] [Accepted: 02/03/2019] [Indexed: 11/24/2022] Open
Abstract
The initiative strategy for the development of novel anti-microbial agents usually uses the virulence factors of bacteria as a target, without affecting their growth and survival. The type III secretion system (T3SS), one of the essential virulence factors in most Gram-negative pathogenic bacteria because of its highly conserved construct, has been regarded as an effective target that developed new anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) causes leaf blight diseases and is one of the most important pathogens on rice. To find potential anti-virulence agents against this pathogen, a number of natural compounds were screened for their effects on the T3SS of Xoo. Three of 34 compounds significantly inhibited the promoter activity of the harpin gene, hpa1, and were further checked for their impact on bacterial growth and on the hypersensitive response (HR) caused by Xoo on non-host tobacco plants. The results indicated that treatment of Xoo with CZ-1, CZ-4 and CZ-9 resulted in an obviously attenuated HR without affecting bacterial growth and survival. Moreover, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that the expression of the Xoo T3SS was suppressed by treatment with the three inhibitors. The mRNA levels of representative genes in the hypersensitive response and pathogenicity (hrp) cluster, as well as the regulatory genes hrpG and hrpX, were reduced. Finally, the in vivo test demonstrated that the compounds could reduce the disease symptoms of Xoo on the rice cultivar (Oryza sativa) IR24.
Collapse
Affiliation(s)
- Hui Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Su-Su Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Xuwen Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaojing Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
22
|
Schultink A, Qi T, Bally J, Staskawicz B. Using forward genetics in Nicotiana benthamiana to uncover the immune signaling pathway mediating recognition of the Xanthomonas perforans effector XopJ4. THE NEW PHYTOLOGIST 2019; 221:1001-1009. [PMID: 30156705 DOI: 10.1111/nph.15411] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/23/2018] [Indexed: 05/22/2023]
Abstract
The immune pathway responsible for perception of the Xanthomonas perforans effector XopJ4 was identified in the plant Nicotiana benthamiana. This pathogen causes significant yield loss in commercial tomato cultivation. Genetic mapping and viral-induced gene silencing were used to identify immune signaling components of the XopJ4 perception pathway in N. benthamiana. Transient complementation assays were performed to determine the functionality of gene variants and co-immunoprecipitation assays were used to gain insight into the molecular mechanism of the pathway. Two N. benthamiana ethyl methanesulfonate (EMS) mutants deficient for XopJ4 perception were identified as having loss-of-function mutations in the gene encoding the nucleotide binding, leucine-rich repeat (NLR) protein NbZAR1. Silencing of a receptor-like cytoplasmic kinase family XII gene, subsequently named XOPJ4 IMMUNITY 2 (JIM2), blocks perception of XopJ4. This study demonstrates the feasibility of conducting mutant screens in N. benthamiana to investigate the genetic basis of the plant immune system and other processes. The identification of NbZAR1 and JIM2 as mediating XopJ4 perception in N. benthamiana supports the model of ZAR1 being involved in the perception of many different pathogen effector proteins with specificity dictated by associated receptor-like cytoplasmic kinases.
Collapse
Affiliation(s)
- Alex Schultink
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Tiancong Qi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Julia Bally
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Qld, 4001, Australia
| | - Brian Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
23
|
Abrahamian P, Timilsina S, Minsavage GV, Kc S, Goss EM, Jones JB, Vallad GE. The Type III Effector AvrBsT Enhances Xanthomonas perforans Fitness in Field-Grown Tomato. PHYTOPATHOLOGY 2018; 108:1355-1362. [PMID: 29905507 DOI: 10.1094/phyto-02-18-0052-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Type III secretion system effectors contribute to pathogenicity through various mechanisms. Recent surveys showed an increasing prevalence of the type III secretion effector avrBsT among Xanthomonas perforans strains. We hypothesized that the acquisition of avrBsT has a fitness advantage for the pathogen. The contribution of avrBsT to fitness on tomato was evaluated based on disease severity, in planta growth, competition, and recovery rates of wild-type (WT) and avrBsT mutant strains in greenhouse and field plants. GEV872 and GEV1001, representative strains of two phylogenomic groups of X. perforans, were selected for generating avrBsT mutants. Disease severity was higher for WT strains compared with the avrBsT mutant strains. X. perforans WT and avrBsT mutant strains did not differ following leaf infiltration of greenhouse plants in direct competition and in planta growth assays. The effect of avrBsT on pathogen fitness was noticeable under field conditions. Differences in strain recovery were significant, with WT being recovered two to eight times more than avrBsT mutant strains in the case of both strains GEV872 and GEV1001. WT strains were capable of spreading longer distances across field plots compared with avrBsT mutant strains. Findings suggest that the functional AvrBsT affects the fitness of X. perforans under field conditions, making it an ideal candidate for bacterial spot resistance breeding efforts in tomato.
Collapse
Affiliation(s)
- Peter Abrahamian
- First, second, fourth, and seventh authors; Gulf Coast and Research Education Center, Wimauma, FL; first, second, third, fifth, sixth, and seventh authors: Department of Plant Pathology, University of Florida, Gainesville; and fifth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Sujan Timilsina
- First, second, fourth, and seventh authors; Gulf Coast and Research Education Center, Wimauma, FL; first, second, third, fifth, sixth, and seventh authors: Department of Plant Pathology, University of Florida, Gainesville; and fifth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Gerald V Minsavage
- First, second, fourth, and seventh authors; Gulf Coast and Research Education Center, Wimauma, FL; first, second, third, fifth, sixth, and seventh authors: Department of Plant Pathology, University of Florida, Gainesville; and fifth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Sushmita Kc
- First, second, fourth, and seventh authors; Gulf Coast and Research Education Center, Wimauma, FL; first, second, third, fifth, sixth, and seventh authors: Department of Plant Pathology, University of Florida, Gainesville; and fifth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Erica M Goss
- First, second, fourth, and seventh authors; Gulf Coast and Research Education Center, Wimauma, FL; first, second, third, fifth, sixth, and seventh authors: Department of Plant Pathology, University of Florida, Gainesville; and fifth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Jeffrey B Jones
- First, second, fourth, and seventh authors; Gulf Coast and Research Education Center, Wimauma, FL; first, second, third, fifth, sixth, and seventh authors: Department of Plant Pathology, University of Florida, Gainesville; and fifth author: Emerging Pathogens Institute, University of Florida, Gainesville
| | - Gary E Vallad
- First, second, fourth, and seventh authors; Gulf Coast and Research Education Center, Wimauma, FL; first, second, third, fifth, sixth, and seventh authors: Department of Plant Pathology, University of Florida, Gainesville; and fifth author: Emerging Pathogens Institute, University of Florida, Gainesville
| |
Collapse
|
24
|
Yang LY, Yang LC, Gan YL, Wang L, Zhao WZ, He YQ, Jiang W, Jiang BL, Tang JL. Systematic Functional Analysis of Sigma (σ) Factors in the Phytopathogen Xanthomonas campestris Reveals Novel Roles in the Regulation of Virulence and Viability. Front Microbiol 2018; 9:1749. [PMID: 30123197 PMCID: PMC6085468 DOI: 10.3389/fmicb.2018.01749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/12/2018] [Indexed: 11/13/2022] Open
Abstract
The black rot pathogen Xanthomonas campestris pv. campestris (Xcc) is a model organism for the study of plant bacterial pathogenesis mechanisms. In bacteria, σ factors serve as important regulatory elements that respond to various environmental signals and cues. Though Xcc encodes 15 putative σ factors little is known about their roles. As an approach to identify the potential role of each σ factor, we constructed mutations in each of the σ-factor genes as well as generating mutants deficient in multiple σ factors to assess these regulators potential additive functions. The work identified two σ70 factors essential for growth. Furthermore, the work discovered a third σ70 factor, RpoE1, important for virulence. Further studies revealed that RpoE1 positively regulates the expression of the hrp gene cluster that encodes the type III secretion system (T3SS) which determines the pathogenicity and hypersensitive response of Xcc on plants. In vivo and in vitro studies demonstrated that RpoE1 could bind to the promoter region and promote transcription of hrpX, a gene encoding a key regulator of the hrp genes. Overall, this systematic analysis reveals important roles in Xcc survival and virulence for previously uncharacterized σ70 factors that may become important targets for disease control.
Collapse
Affiliation(s)
- Li-Yan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Li-Chao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yong-Liang Gan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wan-Zong Zhao
- Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning, China
| | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wei Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bo-Le Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
25
|
Xiang X, Tao H, Jiang S, Zhang LH, Cui ZN. Synthesis and bioactivity of thiazolidin-2-cyanamide derivatives against type III secretion system of Xanthomonas oryzae on rice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 149:89-97. [PMID: 30033022 DOI: 10.1016/j.pestbp.2018.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/25/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Targeting virulence factors of bacterial without affecting their growth and survival, has been an initiative strategy for the development of novel anti-microbial agents. The type III secretion system (T3SS), one of essential and highly conserved virulence factors in most Gram-negative pathogenic bacteria, has been regarded as an effective target that developed new anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) is one of the most Important bacterial pathogens on rice, which causes leaf blight disease. To discover potential anti-virulence agents against the pathogens, a new series of thiazolidin-2-cyanamide derivatives containing 5-phenyl-2-furan were designed and synthesized. Their structures were characterized by 1H NMR, 13C NMR, MS, and elemental analysis. All the title compounds inhibited the promoter activity of a harpin gene hpa1, significantly, that were further checked for the impact on bacterial growth and on the hypersensitive response (HR) caused by Xoo on non-host tobacco plants. The results indicated that treatment of Xoo with the title compounds II-2, II-3 and II-4 resulted in significantly attenuated HR without affecting bacterial growth or survival. Moreover, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that the expression of the Xoo T3SS was suppressed by treatment with the three inhibitors. The mRNA levels of representative genes in the hrp (hypersensitive response and pathogenicity) cluster, as well as the regulatory genes hrpG and hrpX, were reduced. Finally, the in vivo test demonstrated that the compounds could reduce the disease symptoms of Xoo on the rice cultivar (Oryza sativa) IR24.
Collapse
Affiliation(s)
- Xuwen Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Hui Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Shan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
26
|
Kan J, An L, Wu Y, Long J, Song L, Fang R, Jia Y. A dual role for proline iminopeptidase in the regulation of bacterial motility and host immunity. MOLECULAR PLANT PATHOLOGY 2018; 19:2011-2024. [PMID: 29517846 PMCID: PMC6638124 DOI: 10.1111/mpp.12677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 05/07/2023]
Abstract
During plant-pathogen interactions, pathogenic bacteria have evolved multiple strategies to cope with the sophisticated defence systems of host plants. Proline iminopeptidase (PIP) is essential to Xanthomonas campestris pv. campestris (Xcc) virulence, and is conserved in many plant-associated bacteria, but its pathogenic mechanism remains unclear. In this study, we found that disruption of pip in Xcc enhanced its flagella-mediated bacterial motility by decreasing intracellular bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) levels, whereas overexpression of pip in Xcc restricted its bacterial motility by elevating c-di-GMP levels. We also found that PIP is a type III secretion system-dependent effector capable of eliciting a hypersensitive response in non-host, but not host plants. When we transformed pip into the host plant Arabidopsis, higher bacterial titres were observed in pip-overexpressing plants relative to wild-type plants after Xcc inoculation. The repressive function of PIP on plant immunity was dependent on PIP's enzymatic activity and acted through interference with the salicylic acid (SA) biosynthetic and regulatory genes. Thus, PIP simultaneously regulates two distinct regulatory networks during plant-microbe interactions, i.e. it affects intracellular c-di-GMP levels to coordinate bacterial behaviour, such as motility, and functions as a type III effector translocated into plant cells to suppress plant immunity. Both processes provide bacteria with the regulatory potential to rapidly adapt to complex environments, to utilize limited resources for growth and survival in a cost-efficient manner and to improve the chances of bacterial survival by helping pathogens to inhabit the internal tissues of host plants.
Collapse
Affiliation(s)
- Jinhong Kan
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijing 100101China
- National Plant Gene Research CenterBeijing 100101China
- College of Life Sciences, University of the Chinese Academy of SciencesBeijing 100049China
- Present address:
Center for Crop Germplasm Resources, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing 100081China
| | - Lin An
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijing 100101China
- National Plant Gene Research CenterBeijing 100101China
- College of Life Sciences, University of the Chinese Academy of SciencesBeijing 100049China
| | - Yao Wu
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijing 100101China
- National Plant Gene Research CenterBeijing 100101China
| | - Jia Long
- College of Life Sciences, Capital Normal UniversityBeijing 100048China
| | - Liyang Song
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijing 100101China
- National Plant Gene Research CenterBeijing 100101China
- College of Life Sciences, University of the Chinese Academy of SciencesBeijing 100049China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijing 100101China
- National Plant Gene Research CenterBeijing 100101China
| | - Yantao Jia
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijing 100101China
- National Plant Gene Research CenterBeijing 100101China
| |
Collapse
|
27
|
Pérez-López E, Waldner M, Hossain M, Kusalik AJ, Wei Y, Bonham-Smith PC, Todd CD. Identification of Plasmodiophora brassicae effectors - A challenging goal. Virulence 2018; 9:1344-1353. [PMID: 30146948 PMCID: PMC6177251 DOI: 10.1080/21505594.2018.1504560] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/18/2018] [Indexed: 11/06/2022] Open
Abstract
Clubroot is an economically important disease affecting Brassica plants worldwide. Plasmodiophora brassicae is the protist pathogen associated with the disease, and its soil-borne obligate parasitic nature has impeded studies related to its biology and the mechanisms involved in its infection of the plant host. The identification of effector proteins is key to understanding how the pathogen manipulates the plant's immune response and the genes involved in resistance. After more than 140 years studying clubroot and P. brassicae, very little is known about the effectors playing key roles in the infection process and subsequent disease progression. Here we analyze the information available for identified effectors and suggest several features of effector genes that can be used in the search for others. Based on the information presented in this review, we propose a comprehensive bioinformatics pipeline for effector identification and provide a list of the bioinformatics tools available for such.
Collapse
Affiliation(s)
- Edel Pérez-López
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - Matthew Waldner
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
| | - Musharaf Hossain
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - Anthony J. Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
28
|
Schultink A, Qi T, Lee A, Steinbrenner AD, Staskawicz B. Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:787-795. [PMID: 28891100 DOI: 10.1111/tpj.13715] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 05/12/2023]
Abstract
Xanthomonas spp. are phytopathogenic bacteria that can cause disease on a wide variety of plant species resulting in significant impacts on crop yields. Limited genetic resistance is available in most crop species and current control methods are often inadequate, particularly when environmental conditions favor disease. The plant Nicotiana benthamiana has been shown to be resistant to Xanthomonas and Pseudomonas due to an immune response triggered by the bacterial effector proteins XopQ and HopQ1, respectively. We used a reverse genetic screen to identify Recognition of XopQ 1 (Roq1), a nucleotide-binding leucine-rich repeat (NLR) protein with a Toll-like interleukin-1 receptor (TIR) domain, which mediates XopQ recognition in N. benthamiana. Roq1 orthologs appear to be present only in the Nicotiana genus. Expression of Roq1 was found to be sufficient for XopQ recognition in both the closely-related Nicotiana sylvestris and the distantly-related beet plant (Beta vulgaris). Roq1 was found to co-immunoprecipitate with XopQ, suggesting a physical association between the two proteins. Roq1 is able to recognize XopQ alleles from various Xanthomonas species, as well as HopQ1 from Pseudomonas, demonstrating widespread potential application in protecting crop plants from these pathogens.
Collapse
Affiliation(s)
- Alex Schultink
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Tiancong Qi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Arielle Lee
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Adam D Steinbrenner
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Brian Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
29
|
Deciphering TAL effectors for 5-methylcytosine and 5-hydroxymethylcytosine recognition. Nat Commun 2017; 8:901. [PMID: 29026078 PMCID: PMC5638953 DOI: 10.1038/s41467-017-00860-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/01/2017] [Indexed: 12/29/2022] Open
Abstract
DNA recognition by transcription activator-like effector (TALE) proteins is mediated by tandem repeats that specify nucleotides through repeat-variable diresidues. These repeat-variable diresidues form direct and sequence-specific contacts to DNA bases; hence, TALE-DNA interaction is sensitive to DNA chemical modifications. Here we conduct a thorough investigation, covering all theoretical repeat-variable diresidue combinations, for their recognition capabilities for 5-methylcytosine and 5-hydroxymethylcytosine, two important epigenetic markers in higher eukaryotes. We identify both specific and degenerate repeat-variable diresidues for 5-methylcytosine and 5-hydroxymethylcytosine. Utilizing these novel repeat-variable diresidues, we achieve methylation-dependent gene activation and genome editing in vivo; we also report base-resolution detection of 5hmC in an in vitro assay. Our work deciphers repeat-variable diresidues for 5-methylcytosine and 5-hydroxymethylcytosine, and provides tools for TALE-dependent epigenome recognition.Transcription activator-like effector proteins recognise specific DNA sequences via tandem repeats. Here the authors demonstrate TALEs can recognise the methylated bases 5mC and 5hmC, enabling them to detect epigenetic modifications.
Collapse
|
30
|
Fan S, Tian F, Li J, Hutchins W, Chen H, Yang F, Yuan X, Cui Z, Yang C, He C. Identification of phenolic compounds that suppress the virulence of Xanthomonas oryzae on rice via the type III secretion system. MOLECULAR PLANT PATHOLOGY 2017; 18:555-568. [PMID: 27084974 PMCID: PMC6638228 DOI: 10.1111/mpp.12415] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The targeting of bacterial type III secretion systems (T3SSs), which are critical virulence factors in most Gram-negative pathogens, is regarded as an alternative strategy for the development of novel anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) are two of the most important bacterial pathogens on rice, which cause leaf blight and leaf streak diseases, respectively. To identify potential anti-virulence drugs against these two pathogens, we screened a library of plant phenolic compounds and derivatives for their effects on the Xoo T3SS. Ten of 56 compounds significantly inhibited the promoter activity of a harpin gene, hpa1. These inhibitors were further tested for their impact on the hypersensitive response (HR) caused by Xoo on non-host tobacco plants. The results showed that pretreatment of Xoo with TS006 (o-coumaric acid, OCA), TS010, TS015 and TS018 resulted in significantly attenuated HR without affecting bacterial growth or survival. In addition, Cya translocation assays demonstrated that the translocation of two T3 effectors was suppressed by the four inhibitors. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that mRNA levels of representative genes in the hrp (hypersensitive response and pathogenicity) cluster, as well as the regulatory genes hrpG and hrpX, were reduced by treatment with the four inhibitors, suggesting that expression of the Xoo T3SS was suppressed. The expression of other virulence factors was not suppressed, which indicated possible T3SS-specific inhibition. Finally, we demonstrated that these inhibitors reduced the disease symptoms of Xoo and Xoc on the rice cultivar (Oryza sativa) IR24 to varying extents.
Collapse
Affiliation(s)
- Susu Fan
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - Jianyu Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - William Hutchins
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI 53211USA
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - Xiaochen Yuan
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI 53211USA
| | - Zining Cui
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Ching‐Hong Yang
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI 53211USA
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
31
|
Li L, Li RF, Ming ZH, Lu GT, Tang JL. Identification of a novel type III secretion-associated outer membrane-bound protein from Xanthomonas campestris pv. campestris. Sci Rep 2017; 7:42724. [PMID: 28198457 PMCID: PMC5309889 DOI: 10.1038/srep42724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/13/2017] [Indexed: 12/31/2022] Open
Abstract
Many bacterial pathogens employ the type III secretion system (T3SS) to translocate effector proteins into eukaryotic cells to overcome host defenses. To date, most of our knowledge about the T3SS molecular architecture comes from the studies on animal pathogens. In plant pathogens, nine Hrc proteins are believed to be structural components of the T3SS, of which HrcC and HrcJ form the outer and inner rings of the T3SS, respectively. Here, we demonstrated that a novel outer membrane-bound protein (HpaM) of Xanthomonas campestris pv. campestris is critical for the type III secretion and is structurally and functionally conserved in phytopathogenic Xanthomonas spp. We showed that the C-terminus of HpaM extends into the periplasm to interact physically with HrcJ and the middle part of HpaM interacts physically with HrcC. It is clear that the outer and inner rings compose the main basal body of the T3SS apparatus in animal pathogens. Therefore, we presume that HpaM may act as a T3SS structural component, or play a role in assisting assembling or affecting the stability of the T3SS apparatus. HpaM is a highly prevalent and specific protein in Xanthomonas spp., suggesting that the T3SS of Xanthomonas is distinctive in some aspects from other pathogens.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Rui-Fang Li
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, 174 Daxue Road, Nanning, Guangxi 530007, China
| | - Zhen-Hua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Guang-Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| |
Collapse
|
32
|
YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity. Microbiol Mol Biol Rev 2016; 80:1011-1027. [PMID: 27784797 DOI: 10.1128/mmbr.00032-16] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gram-negative bacterial pathogens rely on the type III secretion system to inject virulence proteins into host cells. These type III secreted "effector" proteins directly manipulate cellular processes to cause disease. Although the effector repertoires in different bacterial species are highly variable, the Yersinia outer protein J (YopJ) effector family is unique in that its members are produced by diverse animal and plant pathogens as well as a nonpathogenic microsymbiont. All YopJ family effectors share a conserved catalytic triad that is identical to that of the C55 family of cysteine proteases. However, an accumulating body of evidence demonstrates that many YopJ effectors modify their target proteins in hosts by acetylating specific serine, threonine, and/or lysine residues. This unique acetyltransferase activity allows the YopJ family effectors to affect the function and/or stability of their targets, thereby dampening innate immunity. Here, we summarize the current understanding of this prevalent and evolutionarily conserved type III effector family by describing their enzymatic activities and virulence functions in animals and plants. In particular, the molecular mechanisms by which representative YopJ family effectors subvert host immunity through posttranslational modification of their target proteins are discussed.
Collapse
|
33
|
Goldberg T, Rost B, Bromberg Y. Computational prediction shines light on type III secretion origins. Sci Rep 2016; 6:34516. [PMID: 27713481 PMCID: PMC5054392 DOI: 10.1038/srep34516] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/15/2016] [Indexed: 01/27/2023] Open
Abstract
Type III secretion system is a key bacterial symbiosis and pathogenicity mechanism responsible for a variety of infectious diseases, ranging from food-borne illnesses to the bubonic plague. In many Gram-negative bacteria, the type III secretion system transports effector proteins into host cells, converting resources to bacterial advantage. Here we introduce a computational method that identifies type III effectors by combining homology-based inference with de novo predictions, reaching up to 3-fold higher performance than existing tools. Our work reveals that signals for recognition and transport of effectors are distributed over the entire protein sequence instead of being confined to the N-terminus, as was previously thought. Our scan of hundreds of prokaryotic genomes identified previously unknown effectors, suggesting that type III secretion may have evolved prior to the archaea/bacteria split. Crucially, our method performs well for short sequence fragments, facilitating evaluation of microbial communities and rapid identification of bacterial pathogenicity – no genome assembly required. pEffect and its data sets are available at http://services.bromberglab.org/peffect.
Collapse
Affiliation(s)
- Tatyana Goldberg
- Department of Informatics, Bioinformatics &Computational Biology - I12, TUM, Garching, Germany.,Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), TUM, Garching, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics &Computational Biology - I12, TUM, Garching, Germany.,Institute for Advanced Study (TUM-IAS), Garching, Germany.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Yana Bromberg
- Institute for Advanced Study (TUM-IAS), Garching, Germany.,Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
34
|
Overexpression of SlUPA-like induces cell enlargement, aberrant development and low stress tolerance through phytohormonal pathway in tomato. Sci Rep 2016; 6:23818. [PMID: 27025226 PMCID: PMC4812305 DOI: 10.1038/srep23818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/15/2016] [Indexed: 11/24/2022] Open
Abstract
upa20 induces cell enlargement and hypertrophy development. In our research, overexpression of SlUPA-like, orthologous to upa20, severely affected the growth of vegetative and reproductive tissues. Wilted leaves curled upwardly and sterile flowers were found in transgenic lines. Through anatomical analysis, palisade and spongy tissues showed fluffy and hypertrophic development in transgenic plants. Gene expression analysis showed that GA responsive, biosynthetic and signal transduction genes (e.g. GAST1, SlGA20OXs, SlGA3OXs, SlGID1s, and SlPREs) were significantly upregulated, indicating that GA response is stimulated by overproduction of SlUPA-like. Furthermore, SlUPA-like was strongly induced by exogenous JA and wounding. Decreased expression of PI-I and induced expression of SlJAZs (including SlJAZ2, SlJAZ10 and SlJAZ11) were observed in transgenic plants, suggesting that JA response is repressed. In addition, SlUPA-like overexpressed plant exhibited more opened stoma and higher water loss than the control when treated with dehydration stress, which was related to decreased ABA biosynthesis, signal transduction and response. Particularly, abnormal developments of transgenic plants promote the plant susceptibility to Xanthomonas campestris pv. campestris. Therefore, it is deduced from these results that SlUPA-like plays vital role in regulation of plant development and stress tolerance through GA, JA and ABA pathways.
Collapse
|
35
|
Ji H, Dong H. Key steps in type III secretion system (T3SS) towards translocon assembly with potential sensor at plant plasma membrane. MOLECULAR PLANT PATHOLOGY 2015; 16:762-73. [PMID: 25469869 PMCID: PMC6638502 DOI: 10.1111/mpp.12223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Many plant- and animal-pathogenic Gram-negative bacteria employ the type III secretion system (T3SS) to translocate effector proteins from bacterial cells into the cytosol of eukaryotic host cells. The effector translocation occurs through an integral component of T3SS, the channel-like translocon, assembled by hydrophilic and hydrophobic proteinaceous translocators in a two-step process. In the first, hydrophilic translocators localize to the tip of a proteinaceous needle in animal pathogens, or a proteinaceous pilus in plant pathogens, and associate with hydrophobic translocators, which insert into host plasma membranes in the second step. However, the pilus needs to penetrate plant cell walls in advance. All hydrophilic translocators so far identified in plant pathogens are characteristic of harpins: T3SS accessory proteins containing a unitary hydrophilic domain or an additional enzymatic domain. Two-domain harpins carrying a pectate lyase domain potentially target plant cell walls and facilitate the penetration of the pectin-rich middle lamella by the bacterial pilus. One-domain harpins target plant plasma membranes and may play a crucial role in translocon assembly, which may also involve contrapuntal associations of hydrophobic translocators. In all cases, sensory components in the target plasma membrane are indispensable for the membrane recognition of translocators and the functionality of the translocon. The conjectural sensors point to membrane lipids and proteins, and a phosphatidic acid and an aquaporin are able to interact with selected harpin-type translocators. Interactions between translocators and their sensors at the target plasma membrane are assumed to be critical for translocon assembly.
Collapse
Affiliation(s)
- Hongtao Ji
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| |
Collapse
|
36
|
Essakhi S, Cesbron S, Fischer-Le Saux M, Bonneau S, Jacques MA, Manceau C. Phylogenetic and Variable-Number Tandem-Repeat Analyses Identify Nonpathogenic Xanthomonas arboricola Lineages Lacking the Canonical Type III Secretion System. Appl Environ Microbiol 2015; 81:5395-410. [PMID: 26048944 PMCID: PMC4510168 DOI: 10.1128/aem.00835-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/21/2015] [Indexed: 01/13/2023] Open
Abstract
Xanthomonas arboricola is conventionally known as a taxon of plant-pathogenic bacteria that includes seven pathovars. This study showed that X. arboricola also encompasses nonpathogenic bacteria that cause no apparent disease symptoms on their hosts. The aim of this study was to assess the X. arboricola population structure associated with walnut, including nonpathogenic strains, in order to gain a better understanding of the role of nonpathogenic xanthomonads in walnut microbiota. A multilocus sequence analysis (MLSA) was performed on a collection of 100 X. arboricola strains, including 27 nonpathogenic strains isolated from walnut. Nonpathogenic strains grouped outside clusters defined by pathovars and formed separate genetic lineages. A multilocus variable-number tandem-repeat analysis (MLVA) conducted on a collection of X. arboricola strains isolated from walnut showed that nonpathogenic strains clustered separately from clonal complexes containing Xanthomonas arboricola pv. juglandis strains. Some nonpathogenic strains of X. arboricola did not contain the canonical type III secretion system (T3SS) and harbored only one to three type III effector (T3E) genes. In the nonpathogenic strains CFBP 7640 and CFBP 7653, neither T3SS genes nor any of the analyzed T3E genes were detected. This finding raises a question about the origin of nonpathogenic strains and the evolution of plant pathogenicity in X. arboricola. T3E genes that were not detected in any nonpathogenic isolates studied represent excellent candidates to be those responsible for pathogenicity in X. arboricola.
Collapse
Affiliation(s)
- Salwa Essakhi
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Sophie Cesbron
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | | | - Sophie Bonneau
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Marie-Agnès Jacques
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Charles Manceau
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences, Beaucouzé, France Anses, Laboratoire de la Santé des Végétaux, Unité Expertise-Risques Biologiques, Angers, France
| |
Collapse
|
37
|
Ji H, Dong H. Biological significance and topological basis of aquaporin-partnering protein-protein interactions. PLANT SIGNALING & BEHAVIOR 2015; 10:e1011947. [PMID: 26786009 PMCID: PMC4854338 DOI: 10.1080/15592324.2015.1011947] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 01/06/2015] [Accepted: 01/18/2015] [Indexed: 05/24/2023]
Abstract
Aquaporins (AQPs) are intramolecular channels essential for transport of H2O, CO2, and other small substrates across membranes. Through this function, AQPs can modulate CO2 uptake and assimilation in plants and regulate water relations and many other physiological processes in all living organisms. To execute their physiological roles, AQPs may experience 3 types of hetero-molecular interaction, between AQPs and their kinases; between AQP isoforms; and between AQPs and other proteins that are neither AQPs nor kinases. Interacting with non-AQP non-kinase proteins may enable AQPs to extend their functions beyond substrate transport, and most fascinatingly, to serve as a gateway control for translocation of virulence effectors from pathogenic bacteria into the cytosol of eukaryotic cells. In this mini review, we will summarize the latter 2 types of interaction and discuss the physiological and/or pathological significance. We will also discuss a research angle to elucidate the structural basis of AQP-partnering protein interactions.
Collapse
Affiliation(s)
- Hongtao Ji
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
38
|
Cui Y, Zou L, Zou H, Li Y, Zakria M, Chen G. HrpE3 is a type III effector protein required for full virulence of Xanthomonas oryzae pv. oryzicola in rice. MOLECULAR PLANT PATHOLOGY 2013; 14:678-92. [PMID: 23672717 PMCID: PMC6638819 DOI: 10.1111/mpp.12039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc) is the causal agent of bacterial leaf streak, a devastating disease in rice. Xoc uses a type III secretion (T3S) system, which is encoded by the hrp-hrc-hpa (hypersensitive response and pathogenicity, hrp-conserved and hrp-associated) genes, to inject repertoires of T3S effectors (T3Es) into plant cells. Many of the hrp-hrc-hpa genes have roles in pathogenesis, but the role of hrpE3, which shows homology to hpaE in X. campestris pv. vesicatoria (Xcv), is poorly understood. In this study, hrpE3 was shown to be transcribed independent of the hrpD operon, and its expression was dependent on a promoter within hpaB. The expression of hrpE3 was positively regulated by HrpG and HrpX, a finding probably caused by an imperfect plant-inducible promoter (PIP) box (TTCGT-N16 -TTCGA) in the hrpE3 promoter. The secretion of HrpE3 was dependent on T3S, and subcellular localization of HrpE3 was cytoplasmic and nuclear in plant cells. A mutation in hrpE3 reduced the virulence of Xoc by decreasing disease lesion length and bacterial growth in planta. Full virulence was restored to the mutant when Xoc hrpE3, but not Xcv hpaE, was expressed in trans. The differences in transcription, secretion via the T3S system and bacterial virulence in plants were attributed to N-terminal amino acid differences between Xoc HrpE3 and Xcv HpaE. Collectively, the results demonstrate that hrpE3 encodes a T3E protein which is delivered into the plant cell through the T3S system, localizes to the cytoplasm and nucleus, and is required for full virulence in rice.
Collapse
Affiliation(s)
- Yiping Cui
- Department of Plant Pathology, Nanjing Agricultural University/Key Laboratory of Monitoring and Management for Plant Diseases and Insects, Ministry of Agriculture of China, Nanjing, 210095, China
| | | | | | | | | | | |
Collapse
|
39
|
Zhou K, Aertsen A, Michiels CW. The role of variable DNA tandem repeats in bacterial adaptation. FEMS Microbiol Rev 2013; 38:119-41. [PMID: 23927439 DOI: 10.1111/1574-6976.12036] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/13/2013] [Accepted: 07/26/2013] [Indexed: 01/05/2023] Open
Abstract
DNA tandem repeats (TRs), also designated as satellite DNA, are inter- or intragenic nucleotide sequences that are repeated two or more times in a head-to-tail manner. Because TR tracts are prone to strand-slippage replication and recombination events that cause the TR copy number to increase or decrease, loci containing TRs are hypermutable. An increasing number of examples illustrate that bacteria can exploit this instability of TRs to reversibly shut down or modulate the function of specific genes, allowing them to adapt to changing environments on short evolutionary time scales without an increased overall mutation rate. In this review, we discuss the prevalence and distribution of inter- and intragenic TRs in bacteria and the mechanisms of their instability. In addition, we review evidence demonstrating a role of TR variations in bacterial adaptation strategies, ranging from immune evasion and tissue tropism to the modulation of environmental stress tolerance. Nevertheless, while bioinformatic analysis reveals that most bacterial genomes contain a few up to several dozens of intra- and intergenic TRs, only a small fraction of these have been functionally studied to date.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
40
|
Wichmann F, Vorhölter FJ, Hersemann L, Widmer F, Blom J, Niehaus K, Reinhard S, Conradin C, Kölliker R. The noncanonical type III secretion system of Xanthomonas translucens pv. graminis is essential for forage grass infection. MOLECULAR PLANT PATHOLOGY 2013; 14:576-88. [PMID: 23578314 PMCID: PMC6638798 DOI: 10.1111/mpp.12030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Xanthomonas translucens pv. graminis (Xtg) is a gammaproteobacterium that causes bacterial wilt on a wide range of forage grasses. To gain insight into the host-pathogen interaction and to identify the virulence factors of Xtg, we compared a draft genome sequence of one isolate (Xtg29) with other Xanthomonas spp. with sequenced genomes. The type III secretion system (T3SS) encoding a protein transport system for type III effector (T3E) proteins represents one of the most important virulence factors of Xanthomonas spp. In contrast with other Xanthomonas spp. assigned to clade 1 on the basis of phylogenetic analyses, we identified an hrp (hypersensitive response and pathogenicity) gene cluster encoding T3SS components and a representative set of 35 genes encoding putative T3Es in the genome of Xtg29. The T3SS was shown to be divergent from the hrp gene clusters of other sequenced Xanthomonas spp. Xtg mutants deficient in T3SS regulating and structural genes were constructed to clarify the role of the T3SS in forage grass colonization. Italian ryegrass infection with these mutants led to significantly reduced symptoms (P < 0.05) relative to plants infected with the wild-type strain. This showed that the T3SS is required for symptom evocation. In planta multiplication of the T3SS mutants was not impaired significantly relative to the wild-type, indicating that the T3SS is not required for survival until 14 days post-infection. This study represents the first major step to understanding the bacterial colonization strategies deployed by Xtg and may assist in the identification of resistance (R) genes in forage grasses.
Collapse
Affiliation(s)
- Fabienne Wichmann
- Agroscope Reckenholz-Tänikon Research Station ART, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Escalon A, Javegny S, Vernière C, Noël LD, Vital K, Poussier S, Hajri A, Boureau T, Pruvost O, Arlat M, Gagnevin L. Variations in type III effector repertoires, pathological phenotypes and host range of Xanthomonas citri pv. citri pathotypes. MOLECULAR PLANT PATHOLOGY 2013; 14:483-96. [PMID: 23437976 PMCID: PMC6638789 DOI: 10.1111/mpp.12019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The mechanisms determining the host range of Xanthomonas are still undeciphered, despite much interest in their potential roles in the evolution and emergence of plant pathogenic bacteria. Xanthomonas citri pv. citri (Xci) is an interesting model of host specialization because of its pathogenic variants: pathotype A strains infect a wide range of Rutaceous species, whereas pathotype A*/A(W) strains have a host range restricted to Mexican lime (Citrus aurantifolia) and alemow (Citrus macrophylla). Based on a collection of 55 strains representative of Xci worldwide diversity assessed by amplified fragment length polymorphism (AFLP), we investigated the distribution of type III effectors (T3Es) in relation to host range. We examined the presence of 66 T3Es from xanthomonads in Xci and identified a repertoire of 28 effectors, 26 of which were shared by all Xci strains, whereas two (xopAG and xopC1) were present only in some A*/A(W) strains. We found that xopAG (=avrGf1) was present in all A(W) strains, but also in three A* strains genetically distant from A(W) , and that all xopAG-containing strains induced the hypersensitive response (HR) on grapefruit and sweet orange. The analysis of xopAD and xopAG suggested horizontal transfer between X. citri pv. bilvae, another citrus pathogen, and some Xci strains. A strains were genetically less diverse, induced identical phenotypic responses and possessed indistinguishable T3E repertoires. Conversely, A*/A(W) strains exhibited a wider genetic diversity in which clades correlated with geographical origin and T3E repertoire, but not with pathogenicity, according to T3E deletion experiments. Our data outline the importance of taking into account the heterogeneity of Xci A*/A(W) strains when analysing the mechanisms of host specialization.
Collapse
Affiliation(s)
- Aline Escalon
- UMR PVBMT, CIRAD, F-97410 Saint-Pierre, La Réunion, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vicente JG, Holub EB. Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. MOLECULAR PLANT PATHOLOGY 2013; 14:2-18. [PMID: 23051837 PMCID: PMC6638727 DOI: 10.1111/j.1364-3703.2012.00833.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
BACKGROUND Xanthomonas campestris pv. campestris (Xcc) (Pammel) Dowson is a Gram-negative bacterium that causes black rot, the most important disease of vegetable brassica crops worldwide. Intensive molecular investigation of Xcc is gaining momentum and several whole genome sequences are available. TAXONOMY Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadacea; Genus Xanthomonas; Species X. campestris. HOST RANGE AND SYMPTOMS Xcc can cause disease in a large number of species of Brassicaceae (ex-Cruciferae), including economically important vegetable Brassica crops and a number of other cruciferous crops, ornamentals and weeds, including the model plant Arabidopsis thaliana. Black rot is a systemic vascular disease. Typical disease symptoms include V-shaped yellow lesions starting from the leaf margins and blackening of the veins. RACE STRUCTURE, PATHOGENESIS AND EPIDEMIOLOGY Collections of Xcc isolates have been differentiated into physiological races based on the response of several brassica species lines. Black rot is a seed-borne disease. The disease is favoured by warm, humid conditions and can spread rapidly from rain dispersal and irrigation water. DISEASE CONTROL The control of black rot is difficult and relies on the use of pathogen-free planting material and the elimination of other potential inoculum sources (infected crop debris and cruciferous weeds). Major gene resistance is very rare in B. oleracea (brassica C genome). Resistance is more readily available in other species, including potentially useful sources of broad-spectrum resistance in B. rapa and B. carinata (A and BC genomes, respectively) and in the wild relative A. thaliana. GENOME The reference genomes of three isolates have been released. The genome consists of a single chromosome of approximately 5 100 000 bp, with a GC content of approximately 65% and an average predicted number of coding DNA sequences (CDS) of 4308. IMPORTANT GENES IDENTIFIED Three different secretion systems have been identified and studied in Xcc. The gene clusters xps and xcs encode a type II secretion system and xps genes have been linked to pathogenicity. The role of the type IV secretion system in pathogenicity is still uncertain. The hrp gene cluster encodes a type III secretion system that is associated with pathogenicity. An inventory of candidate effector genes has been assembled based on homology with known effectors. A range of other genes have been associated with virulence and pathogenicity, including the rpf, gum and wxc genes involved in the regulation of the synthesis of extracellular degrading enzymes, xanthan gum and lipopolysaccharides. USEFUL WEBSITE http://www.xanthomonas.org/
Collapse
Affiliation(s)
- Joana G Vicente
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
| | | |
Collapse
|
43
|
Kogenaru S, Qing Y, Guo Y, Wang N. RNA-seq and microarray complement each other in transcriptome profiling. BMC Genomics 2012; 13:629. [PMID: 23153100 PMCID: PMC3534599 DOI: 10.1186/1471-2164-13-629] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/05/2012] [Indexed: 12/22/2022] Open
Abstract
Background RNA-seq and microarray are the two popular methods employed for genome-wide transcriptome profiling. Current comparison studies have shown that transcriptome quantified by these two methods correlated well. However, none of them have addressed if they complement each other, considering the strengths and the limitations inherent with them. The pivotal requirement to address this question is the knowledge of a well known data set. In this regard, HrpX regulome from pathogenic bacteria serves as an ideal choice as the target genes of HrpX transcription factor are well studied due to their central role in pathogenicity. Results We compared the performance of RNA-seq and microarray in their ability to detect known HrpX target genes by profiling the transcriptome from the wild-type and the hrpX mutant strains of γ-Proteobacterium Xanthomonas citri subsp. citri. Our comparative analysis indicated that gene expression levels quantified by RNA-seq and microarray well-correlated both at absolute as well as relative levels (Spearman correlation-coefficient, rs > 0.76). Further, the expression levels quantified by RNA-seq and microarray for the significantly differentially expressed genes (DEGs) also well-correlated with qRT-PCR based quantification (rs = 0.58 to 0.94). Finally, in addition to the 55 newly identified DEGs, 72% of the already known HrpX target genes were detected by both RNA-seq and microarray, while, the remaining 28% could only be detected by either one of the methods. Conclusions This study has significantly advanced our understanding of the regulome of the critical transcriptional factor HrpX. RNA-seq and microarray together provide a more comprehensive picture of HrpX regulome by uniquely identifying new DEGs. Our study demonstrated that RNA-seq and microarray complement each other in transcriptome profiling.
Collapse
Affiliation(s)
- Sunitha Kogenaru
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | | | | | | |
Collapse
|
44
|
Li W, Xu YP, Zhang ZX, Cao WY, Li F, Zhou X, Chen GY, Cai XZ. Identification of genes required for nonhost resistance to Xanthomonas oryzae pv. oryzae reveals novel signaling components. PLoS One 2012; 7:e42796. [PMID: 22912739 PMCID: PMC3418293 DOI: 10.1371/journal.pone.0042796] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 07/11/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Nonhost resistance is a generalized, durable, broad-spectrum resistance exhibited by plant species to a wide variety of microbial pathogens. Although nonhost resistance is an attractive breeding strategy, the molecular basis of this form of resistance remains unclear for many plant-microbe pathosystems, including interactions with the bacterial pathogen of rice, Xanthomonas oryzae pv. oryzae (Xoo). METHODS AND FINDINGS Virus-induced gene silencing (VIGS) and an assay to detect the hypersensitive response (HR) were used to screen for genes required for nonhost resistance to Xoo in N. benthamiana. When infiltrated with Xoo strain YN-1, N. benthamiana plants exhibited a strong necrosis within 24 h and produced a large amount of H(2)O(2) in the infiltrated area. Expression of HR- and defense-related genes was induced, whereas bacterial numbers dramatically decreased during necrosis. VIGS of 45 ACE (Avr/Cf-elicited) genes revealed identified seven genes required for nonhost resistance to Xoo in N. benthamiana. The seven genes encoded a calreticulin protein (ACE35), an ERF transcriptional factor (ACE43), a novel Solanaceous protein (ACE80), a hydrolase (ACE117), a peroxidase (ACE175) and two proteins with unknown function (ACE95 and ACE112). The results indicate that oxidative burst and calcium-dependent signaling pathways play an important role in nonhost resistance to Xoo. VIGS analysis further revealed that ACE35, ACE80, ACE95 and ACE175, but not the other three ACE genes, interfered with the Cf-4/Avr4-dependent HR. CONCLUSIONS/SIGNIFICANCE N. benthamiana plants inoculated with Xoo respond by rapidly eliciting an HR and nonhost resistance. The oxidative burst and other signaling pathways are pivotal in Xoo-N. benthamiana nonhost resistance, and genes involved in this response partially overlap with those involved in Cf/Avr4-dependent HR. The seven genes required for N. benthamiana-mediated resistance to Xoo provide a basis for further dissecting the molecular mechanism of nonhost resistance.
Collapse
Affiliation(s)
- Wen Li
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - You-Ping Xu
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Zhi-Xin Zhang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wen-Yuan Cao
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fei Li
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueping Zhou
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Gong-You Chen
- School of Agriculture and Biology, Shanghai Jiaotong University/Key Laboratory of Urban (South) by Ministry of Agriculture, Shanghai, China
| | - Xin-Zhong Cai
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
González JF, Degrassi G, Devescovi G, De Vleesschauwer D, Höfte M, Myers MP, Venturi V. A proteomic study of Xanthomonas oryzae pv. oryzae in rice xylem sap. J Proteomics 2012; 75:5911-9. [PMID: 22835776 DOI: 10.1016/j.jprot.2012.07.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/22/2012] [Accepted: 07/15/2012] [Indexed: 11/16/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is the second most important rice pathogen, causing a disease called bacterial leaf blight. Xoo colonizes and infects the vascular tissue resulting in tissue necrosis and wilting causing significant yield losses worldwide. In this study Xoo infected vascular fluid (xylem sap) was recovered and analyzed for secreted Xoo proteins. Three independent experiments resulted in the identification of 324 different proteins, 64 proteins were found in all three samples which included many of the known virulence-associated factors. In addition, 10 genes encoding for the identified proteins were inactivated and one mutant displayed statistically a significant loss in virulence when compared to the wild type Xoo, suggesting that a new virulence-associated factor has been revealed. The usefulness of this approach in understanding the lifestyle and unraveling the virulence-associated factors of phytopathogenic vascular bacteria is discussed.
Collapse
Affiliation(s)
- Juan F González
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Weise T, Kai M, Gummesson A, Troeger A, von Reuß S, Piepenborn S, Kosterka F, Sklorz M, Zimmermann R, Francke W, Piechulla B. Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10. Beilstein J Org Chem 2012; 8:579-96. [PMID: 22563356 PMCID: PMC3343284 DOI: 10.3762/bjoc.8.65] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/19/2012] [Indexed: 01/03/2023] Open
Abstract
Xanthomonas campestris is a phytopathogenic bacterium and causes many diseases of agricultural relevance. Volatiles were shown to be important in inter- and intraorganismic attraction and defense reactions. Recently it became apparent that also bacteria emit a plethora of volatiles, which influence other organisms such as invertebrates, plants and fungi. As a first step to study volatile-based bacterial-plant interactions, the emission profile of Xanthomonas c. pv. vesicatoria 85-10 was determined by using GC/MS and PTR-MS techniques. More than 50 compounds were emitted by this species, the majority comprising ketones and methylketones. The structure of the dominant compound, 10-methylundecan-2-one, was assigned on the basis of its analytical data, obtained by GC/MS and verified by comparison of these data with those of a synthetic reference sample. Application of commercially available decan-2-one, undecan-2-one, dodecan-2-one, and the newly synthesized 10-methylundecan-2-one in bi-partite Petri dish bioassays revealed growth promotions in low quantities (0.01 to 10 μmol), whereas decan-2-one at 100 μmol caused growth inhibitions of the fungus Rhizoctonia solani. Volatile emission profiles of the bacteria were different for growth on media (nutrient broth) with or without glucose.
Collapse
Affiliation(s)
- Teresa Weise
- University of Rostock, Institute of Biological Sciences, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nissan G, Manulis-Sasson S, Chalupowicz L, Teper D, Yeheskel A, Pasmanik-Chor M, Sessa G, Barash I. The type III effector HsvG of the gall-forming Pantoea agglomerans mediates expression of the host gene HSVGT. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:231-40. [PMID: 21995766 DOI: 10.1094/mpmi-06-11-0173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The type III effector HsvG of the gall-forming Pantoea agglomerans pv. gypsophilae is a DNA-binding protein that is imported to the host nucleus and involved in host specificity. The DNA-binding region of HsvG was delineated to 266 amino acids located within a secondary structure region near the N-terminus of the protein but did not display any homology to canonical DNA-binding motifs. A binding site selection procedure was used to isolate a target gene of HsvG, named HSVGT, in Gypsophila paniculata. HSVGT is a predicted acidic protein of the DnaJ family with 244 amino acids. It harbors characteristic conserved motifs of a eukaryotic transcription factor, including a bipartite nuclear localization signal, zinc finger, and leucine zipper DNA-binding motifs. Quantitative real-time polymerase chain reaction analysis demonstrated that HSVGT transcription is specifically induced in planta within 2 h after inoculation with the wild-type P. agglomerans pv. gypsophilae compared with the hsvG mutant. Induction of HSVGT reached a peak of sixfold at 4 h after inoculation and progressively declined thereafter. Gel-shift assay demonstrated that HsvG binds to the HSVGT promoter, indicating that HSVGT is a direct target of HsvG. Our results support the hypothesis that HsvG functions as a transcription factor in gypsophila.
Collapse
Affiliation(s)
- Gal Nissan
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Békés M, Drag M. Trojan horse strategies used by pathogens to influence the small ubiquitin-like modifier (SUMO) system of host eukaryotic cells. J Innate Immun 2012; 4:159-67. [PMID: 22223032 DOI: 10.1159/000335027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/08/2011] [Indexed: 01/23/2023] Open
Abstract
A remarkable feature of pathogenic organisms is their ability to utilize the cellular machinery of host cells to their advantage in facilitating their survival and propagation. Posttranslational modification of proteins offers a quick way to achieve changes in the localization, binding partners or functions of a target protein. It is no surprise then that pathogens have evolved multiple ways to interfere with host posttranslational modifications and hijack them for their own purposes. Recently, modification of proteins by small ubiquitin-like modifier has emerged as an important posttranslational modification regulating transcription, DNA repair and cell division, and literature has started to emerge documenting how it could be utilized by pathogenic bacteria and viruses during infection. In this brief review, we focus on the host small ubiquitin-like modifier (SUMO) system and how disease causing agents influence SUMO conjugation and deconjugation, highlighting the common theme of global hypoSUMOylation upon infection by pathogens.
Collapse
Affiliation(s)
- Miklós Békés
- Department of Biochemistry, New York University School of Medicine, New York, N.Y., USA
| | | |
Collapse
|
49
|
Caillaud MC, Piquerez SJM, Fabro G, Steinbrenner J, Ishaque N, Beynon J, Jones JDG. Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:252-65. [PMID: 21914011 DOI: 10.1111/j.1365-313x.2011.04787.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Filamentous phytopathogens form sophisticated intracellular feeding structures called haustoria in plant cells. Pathogen effectors are likely to play a role in the establishment and maintenance of haustoria in addition to their better-characterized role in suppressing plant defence. However, the specific mechanisms by which these effectors promote virulence remain unclear. To address this question, we examined changes in subcellular architecture using live-cell imaging during the compatible interaction between the oomycete Hyaloperonospora arabidopsidis (Hpa) and its host Arabidopsis. We monitored host-cell restructuring of subcellular compartments within plant mesophyll cells during haustoria ontogenesis. Live-cell imaging highlighted rearrangements in plant cell membranes upon infection, in particular to the tonoplast, which was located close to the extra-haustorial membrane surrounding the haustorium. We also investigated the subcellular localization patterns of Hpa RxLR effector candidates (HaRxLs) in planta. We identified two major classes of HaRxL effector based on localization: nuclear-localized effectors and membrane-localized effectors. Further, we identified a single effector, HaRxL17, that associated with the tonoplast in uninfected cells and with membranes around haustoria, probably the extra-haustorial membrane, in infected cells. Functional analysis of selected effector candidates in planta revealed that HaRxL17 enhances plant susceptibility. The roles of subcellular changes and effector localization, with specific reference to the potential role of HaRxL17 in plant cell membrane trafficking, are discussed with respect to Hpa virulence.
Collapse
Affiliation(s)
- Marie-Cécile Caillaud
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Type three effector gene distribution and sequence analysis provide new insights into the pathogenicity of plant-pathogenic Xanthomonas arboricola. Appl Environ Microbiol 2011; 78:371-84. [PMID: 22101042 DOI: 10.1128/aem.06119-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xanthomonas arboricola is a complex bacterial species which mainly attacks fruit trees and is responsible for emerging diseases in Europe. It comprises seven pathovars (X. arboricola pv. pruni, X. arboricola pv. corylina, X. arboricola pv. juglandis, X. arboricola pv. populi, X. arboricola pv. poinsettiicola, X. arboricola pv. celebensis, and X. arboricola pv. fragariae), each exhibiting characteristic disease symptoms and distinct host specificities. To better understand the factors underlying this ecological trait, we first assessed the phylogenetic relationships among a worldwide collection of X. arboricola strains by sequencing the housekeeping gene rpoD. This analysis revealed that strains of X. arboricola pathovar populi are divergent from the main X. arboricola cluster formed by all other strains. Then, we investigated the distribution of 53 type III effector (T3E) genes in a collection of 57 X. arboricola strains that are representative of the main X. arboricola cluster. Our results showed that T3E repertoires vary greatly between X. arboricola pathovars in terms of size. Indeed, X. arboricola pathovars pruni, corylina, and juglandis, which are responsible for economically important stone fruit and nut diseases in Europe, harbored the largest T3E repertoires, whereas pathovars poinsettiicola, celebensis, and fragariae harbored the smallest. We also identified several differences in T3E gene content between X. arboricola pathovars pruni, corylina, and juglandis which may account for their differing host specificities. Further, we examined the allelic diversity of eight T3E genes from X. arboricola pathovars. This analysis revealed very limited allelic variations at the different loci. Altogether, the data presented here provide new insights into the evolution of pathogenicity and host range of X. arboricola and are discussed in terms of emergence of new diseases within this bacterial species.
Collapse
|