1
|
Liu Z, You J, Zhao P, Wang X, Sun S, Wang X, Gu S, Xu Q. Metabolomics Profiling and Advanced Methodologies for Wheat Stress Research. Metabolites 2025; 15:123. [PMID: 39997748 PMCID: PMC11857233 DOI: 10.3390/metabo15020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Metabolomics is an omics technology that studies the types, quantities, and changes of endogenous metabolic substances in organisms affected by abiotic and biotic factors. BACKGROUND/OBJECTIVES Based on metabolomics, small molecule metabolites in biological organisms can be qualitatively and quantitatively analysed. This method analysis directly correlates with biological phenotypes, facilitating the interpretation of life conditions. Wheat (Triticum aestivum L.) is one of the major food crops in the world, and its quality and yield play important roles in safeguarding food security. METHODS This review elaborated on the significance of metabolomics research techniques and methods in enhancing wheat resilience against biotic and abiotic stresses. RESULTS Metabolomics plays an important role in identifying the metabolites in wheat that respond to diverse stresses. The integrated examination of metabolomics with other omics disciplines provides new insights and approaches for exploring resistance genes, understanding the genetic basis of wheat metabolism, and revealing the mechanisms involved in stress responses. CONCLUSIONS Emerging metabolomics research techniques to propose innovative avenues of research is important to enhance wheat resistance.
Collapse
Affiliation(s)
- Zhen Liu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (Z.L.); (P.Z.); (S.S.)
| | - Jiahui You
- Shandong Guocangjian Biotechnology Co., Ltd., Taian 271018, China; (J.Y.); (X.W.); (X.W.)
| | - Peiying Zhao
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (Z.L.); (P.Z.); (S.S.)
| | - Xianlin Wang
- Shandong Guocangjian Biotechnology Co., Ltd., Taian 271018, China; (J.Y.); (X.W.); (X.W.)
| | - Shufang Sun
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (Z.L.); (P.Z.); (S.S.)
| | - Xizhen Wang
- Shandong Guocangjian Biotechnology Co., Ltd., Taian 271018, China; (J.Y.); (X.W.); (X.W.)
| | - Shubo Gu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (Z.L.); (P.Z.); (S.S.)
| | - Qian Xu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (Z.L.); (P.Z.); (S.S.)
| |
Collapse
|
2
|
Wang Y, Wang M, Tian P, Ren D, Zhang H, Ma G, Duan J, Wang C, Feng W. Mechanism of Irrigation Before Low-Temperature Exposure on Mitigating the Reduction in Yield Loss and Spikelet Abortion at the Jointing Stage of Wheat. Antioxidants (Basel) 2024; 13:1451. [PMID: 39765780 PMCID: PMC11673176 DOI: 10.3390/antiox13121451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/28/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
The increasing frequency of low-temperature events in spring, driven by climate change, poses a serious threat to wheat production in Northern China. Understanding how low-temperature stress affects wheat yield and its components under varying moisture conditions, and exploring the role of irrigation before exposure to low temperatures, is crucial for food security and mitigating agricultural losses. In this study, four wheat cultivars-semi-spring (YZ4110, LK198) and semi-winter (ZM366, FDC21)-were tested across two years under different conditions of soil moisture (irrigation before low-temperature exposure (IBLT) and non-irrigation (NI)) and low temperatures (-2 °C, -4 °C, -6 °C, -8 °C, and -10 °C). The IBLT treatment effectively reduced leaf wilt, stem breakage, and spikelet desiccation. Low-temperature stress adversely impacted the yield per plant-including both original and regenerated yields-and yield components across all wheat varieties. Furthermore, a negative correlation was found between regenerated and original yields. Semi-spring varieties showed greater yield reduction than semi-winter varieties, with a more pronounced impact under NI compared to IBLT. This suggests that the compensatory regenerative yield is more significant in semi-spring varieties and under NI conditions. As low-temperature stress intensified, the primary determinant of yield loss shifted from grain number per spike (GNPS) to spike number per plant (SNPP) beyond a specific temperature threshold. Under NI, this threshold was -6 °C, while it was -8 °C under IBLT. Low-temperature stress led to variability in fruiting rate across different spike positions, with semi-spring varieties and NI conditions showing the most substantial reductions. Sensitivity to low temperatures varied across spikelet positions: Apical spikelets were the most sensitive, followed by basal, while central spikelets showed the largest reduction in grain number as stress levels increased, significantly contributing to reduced overall grain yield. Irrigation, variety, and low temperature had variable impacts on physiological indices in wheat. Structural equation modeling (SEM) analysis revealed that irrigation significantly enhanced wheat's response to cold tolerance indicators-such as superoxide dismutase (SOD), proline (Pro), and peroxidase (POD)-while reducing malondialdehyde (MDA) levels. Irrigation also improved photosynthesis (Pn), chlorophyll fluorescence (Fv/Fm), and leaf water content (LWC), thereby mitigating the adverse effects of low-temperature stress and supporting grain development in the central spike positions. In summary, IBLT effectively mitigates yield losses due to low-temperature freeze injuries, with distinct yield component contributions under varying stress conditions. Furthermore, this study clarifies the spatial distribution of grain responses across different spike positions under low temperatures, providing insights into the physiological mechanisms by which irrigation mitigates grain loss. These findings provide a theoretical and scientific basis for effective agricultural practices to counter spring freeze damage and predict wheat yield under low-temperature stress.
Collapse
Affiliation(s)
- Yangyang Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China;
| | - Mao Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- National Engineering Research Center for Wheat, Zhengzhou 450002, China
- Postdoctoral Station of Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Peipei Tian
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- National Engineering Research Center for Wheat, Zhengzhou 450002, China
| | - Dechao Ren
- Wheat Research Laboratory, Shangqiu Academy of Agriculture and Forestry Sciences, Shangqiu 476000, China
| | - Haiyan Zhang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- National Engineering Research Center for Wheat, Zhengzhou 450002, China
| | - Geng Ma
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- National Engineering Research Center for Wheat, Zhengzhou 450002, China
| | - Jianzhao Duan
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- National Engineering Research Center for Wheat, Zhengzhou 450002, China
| | - Chenyang Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- National Engineering Research Center for Wheat, Zhengzhou 450002, China
| | - Wei Feng
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- National Engineering Research Center for Wheat, Zhengzhou 450002, China
| |
Collapse
|
3
|
Pang B, Li J, Zhang R, Luo P, Wang Z, Shi S, Gao W, Li S. RNA-Seq and WGCNA Analyses Reveal Key Regulatory Modules and Genes for Salt Tolerance in Cotton. Genes (Basel) 2024; 15:1176. [PMID: 39336767 PMCID: PMC11431110 DOI: 10.3390/genes15091176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The problem of soil salinization has seriously hindered agricultural development. Cotton is a pioneering salinity-tolerant crop, so harvesting its key salinity-tolerant genes is important for improving crop salt tolerance. In this study, we analyzed changes in the transcriptome expression profiles of the salt-tolerant cultivar Lu Mian 28 (LM) and the salt-sensitive cultivar Zhong Mian Suo 12 (ZMS) after applying salt stress, and we constructed weighted gene co-expression networks (WGCNA). The results indicated that photosynthesis, amino acid biosynthesis, membrane lipid remodeling, autophagy, and ROS scavenging are key pathways in the salt stress response. Plant-pathogen interactions, plant hormone signal transduction, the mitogen-activated protein kinase (MAPK) signaling pathway, and carotenoid biosynthesis are the regulatory networks associated with these metabolic pathways that confer cotton salt tolerance. The gene-weighted co-expression network was used to screen four modules closely related to traits, identifying 114 transcription factors, including WRKYs, ERFs, NACs, bHLHs, bZIPs, and MYBs, and 11 hub genes. This study provides a reference for acquiring salt-tolerant cotton and abundant genetic resources for molecular breeding.
Collapse
Affiliation(s)
- Bo Pang
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Jing Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Ru Zhang
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Ping Luo
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Zhengrui Wang
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Shunyu Shi
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Wenwei Gao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Shengmei Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
- College of Biotechnology, Xinjiang Agricultural Vocational and Technical University, Changji 831100, China
| |
Collapse
|
4
|
Ozolina NV, Kapustina IS, Gurina VV, Spiridonova EV, Nurminsky VN. Comparison of the functions of plasma membrane and vacuolar membrane lipids in plant cell protection against hyperosmotic stress. PLANTA 2023; 258:39. [PMID: 37410253 DOI: 10.1007/s00425-023-04191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
MAIN CONCLUSION The comparison of the changes of the lipid content in plant cell boundary membranes demonstrates a substantial role of the vacuolar membrane in response to hyperosmotic stress. Comparison of variations in the lipid content of plant cell boundary membranes (vacuolar and plasma membranes) isolated from beet root tissues (Beta vulgaris L.) was conducted after the effect of hyperosmotic stress. Both types of membranes participate in the formation of protective mechanisms, but the role of the vacuolar membrane was considered as more essential. This conclusion was connected with more significant adaptive variations in the content and composition of sterols and fatty acids in the vacuolar membrane (although some of the adaptive variations, especially, in the composition of phospholipids and glycoglycerolipids were similar for both types of membranes). In the plasma membrane under hyperosmotic stress, the increase in the content of sphingolipids was noted that was not observed in the tonoplast.
Collapse
Affiliation(s)
- Natalia V Ozolina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Lermontov St. 132, Irkutsk, 664033, Russia.
| | - Irina S Kapustina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Lermontov St. 132, Irkutsk, 664033, Russia
| | - Veronika V Gurina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Lermontov St. 132, Irkutsk, 664033, Russia
| | - Ekaterina V Spiridonova
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Lermontov St. 132, Irkutsk, 664033, Russia
| | - Vadim N Nurminsky
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Lermontov St. 132, Irkutsk, 664033, Russia
| |
Collapse
|
5
|
Ahres M, Pálmai T, Kovács T, Kovács L, Lacek J, Vankova R, Galiba G, Borbély P. The Effect of White Light Spectrum Modifications by Excess of Blue Light on the Frost Tolerance, Lipid- and Hormone Composition of Barley in the Early Pre-Hardening Phase. PLANTS (BASEL, SWITZERLAND) 2022; 12:40. [PMID: 36616169 PMCID: PMC9823678 DOI: 10.3390/plants12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
It is well established that cold acclimation processes are highly influenced, apart from cold ambient temperatures, by light-dependent environmental factors. In this study we investigated whether an extra blue (B) light supplementation would be able to further improve the well-documented freezing tolerance enhancing effect of far-red (FR) enriched white (W) light. The impact of B and FR light supplementation to white light (WFRB) on hormone levels and lipid contents were determined in winter barley at moderate (15 °C) and low (5 °C) temperatures. Low R:FR ratio effectively induced frost tolerance in barley plantlets, but additional B light further enhanced frost hardiness at both temperatures. Supplementation of WFR (white light enriched with FR light) with B had a strong positive effect on abscisic acid accumulation while the suppression of salicylic acid and jasmonic acid levels were observed at low temperature which resembles the shade avoidance syndrome. We also observed clear lipidomic differences between the individual light and temperature treatments. WFRB light changed the total lipid content negatively, but monogalactosyldiacylglycerol (MGDG) content was increased, nonetheless. Our results prove that WFRB light can greatly influence phytohormone dynamics and lipid contents, which eventually leads to more efficient pre-hardening to avoid frost damage.
Collapse
Affiliation(s)
- Mohamed Ahres
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| | - Tamás Pálmai
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| | - Terézia Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary
| | - László Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary
| | - Jozef Lacek
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Radomira Vankova
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague, Czech Republic
| | - Gábor Galiba
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
- Department of Agronomy, GEORGIKON Campus, Hungarian University of Agricultural and Life Sciences, 8360 Keszthely, Hungary
| | - Péter Borbély
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| |
Collapse
|
6
|
Soualiou S, Duan F, Li X, Zhou W. CROP PRODUCTION UNDER COLD STRESS: An understanding of plant responses, acclimation processes, and management strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:47-61. [PMID: 36099808 DOI: 10.1016/j.plaphy.2022.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
In the context of climate change, the magnitude and frequency of temperature extremes (low and high temperatures) are increasing worldwide. Changes to the lower extremes of temperature, known as cold stress (CS), are one of the recurrent stressors in many parts of the world, severely limiting agricultural production. A series of plant reactions to CS could be generalized into morphological, physiological, and biochemical responses based on commonalities among crop plants. However, the differing originality of crops revealed varying degrees of sensitivity to cold and, therefore, exhibited large differences in these responses among the crops. This review discusses the vegetative and reproductive growth effects of CS and highlights the species-specific aspect of each growth stage whereby the reproductive growth CS appears more detrimental in rice and wheat, with marginal yield losses. To mitigate CS negative effects, crop plants have evolved cold-acclimation mechanisms (with differing capability), characterized by specific protein accumulation, membrane modification, regulation of signaling pathways, osmotic regulation, and induction of endogenous hormones. In addition, we reviewed a comprehensive account of management strategies for regulating tolerance mechanisms of crop plants under CS.
Collapse
Affiliation(s)
- Soualihou Soualiou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
7
|
Li Z, He F, Tong Z, Li X, Yang Q, Hannaway DB. Metabolomic changes in crown of alfalfa (Medicago sativa L.) during de-acclimation. Sci Rep 2022; 12:14977. [PMID: 36056096 DOI: 10.21203/rs.3.rs-1515778/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/29/2022] [Indexed: 05/28/2023] Open
Abstract
Alfalfa is a high-quality forage legume species that is widely cultivated at high latitudes worldwide. However, a decrease in cold tolerance in early spring seriously affects regrowth and persistence of alfalfa. There has been limited research on the metabolomic changes that occur during de-acclimation. In this study, a liquid chromatography-mass spectrometry system was used to compare the metabolites in two alfalfa cultivars during a simulated overwintering treatment. In four pairwise comparisons, 367 differential metabolites were identified, of which 31 were annotated according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Many of these metabolites were peptides, carbohydrates, and lipids. At the subclass level, 17 major pathways were revealed to be significantly enriched (P < 0.05). The main differential metabolites included amino acids, peptides and analogs, carbohydrates, and glycerol phosphocholines. A metabolomic analysis showed that the up-regulation of unsaturated fatty acids and amino acids as well as the enhancement of the related metabolic pathways might be an effective strategy for increasing alfalfa cold tolerance. Furthermore, glycerophospholipid metabolism affects alfalfa cold tolerance in early spring. Study results provide new insights about the changes in alfalfa metabolites that occur during de-acclimation, with potential implications for the selection and breeding of cold-tolerant cultivars.
Collapse
Affiliation(s)
- Zhensong Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Feng He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Zongyong Tong
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xianglin Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - David B Hannaway
- Department of Crop & Soil Science, Oregon State University, Corvallis, USA
| |
Collapse
|
8
|
Li Z, He F, Tong Z, Li X, Yang Q, Hannaway DB. Metabolomic changes in crown of alfalfa (Medicago sativa L.) during de-acclimation. Sci Rep 2022; 12:14977. [PMID: 36056096 PMCID: PMC9440230 DOI: 10.1038/s41598-022-19388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Alfalfa is a high-quality forage legume species that is widely cultivated at high latitudes worldwide. However, a decrease in cold tolerance in early spring seriously affects regrowth and persistence of alfalfa. There has been limited research on the metabolomic changes that occur during de-acclimation. In this study, a liquid chromatography-mass spectrometry system was used to compare the metabolites in two alfalfa cultivars during a simulated overwintering treatment. In four pairwise comparisons, 367 differential metabolites were identified, of which 31 were annotated according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Many of these metabolites were peptides, carbohydrates, and lipids. At the subclass level, 17 major pathways were revealed to be significantly enriched (P < 0.05). The main differential metabolites included amino acids, peptides and analogs, carbohydrates, and glycerol phosphocholines. A metabolomic analysis showed that the up-regulation of unsaturated fatty acids and amino acids as well as the enhancement of the related metabolic pathways might be an effective strategy for increasing alfalfa cold tolerance. Furthermore, glycerophospholipid metabolism affects alfalfa cold tolerance in early spring. Study results provide new insights about the changes in alfalfa metabolites that occur during de-acclimation, with potential implications for the selection and breeding of cold-tolerant cultivars.
Collapse
Affiliation(s)
- Zhensong Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Feng He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Zongyong Tong
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xianglin Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - David B Hannaway
- Department of Crop & Soil Science, Oregon State University, Corvallis, USA
| |
Collapse
|
9
|
Kong H, Xia W, Hou M, Ruan N, Li J, Zhu J. Cloning and function analysis of a Saussurea involucrata LEA4 gene. FRONTIERS IN PLANT SCIENCE 2022; 13:957133. [PMID: 35928707 PMCID: PMC9343949 DOI: 10.3389/fpls.2022.957133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Late embryogenesis abundant proteins (LEA) help adapt to adverse low-temperature environments. The Saussurea involucrate SiLEA4, which encodes a membrane protein, was significantly up-regulated in response to low temperature stress. Escherichia coli expressing SiLEA4 showed enhanced low-temperature tolerance, as evident from the significantly higher survival numbers and growth rates at low temperatures. Moreover, tomato strains expressing SiLEA4 had significantly greater freezing resistance, due to a significant increase in the antioxidase activities and proline content. Furthermore, they had higher yields due to higher water utilization and photosynthetic efficiency under the same water and fertilizer conditions. Thus, expressing SiLEA4 has multiple advantages: (1) mitigating chilling injury, (2) increasing yields, and (3) water-saving, which also indicates the great potential of the SiLEA4 for breeding applications.
Collapse
Affiliation(s)
- Hui Kong
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Wenwen Xia
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Mengjuan Hou
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Nan Ruan
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Jin Li
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Jianbo Zhu
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
10
|
Cheong BE, Yu D, Martinez-Seidel F, Ho WWH, Rupasinghe TWT, Dolferus R, Roessner U. The Effect of Cold Stress on the Root-Specific Lipidome of Two Wheat Varieties with Contrasting Cold Tolerance. PLANTS 2022; 11:plants11101364. [PMID: 35631789 PMCID: PMC9147729 DOI: 10.3390/plants11101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
Complex glycerolipidome analysis of wheat upon low temperature stress has been reported for above-ground tissues only. There are no reports on the effects of cold stress on the root lipidome nor on tissue-specific responses of cold stress wheat roots. This study aims to investigate the changes of lipid profiles in the different developmental zones of the seedling roots of two wheat varieties with contrasting cold tolerance exposed to chilling and freezing temperatures. We analyzed 273 lipid species derived from 21 lipid classes using a targeted profiling approach based on MS/MS data acquired from schedule parallel reaction monitoring assays. For both the tolerant Young and sensitive Wyalkatchem species, cold stress increased the phosphatidylcholine and phosphatidylethanolamine compositions, but decreased the monohexosyl ceramide compositions in the root zones. We show that the difference between the two varieties with contrasting cold tolerance could be attributed to the change in the individual lipid species, rather than the fluctuation of the whole lipid classes. The outcomes gained from this study may advance our understanding of the mechanisms of wheat adaptation to cold and contribute to wheat breeding for the improvement of cold-tolerance.
Collapse
Affiliation(s)
- Bo Eng Cheong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan Universiti, Kota Kinabalu 88400, Malaysia
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Correspondence: ; Tel.: +60-88-320000 (ext. 8530)
| | - Dingyi Yu
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Protein Chemistry and Metabolism Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Federico Martinez-Seidel
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - William Wing Ho Ho
- Advanced Genomics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | | | - Rudy Dolferus
- CSIRO Agriculture & Food, GPO Box 1700, Canberra, ACT 2601, Australia;
| | - Ute Roessner
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
11
|
Xu Y, Fu X. Reprogramming of Plant Central Metabolism in Response to Abiotic Stresses: A Metabolomics View. Int J Mol Sci 2022; 23:5716. [PMID: 35628526 PMCID: PMC9143615 DOI: 10.3390/ijms23105716] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Abiotic stresses rewire plant central metabolism to maintain metabolic and energy homeostasis. Metabolites involved in the plant central metabolic network serve as a hub for regulating carbon and energy metabolism under various stress conditions. In this review, we introduce recent metabolomics techniques used to investigate the dynamics of metabolic responses to abiotic stresses and analyze the trend of publications in this field. We provide an updated overview of the changing patterns in central metabolic pathways related to the metabolic responses to common stresses, including flooding, drought, cold, heat, and salinity. We extensively review the common and unique metabolic changes in central metabolism in response to major abiotic stresses. Finally, we discuss the challenges and some emerging insights in the future application of metabolomics to study plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xinyu Fu
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Association mapping of autumn-seeded rye (Secale cereale L.) reveals genetic linkages between genes controlling winter hardiness and plant development. Sci Rep 2022; 12:5793. [PMID: 35388069 PMCID: PMC8986816 DOI: 10.1038/s41598-022-09582-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/25/2022] [Indexed: 12/23/2022] Open
Abstract
Winter field survival (WFS) in autumn-seeded winter cereals is a complex trait associated with low temperature tolerance (LTT), prostrate growth habit (PGH), and final leaf number (FLN). WFS and the three sub-traits were analyzed by a genome-wide association study of 96 rye (Secale cereal L.) genotypes of different origins and winter-hardiness levels. A total of 10,244 single nucleotide polymorphism (SNP) markers were identified by genotyping by sequencing and 259 marker-trait-associations (MTAs; p < 0.01) were revealed by association mapping. The ten most significant SNPs (p < 1.49e−04) associated with WFS corresponded to nine strong candidate genes: Inducer of CBF Expression 1 (ICE1), Cold-regulated 413-Plasma Membrane Protein 1 (COR413-PM1), Ice Recrystallization Inhibition Protein 1 (IRIP1), Jasmonate-resistant 1 (JAR1), BIPP2C1-like protein phosphatase, Chloroplast Unusual Positioning Protein-1 (CHUP1), FRIGIDA-like 4 (FRL4-like) protein, Chalcone Synthase 2 (CHS2), and Phenylalanine Ammonia-lyase 8 (PAL8). Seven of the candidate genes were also significant for one or several of the sub-traits supporting the hypothesis that WFS, LTT, FLN, and PGH are genetically interlinked. The winter-hardy rye genotypes generally carried additional allele variants for the strong candidate genes, which suggested allele diversity was a major contributor to cold acclimation efficiency and consistent high WFS under varying field conditions.
Collapse
|
13
|
Laschke L, Schütz V, Schackow O, Sicker D, Hennig L, Hofmann D, Dörmann P, Schulz M. Survival of Plants During Short-Term BOA-OH Exposure: ROS Related Gene Expression and Detoxification Reactions Are Accompanied With Fast Membrane Lipid Repair in Root Tips. J Chem Ecol 2022; 48:219-239. [PMID: 34988771 PMCID: PMC8881443 DOI: 10.1007/s10886-021-01337-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022]
Abstract
For the characterization of BOA-OH insensitive plants, we studied the time-dependent effects of the benzoxazolinone-4/5/6/7-OH isomers on maize roots. Exposure of Zea mays seedlings to 0.5 mM BOA-OH elicits root zone-specific reactions by the formation of dark rings and spots in the zone of lateral roots, high catalase activity on root hairs, and no visible defense reaction at the root tip. We studied BOA-6-OH- short-term effects on membrane lipids and fatty acids in maize root tips in comparison to the benzoxazinone-free species Abutilon theophrasti Medik. Decreased contents of phosphatidylinositol in A. theophrasti and phosphatidylcholine in maize were found after 10-30 min. In the youngest tissue, α-linoleic acid (18:2), decreased considerably in both species and recovered within one hr. Disturbances in membrane phospholipid contents were balanced in both species within 30-60 min. Triacylglycerols (TAGs) were also affected, but levels of maize diacylglycerols (DAGs) were almost unchanged, suggesting a release of fatty acids for membrane lipid regeneration from TAGs while resulting DAGs are buildings blocks for phospholipid reconstitution, concomitant with BOA-6-OH glucosylation. Expression of superoxide dismutase (SOD2) and of ER-bound oleoyl desaturase (FAD2-2) genes were contemporaneously up regulated in contrast to the catalase CAT1, while CAT3 was arguably involved at a later stage of the detoxification process. Immuno-responses were not elicited in short-terms, since the expression of NPR1, POX12 were barely affected, PR4 after 6 h with BOA-4/7-OH and PR1 after 24 h with BOA-5/6-OH. The rapid membrane recovery, reactive oxygen species, and allelochemical detoxification may be characteristic for BOA-OH insensitive plants.
Collapse
Affiliation(s)
- Laura Laschke
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115, Bonn, Germany
| | - Vadim Schütz
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115, Bonn, Germany
| | - Oliver Schackow
- Institute of Organic Chemistry, Institut Für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Dieter Sicker
- Institute of Organic Chemistry, Institut Für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Lothar Hennig
- Institute of Organic Chemistry, Institut Für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Diana Hofmann
- IBG-3: Agrosphäre, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Peter Dörmann
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115, Bonn, Germany
| | - Margot Schulz
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115, Bonn, Germany.
| |
Collapse
|
14
|
Sadura I, Janeczko A. Brassinosteroids and the Tolerance of Cereals to Low and High Temperature Stress: Photosynthesis and the Physicochemical Properties of Cell Membranes. Int J Mol Sci 2021; 23:342. [PMID: 35008768 PMCID: PMC8745458 DOI: 10.3390/ijms23010342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cereals, which belong to the Poaceae family, are the most economically important group of plants. Among abiotic stresses, temperature stresses are a serious and at the same time unpredictable problem for plant production. Both frost (in the case of winter cereals) and high temperatures in summer (especially combined with a water deficit in the soil) can result in significant yield losses. Plants have developed various adaptive mechanisms that have enabled them to survive periods of extreme temperatures. The processes of acclimation to low and high temperatures are controlled, among others, by phytohormones. The current review is devoted to the role of brassinosteroids (BR) in cereal acclimation to temperature stress with special attention being paid to the impact of BR on photosynthesis and the membrane properties. In cereals, the exogenous application of BR increases frost tolerance (winter rye, winter wheat), tolerance to cold (maize) and tolerance to a high temperature (rice). Disturbances in BR biosynthesis and signaling are accompanied by a decrease in frost tolerance but unexpectedly an improvement of tolerance to high temperature (barley). BR exogenous treatment increases the efficiency of the photosynthetic light reactions under various temperature conditions (winter rye, barley, rice), but interestingly, BR mutants with disturbances in BR biosynthesis are also characterized by an increased efficiency of PSII (barley). BR regulate the sugar metabolism including an increase in the sugar content, which is of key importance for acclimation, especially to low temperatures (winter rye, barley, maize). BR either participate in the temperature-dependent regulation of fatty acid biosynthesis or control the processes that are responsible for the transport or incorporation of the fatty acids into the membranes, which influences membrane fluidity (and subsequently the tolerance to high/low temperatures) (barley). BR may be one of the players, along with gibberellins or ABA, in acquiring tolerance to temperature stress in cereals (particularly important for the acclimation of cereals to low temperature).
Collapse
Affiliation(s)
- Iwona Sadura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland
| | - Anna Janeczko
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland
| |
Collapse
|
15
|
Weigle AT, Carr M, Shukla D. Impact of Increased Membrane Realism on Conformational Sampling of Proteins. J Chem Theory Comput 2021; 17:5342-5357. [PMID: 34339605 DOI: 10.1021/acs.jctc.1c00276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The realism and accuracy of lipid bilayer simulations through molecular dynamics (MD) are heavily dependent on the lipid composition. While the field is pushing toward implementing more heterogeneous and realistic membrane compositions, a lack of high-resolution lipidomic data prevents some membrane protein systems from being modeled with the highest level of realism. Given the additional diversity of real-world cellular membranes and protein-lipid interactions, it is still not fully understood how altering membrane complexity affects modeled membrane protein functions or if it matters over long-timescale simulations. This is especially true for organisms whose membrane environments have little to no computational study, such as the plant plasma membrane. Tackling these issues in tandem, a generalized, realistic, and asymmetric plant plasma membrane with more than 10 different lipid species is constructed herein. Classical MD simulations of pure membrane constructs were performed to evaluate how altering the compositional complexity of the membrane impacted the plant membrane properties. The apo form of a plant sugar transporter, OsSWEET2b, was inserted into membrane models where lipid diversity was calculated in either a size-dependent or size-independent manner. An adaptive sampling simulation regime validated by Markov-state models was performed to capture the gating dynamics of OsSWEET2b in each of these membrane constructs. In comparison to previous OsSWEET2b simulations performed in a pure POPC bilayer, we confirm that simulations performed within a native-like membrane composition alter the stabilization of apo OsSWEET2b conformational states by ∼1 kcal/mol. The free-energy barriers of intermediate conformational states decrease when realistic membrane complexity is simplified, albeit roughly within sampling error, suggesting that protein-specific responses to membranes differ due to altered packing caused by compositional fluctuations. This work serves as a case study where a more realistic bilayer composition makes unbiased conformational sampling easier to achieve than with simplified bilayers.
Collapse
Affiliation(s)
- Austin T Weigle
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew Carr
- Independent Software Development Provider310 East Marlette Avenue, Phoenix, Arizona 85012, United States
| | - Diwakar Shukla
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Hassan MA, Xiang C, Farooq M, Muhammad N, Yan Z, Hui X, Yuanyuan K, Bruno AK, Lele Z, Jincai L. Cold Stress in Wheat: Plant Acclimation Responses and Management Strategies. FRONTIERS IN PLANT SCIENCE 2021; 12:676884. [PMID: 34305976 PMCID: PMC8299469 DOI: 10.3389/fpls.2021.676884] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/28/2021] [Indexed: 05/02/2023]
Abstract
Unpredicted variability in temperature is associated with frequent extreme low-temperature events. Wheat is a leading crop in fulfilling global food requirements. Climate-driven temperature extremes influence the vegetative and reproductive growth of wheat, followed by a decrease in yield. This review describes how low temperature induces a series of modifications in the morphophysiological, biochemical, and molecular makeup of wheat and how it is perceived. To cope with these modifications, crop plants turn on their cold-tolerance mechanisms, characterized by accumulating soluble carbohydrates, signaling molecules, and cold tolerance gene expressions. The review also discusses the integrated management approaches to enhance the performance of wheat plants against cold stress. In this review, we propose strategies for improving the adaptive capacity of wheat besides alleviating risks of cold anticipated with climate change.
Collapse
Affiliation(s)
| | - Chen Xiang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Noor Muhammad
- Agronomy (Forage Production) Section, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Zhang Yan
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xu Hui
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Ke Yuanyuan
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | | | - Zhang Lele
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Li Jincai
- School of Agronomy, Anhui Agricultural University, Hefei, China
- Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, China
| |
Collapse
|
17
|
Loskutov IG, Khlestkina EK. Wheat, Barley, and Oat Breeding for Health Benefit Components in Grain. PLANTS (BASEL, SWITZERLAND) 2021; 10:E86. [PMID: 33401643 PMCID: PMC7823506 DOI: 10.3390/plants10010086] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023]
Abstract
Cereal grains provide half of the calories consumed by humans. In addition, they contain important compounds beneficial for health. During the last years, a broad spectrum of new cereal grain-derived products for dietary purposes emerged on the global food market. Special breeding programs aimed at cultivars utilizable for these new products have been launched for both the main sources of staple foods (such as rice, wheat, and maize) and other cereal crops (oat, barley, sorghum, millet, etc.). The breeding paradigm has been switched from traditional grain quality indicators (for example, high breadmaking quality and protein content for common wheat or content of protein, lysine, and starch for barley and oat) to more specialized ones (high content of bioactive compounds, vitamins, dietary fibers, and oils, etc.). To enrich cereal grain with functional components while growing plants in contrast to the post-harvesting improvement of staple foods with natural and synthetic additives, the new breeding programs need a source of genes for the improvement of the content of health benefit components in grain. The current review aims to consider current trends and achievements in wheat, barley, and oat breeding for health-benefiting components. The sources of these valuable genes are plant genetic resources deposited in genebanks: landraces, rare crop species, or even wild relatives of cultivated plants. Traditional plant breeding approaches supplemented with marker-assisted selection and genetic editing, as well as high-throughput chemotyping techniques, are exploited to speed up the breeding for the desired genotуpes. Biochemical and genetic bases for the enrichment of the grain of modern cereal crop cultivars with micronutrients, oils, phenolics, and other compounds are discussed, and certain cases of contributions to special health-improving diets are summarized. Correlations between the content of certain bioactive compounds and the resistance to diseases or tolerance to certain abiotic stressors suggest that breeding programs aimed at raising the levels of health-benefiting components in cereal grain might at the same time match the task of developing cultivars adapted to unfavorable environmental conditions.
Collapse
Affiliation(s)
- Igor G. Loskutov
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia;
| | | |
Collapse
|
18
|
Kovács T, Ahres M, Pálmai T, Kovács L, Uemura M, Crosatti C, Galiba G. Decreased R:FR Ratio in Incident White Light Affects the Composition of Barley Leaf Lipidome and Freezing Tolerance in a Temperature-Dependent Manner. Int J Mol Sci 2020; 21:ijms21207557. [PMID: 33066276 PMCID: PMC7593930 DOI: 10.3390/ijms21207557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
In cereals, C-repeat binding factor genes have been defined as key components of the light quality-dependent regulation of frost tolerance by integrating phytochrome-mediated light and temperature signals. This study elucidates the differences in the lipid composition of barley leaves illuminated with white light or white light supplemented with far-red light at 5 or 15 °C. According to LC-MS analysis, far-red light supplementation increased the amount of monogalactosyldiacylglycerol species 36:6, 36:5, and 36:4 after 1 day at 5 °C, and 10 days at 15 °C resulted in a perturbed content of 38:6 species. Changes were observed in the levels of phosphatidylethanolamine, and phosphatidylserine under white light supplemented with far-red light illumination at 15 °C, whereas robust changes were observed in the amount of several phosphatidylserine species at 5 °C. At 15 °C, the amount of some phosphatidylglycerol species increased as a result of white light supplemented with far-red light illumination after 1 day. The ceramide (42:2)-3 content increased regardless of the temperature. The double-bond index of phosphatidylglycerol, phosphatidylserine, phosphatidylcholine ceramide together with total double-bond index changed when the plant was grown at 15 °C as a function of white light supplemented with far-red light. white light supplemented with far-red light increased the monogalactosyldiacylglycerol/diacylglycerol ratio as well. The gene expression changes are well correlated with the alterations in the lipidome.
Collapse
Affiliation(s)
- Terézia Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary;
- Department of Plant Biology, University of Szeged, 6720 Szeged, Hungary
- Correspondence:
| | - Mohamed Ahres
- Centre for Agricultural Research, Agricultural Institute, 2462 Martonvásár, Hungary; (M.A.); (T.P.); (G.G.)
- Festetics Doctoral School, Georgikon Campus, Szent István University, H-2100 Gödöllő, Hungary
| | - Tamás Pálmai
- Centre for Agricultural Research, Agricultural Institute, 2462 Martonvásár, Hungary; (M.A.); (T.P.); (G.G.)
| | - László Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary;
| | - Matsuo Uemura
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| | - Cristina Crosatti
- CREA Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, 29017 San Protaso, Italy;
| | - Gabor Galiba
- Centre for Agricultural Research, Agricultural Institute, 2462 Martonvásár, Hungary; (M.A.); (T.P.); (G.G.)
- Festetics Doctoral School, Georgikon Campus, Szent István University, H-2100 Gödöllő, Hungary
| |
Collapse
|
19
|
Fabri JHTM, de Sá NP, Malavazi I, Del Poeta M. The dynamics and role of sphingolipids in eukaryotic organisms upon thermal adaptation. Prog Lipid Res 2020; 80:101063. [PMID: 32888959 DOI: 10.1016/j.plipres.2020.101063] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023]
Abstract
All living beings have an optimal temperature for growth and survival. With the advancement of global warming, the search for understanding adaptive processes to climate changes has gained prominence. In this context, all living beings monitor the external temperature and develop adaptive responses to thermal variations. These responses ultimately change the functioning of the cell and affect the most diverse structures and processes. One of the first structures to detect thermal variations is the plasma membrane, whose constitution allows triggering of intracellular signals that assist in the response to temperature stress. Although studies on this topic have been conducted, the underlying mechanisms of recognizing thermal changes and modifying cellular functioning to adapt to this condition are not fully understood. Recently, many reports have indicated the participation of sphingolipids (SLs), major components of the plasma membrane, in the regulation of the thermal stress response. SLs can structurally reinforce the membrane or/and send signals intracellularly to control numerous cellular processes, such as apoptosis, cytoskeleton polarization, cell cycle arresting and fungal virulence. In this review, we discuss how SLs synthesis changes during both heat and cold stresses, focusing on fungi, plants, animals and human cells. The role of lysophospholipids is also discussed.
Collapse
Affiliation(s)
- João Henrique Tadini Marilhano Fabri
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA; Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Nivea Pereira de Sá
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA; Veterans Administration Medical Center, Northport, New York, USA.
| |
Collapse
|
20
|
Ozolina NV, Gurina VV, Nesterkina IS, Nurminsky VN. Variations in the content of tonoplast lipids under abiotic stress. PLANTA 2020; 251:107. [PMID: 32440739 DOI: 10.1007/s00425-020-03399-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The vacuolar membrane is an essential component in protecting the plant cell from stress factors. Different variations in the tonoplast lipid content, which depend on the type of stress, have been reviewed. The lipid content of vacuolar membranes of beet roots (Beta vulgaris L.) under hypoosmotic, hyperosmotic and oxidative types of stress has been studied. These types of stress induce variations in the content of almost all the classes of studied lipids (phospholipids, glycoglycerolipids, sterols and fatty acids). The variations, which are characteristic of a single stress, include the variations (i) in the content of individual glycoglycerolipids and in their total content, (ii) in the total content of sterols, and (iii) in the ratio of content of phosphatidylcholine/phosphatidylethanolamine in the scope of tonoplast phospholipids. Variations observed under all of the types of stress under scrutiny include (i) variations in the content of fatty acids of tonoplast lipids, (ii) some decrease in the content of phosphatidic acid and phosphatidylethanolamine, and (iii) variations in the content of individual sterols. Stigmasterol, campesterol, as well as the stigmasterol/sitosterol ratio increased in varying degrees under all of the types of stress. The most substantial variations have been observed in the content of sterols under abiotic stress. This is probably due to role of sterols in regulation of such membrane characteristics as permeability and microviscosity. In our opinion, sterols may represent one of the main components of tonoplast adaptive mechanisms.
Collapse
Affiliation(s)
- Natalia V Ozolina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132, Lermontov St., Irkutsk, 664033, Russia
| | - Veronika V Gurina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132, Lermontov St., Irkutsk, 664033, Russia.
| | - Irina S Nesterkina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132, Lermontov St., Irkutsk, 664033, Russia
| | - Vadim N Nurminsky
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132, Lermontov St., Irkutsk, 664033, Russia
| |
Collapse
|
21
|
Rani A, Devi P, Jha UC, Sharma KD, Siddique KHM, Nayyar H. Developing Climate-Resilient Chickpea Involving Physiological and Molecular Approaches With a Focus on Temperature and Drought Stresses. FRONTIERS IN PLANT SCIENCE 2020; 10:1759. [PMID: 32161601 PMCID: PMC7052492 DOI: 10.3389/fpls.2019.01759] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/16/2019] [Indexed: 05/19/2023]
Abstract
Chickpea is one of the most economically important food legumes, and a significant source of proteins. It is cultivated in more than 50 countries across Asia, Africa, Europe, Australia, North America, and South America. Chickpea production is limited by various abiotic stresses (cold, heat, drought, salt, etc.). Being a winter-season crop in northern south Asia and some parts of the Australia, chickpea faces low-temperature stress (0-15°C) during the reproductive stage that causes substantial loss of flowers, and thus pods, to inhibit its yield potential by 30-40%. The winter-sown chickpea in the Mediterranean, however, faces cold stress at vegetative stage. In late-sown environments, chickpea faces high-temperature stress during reproductive and pod filling stages, causing considerable yield losses. Both the low and the high temperatures reduce pollen viability, pollen germination on the stigma, and pollen tube growth resulting in poor pod set. Chickpea also experiences drought stress at various growth stages; terminal drought, along with heat stress at flowering and seed filling can reduce yields by 40-45%. In southern Australia and northern regions of south Asia, lack of chilling tolerance in cultivars delays flowering and pod set, and the crop is usually exposed to terminal drought. The incidences of temperature extremes (cold and heat) as well as inconsistent rainfall patterns are expected to increase in near future owing to climate change thereby necessitating the development of stress-tolerant and climate-resilient chickpea cultivars having region specific traits, which perform well under drought, heat, and/or low-temperature stress. Different approaches, such as genetic variability, genomic selection, molecular markers involving quantitative trait loci (QTLs), whole genome sequencing, and transcriptomics analysis have been exploited to improve chickpea production in extreme environments. Biotechnological tools have broadened our understanding of genetic basis as well as plants' responses to abiotic stresses in chickpea, and have opened opportunities to develop stress tolerant chickpea.
Collapse
Affiliation(s)
- Anju Rani
- Department of Botany, Panjab University, Chandigarh, India
| | - Poonam Devi
- Department of Botany, Panjab University, Chandigarh, India
| | - Uday Chand Jha
- Department of Crop Improvement Division, Indian Institute of Pulses Research, Kanpur, India
| | - Kamal Dev Sharma
- Department of Agricultural Biotechnology, Himachal Pradesh Agricultural University, Palampur, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
22
|
Cheong BE, Ho WWH, Biddulph B, Wallace X, Rathjen T, Rupasinghe TWT, Roessner U, Dolferus R. Phenotyping reproductive stage chilling and frost tolerance in wheat using targeted metabolome and lipidome profiling. Metabolomics 2019; 15:144. [PMID: 31630279 PMCID: PMC6800866 DOI: 10.1007/s11306-019-1606-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Frost events lead to A$360 million of yield losses annually to the Australian wheat industry, making improvement of chilling and frost tolerance an important trait for breeding. OBJECTIVES This study aimed to use metabolomics and lipidomics to explore genetic variation in acclimation potential to chilling and to identify metabolite markers for chilling tolerance in wheat. METHODS We established a controlled environment screening assay that is able to reproduce field rankings of wheat germplasm for chilling and frost tolerance. This assay, together with targeted metabolomics and lipidomics approaches, were used to compare metabolite and lipid levels in flag leaves of two wheat varieties with contrasting chilling tolerance. RESULTS The sensitive variety Wyalkatchem showed a strong reduction in amino acids after the first cold night, followed by accumulation of osmolytes such as fructose, glucose, putrescine and shikimate over a 4-day period. Accumulation of osmolytes is indicative of acclimation to water stress in Wyalkatchem. This response was not observed for tolerant variety Young. The two varieties also displayed significant differences in lipid accumulation. Variation in two lipid clusters, resulted in a higher unsaturated to saturated lipid ratio in Young after 4 days cold treatment and the lipids PC(34:0), PC(34:1), PC(35:1), PC(38:3), and PI(36:4) were the main contributors to the unsaturated to saturated ratio change. This indicates that Young may have superior ability to maintain membrane fluidity following cold exposure, thereby avoiding membrane damage and water stress observed for Wyalkatchem. CONCLUSION Our study suggests that metabolomics and lipidomics markers could be used as an alternative phenotyping method to discriminate wheat varieties with differences in cold acclimation.
Collapse
Affiliation(s)
- Bo Eng Cheong
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010 Australia
| | - William Wing Ho Ho
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010 Australia
- Melbourne Integrative Genomics, Schools of Mathematics and Statistics and of BioSciences, The University of Melbourne, Melbourne, VIC 3010 Australia
| | - Ben Biddulph
- Department of Primary Industries and Regional Development, 3 Baron Hay Court, South Perth, WA 6151 Australia
| | - Xiaomei Wallace
- CSIRO Agriculture & Food, GPO Box 1700, Canberra, ACT 2601 Australia
| | - Tina Rathjen
- CSIRO Agriculture & Food, GPO Box 1700, Canberra, ACT 2601 Australia
| | - Thusitha W. T. Rupasinghe
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Melbourne, VIC 3010 Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010 Australia
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Melbourne, VIC 3010 Australia
| | - Rudy Dolferus
- CSIRO Agriculture & Food, GPO Box 1700, Canberra, ACT 2601 Australia
| |
Collapse
|
23
|
Si T, Wang X, Huang M, Cai J, Zhou Q, Dai T, Jiang D. Double benefits of mechanical wounding in enhancing chilling tolerance and lodging resistance in wheat plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:813-824. [PMID: 30977948 DOI: 10.1111/plb.12995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Chilling and lodging are major threats to wheat production. However, strategies that can be used to effectively mitigate the adverse effects of these threats are still far from clear. Mechanical wounding is a traditional agronomic measure, whereas information about the role it plays in wheat chilling and lodging is scant. The aim of the present study was to investigate mechanisms underlying the protective roles of mechanical wounding in alleviating damage from chilling at jointing stage and enhancing lodging resistance after anthesis of winter wheat (Triticum aestivum L.). Our data show that net photosynthesis rate, maximum photochemical efficiency of photosystem II, activity of the antioxidant enzymes and osmolytes were significantly increased in the latest fully expanded leaves of wounded plants under chilling. Wounding also reduced hydrogen peroxide accumulation, electrolyte leakage and water loss in wounded plants. Moreover, mechanical wounding significantly reduced the length but increased the diameter and wall thickness of the basal second internode of the main stem. Quantitative and histochemical analysis further indicated that wounding increased lignin accumulation and activity of enzymes involved in lignin synthesis, which resulted in increased mechanical strength and the lodging resistance index in the main stem. We conclude from our data that mechanical wounding confers both cold tolerance by alleviating the damage caused by chilling at jointing stage and lodging resistance after anthesis of wheat plants.
Collapse
Affiliation(s)
- T Si
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
- Dry Farming Technology Key Laboratory of Shandong Province/College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - X Wang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - M Huang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - J Cai
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Q Zhou
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - T Dai
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - D Jiang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Valitova J, Renkova A, Mukhitova F, Dmitrieva S, Beckett RP, Minibayeva FV. Membrane sterols and genes of sterol biosynthesis are involved in the response of Triticum aestivum seedlings to cold stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:452-459. [PMID: 31421442 DOI: 10.1016/j.plaphy.2019.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 05/18/2023]
Abstract
Cold stress can significantly alter the composition and functioning of the major membrane lipids in plants. However, the roles of the sterol component of plant membranes in stress tolerance remain unclear. In the work presented here we investigated the role of sterols in the response of wheat to cold stress. Initial experiments demonstrated that the roots and leaves of wheat seedlings are differentially sensitive to low positive temperatures. In the roots, cold stress induced disturbance of membrane integrity and accumulation of ROS followed by the induction of autophagy. The absence of such changes in leaves suggests that in wheat, the roots are more sensitive to cold than the leaves. The roots display a time-dependent parabolic pattern of cold stress response, characterized by raised levels of sterols and markers of oxidative stress during short-term treatment, and a decline of these parameters after prolonged treatment. MβCD-induced sterol depletion aggravated the negative effects of cold on the roots. In the leaves the changes also displayed parabolic patterns, with significant changes occurring in 24-ethyl sterols and major PLs. Constitutively high levels of sterols, glycolipids and PLs, and up-regulation of TaSMTs in the leaves may provide membrane stability and cold tolerance. Taken together, results suggest that sterols play important roles in the response of wheat seedlings to cold stress.
Collapse
Affiliation(s)
- Julia Valitova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, Kazan, 420111, Russia.
| | - Albina Renkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, Kazan, 420111, Russia.
| | - Fakhima Mukhitova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, Kazan, 420111, Russia.
| | - Svetlana Dmitrieva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, Kazan, 420111, Russia.
| | - Richard P Beckett
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa.
| | - Farida V Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, Kazan, 420111, Russia; Kazan (Volga Region) Federal University, Kremlevskaya Str 18, Kazan, 420008, Russia.
| |
Collapse
|
25
|
Saia S, Fragasso M, De Vita P, Beleggia R. Metabolomics Provides Valuable Insight for the Study of Durum Wheat: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3069-3085. [PMID: 30829031 DOI: 10.1021/acs.jafc.8b07097] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Metabolomics is increasingly being applied in various fields offering a highly informative tool for high-throughput diagnostics. However, in plant sciences, metabolomics is underused, even though plant studies are relatively easy and cheap when compared to those on humans and animals. Despite their importance for human nutrition, cereals, and especially wheat, remain understudied from a metabolomics point of view. The metabolomics of durum wheat has been essentially neglected, although its genetic structure allows the inference of common mechanisms that can be extended to other wheat and cereal species. This review covers the present achievements in durum wheat metabolomics highlighting the connections with the metabolomics of other cereal species (especially bread wheat). We discuss the metabolomics data from various studies and their relationships to other "-omics" sciences, in terms of wheat genetics, abiotic and biotic stresses, beneficial microbes, and the characterization and use of durum wheat as feed, food, and food ingredient.
Collapse
Affiliation(s)
- Sergio Saia
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 11 per Torino , Km 2,5, 13100 Vercelli , Italy
| | - Mariagiovanna Fragasso
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| |
Collapse
|
26
|
Miki Y, Takahashi D, Kawamura Y, Uemura M. Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation. J Proteomics 2018; 197:71-81. [PMID: 30447334 DOI: 10.1016/j.jprot.2018.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 01/19/2023]
Abstract
Freezing stress is one of the most important limiting factors of plant survival. Plants have developed a freezing adaptation mechanism upon sensing low temperatures (cold acclimation). Compositional changes in the plasma membrane, one of the initial sites of freezing injury, is prerequisite of achieving cold acclimation and have been investigated in several plant species. Conversely, the cold dehardening process at elevated temperatures (de-acclimation) has not yet been fully characterized and few studies have addressed the importance of the plasma membrane in the de-acclimation process. In the present study, we conducted shotgun proteomics with label-free semiquantification on plasma membrane fractions of Arabidopsis leaves during cold acclimation and de-acclimation. We consequently obtained a list of 873 proteins with significantly changed proteins in response to the two processes. Although the cold-acclimation-responsive proteins were globally returned to non-acclimated levels by de-acclimation, several representative cold-acclimation-responsive proteins tended to remain at higher abundance during de-acclimation process. Taken together, our results suggest plants deharden right after cold acclimation to restart growth and development but some cold-acclimation-induced changes of the plasma membrane may be maintained under de-acclimation to cope with the threat of sudden freezing during de-acclimation process. SIGNIFICANCE: Plant freezing tolerance can be enhanced by low temperature treatment (cold acclimation), while elevated temperatures right after cold acclimation can result in the dehardening of freezing tolerance (de-acclimation). However, the de-acclimation process, particularly its relevance to the plasma membrane as the primary site of freezing injury, has not been elucidated. In the present study, a comprehensive proteomic analysis of the plasma membrane during cold acclimation and de-acclimation was carried out as a first step to elucidating how plants respond to rising temperatures. Cold acclimation induced a number of proteomic changes as reported in previous studies, but most proteins, in general, immediately returned to NA levels during de-acclimation treatment for two days. However, the abundances of stress-related proteins (e.g. LTI29, COR78 and TIL) decreased slower than other functional proteins during de-acclimation. Therefore, plants harden during cold acclimation by aborting growth and development and accumulating stress-responsive proteins but seem to deharden quickly under subsequent elevated temperature to resume these processes while guarding against the threat of sudden temperature drops.
Collapse
Affiliation(s)
- Yushi Miki
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam D-14476, Germany
| | - Yukio Kawamura
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Matsuo Uemura
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
27
|
Lintunen A, Lindfors L, Nikinmaa E, Hölttä T. Xylem diameter changes during osmotic stress, desiccation and freezing in Pinus sylvestris and Populus tremula. TREE PHYSIOLOGY 2017; 37:491-500. [PMID: 27998974 DOI: 10.1093/treephys/tpw114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Trees experience low apoplastic water potential frequently in most environments. Low apoplastic water potential increases the risk of embolism formation in xylem conduits and creates dehydration stress for the living cells. We studied the magnitude and rate of xylem diameter change in response to decreasing apoplastic water potential and the role of living parenchyma cells in it to better understand xylem diameter changes in different environmental conditions. We compared responses of control and heat-injured xylem of Pinus sylvestris (L.) and Populus tremula (L.) branches to decreasing apoplastic water potential created by osmotic stress, desiccation and freezing. It was shown that xylem in control branches shrank more in response to decreasing apoplastic water potential in comparison with the samples that were preheated to damage living xylem parenchyma. By manipulating the osmotic pressure of the xylem sap, we observed xylem shrinkage due to decreasing apoplastic water potential even in the absence of water tension within the conduits. These results indicate that decreasing apoplastic water potential led to withdrawal of intracellular water from the xylem parenchyma, causing tissue shrinkage. The amount of xylem shrinkage per decrease in apoplastic water potential was higher during osmotic stress or desiccation compared with freezing. During desiccation, xylem diameter shrinkage involved both dehydration-related shrinkage of xylem parenchyma and water tension-induced shrinkage of conduits, whereas dehydration-related shrinkage of xylem parenchyma was accompanied by swelling of apoplastic ice during freezing. It was also shown that the exchange of water between symplast and apoplast within xylem is clearly faster than previously reported between the phloem and the xylem. Time constant of xylem shrinkage was 40 and 2 times higher during osmotic stress than during freezing stress in P. sylvestris and P. tremula, respectively. Finally, it was concluded that the amount of water stored in the xylem parenchyma is an important reservoir for trees to buffer daily fluctuations in water relations.
Collapse
Affiliation(s)
- Anna Lintunen
- Department of Forest Sciences, University of Helsinki, P.O. BOX 27, FI-00014 Helsinki, Finland
| | - Lauri Lindfors
- Department of Forest Sciences, University of Helsinki, P.O. BOX 27, FI-00014 Helsinki, Finland
- Department of Physics, University of Helsinki, P.O. BOX 64, FI-00014 Helsinki, Finland
| | - Eero Nikinmaa
- Department of Forest Sciences, University of Helsinki, P.O. BOX 27, FI-00014 Helsinki, Finland
| | - Teemu Hölttä
- Department of Forest Sciences, University of Helsinki, P.O. BOX 27, FI-00014 Helsinki, Finland
| |
Collapse
|
28
|
Martínez-Ballesta MC, Zapata L, Chalbi N, Carvajal M. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J Nanobiotechnology 2016; 14:42. [PMID: 27278384 PMCID: PMC4898372 DOI: 10.1186/s12951-016-0199-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Carbon nanotubes have been shown to improve the germination and growth of some plant species, extending the applicability of the emerging nano-biotechnology field to crop science. RESULTS In this work, exploitation of commercial multiwalled carbon nanotubes (MWCNTs) in control and 100 mM NaCl-treated broccoli was performed. Transmission electron microscopy demonstrated that MWCNTs can enter the cells in adult plants with higher accumulation under salt stress. Positive effect of MWCNTs on growth in NaCl-treated plants was consequence of increased water uptake, promoted by more-favourable energetic forces driving this process, and enhanced net assimilation of CO2. MWCNTs induced changes in the lipid composition, rigidity and permeability of the root plasma membranes relative to salt-stressed plants. Also, enhanced aquaporin transduction occurred, which improved water uptake and transport, alleviating the negative effects of salt stress. CONCLUSION Our work provides new evidences about the effect of MWCNTs on plasma membrane properties of the plant cell. The positive response to MWCNTs in broccoli plants opens novel perspectives for their technological uses in new agricultural practices, especially when 1plants are exposed to saline environments.
Collapse
Affiliation(s)
- Mª Carmen Martínez-Ballesta
- />Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain
| | - Lavinia Zapata
- />Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain
| | - Najla Chalbi
- />Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cedria (LEP-CBBC), P. O. Box 901, 2050 Hammam-Lif, Tunisia
| | - Micaela Carvajal
- />Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain
| |
Collapse
|
29
|
Chalbi N, Martínez-Ballesta MC, Youssef NB, Carvajal M. Intrinsic stability of Brassicaceae plasma membrane in relation to changes in proteins and lipids as a response to salinity. JOURNAL OF PLANT PHYSIOLOGY 2015; 175:148-56. [PMID: 25544590 DOI: 10.1016/j.jplph.2014.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/02/2014] [Indexed: 05/20/2023]
Abstract
Changes in plasma membrane lipids, such as sterols and fatty acids, have been observed as a result of salt stress. These alterations, together with modification of the plasma membrane protein profile, confer changes in the physical properties of the membrane to be taken into account for biotechnological uses. In our experiments, the relationship between lipids and proteins in three different Brassicaceae species differing in salinity tolerance (Brassica oleracea, B. napus and Cakile maritima) and the final plasma membrane stability were studied. The observed changes in the sterol (mainly an increase in sitosterol) and fatty acid composition (increase in RUFA) in each species led to physical adaptation of the plasma membrane to salt stress. The in vitro vesicles stability was higher in the less tolerant (B. oleracea) plants together with low lipoxygenase activity. These results indicate that the proteins/lipids ratio and lipid composition is an important aspect to take into account for the use of natural vesicles in plant biotechnology.
Collapse
Affiliation(s)
- Najla Chalbi
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cedria (LEP-CBBC), PO Box 901, 2050, Hammam-Lif, Tunisia
| | - Ma Carmen Martínez-Ballesta
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain
| | - Nabil Ben Youssef
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cedria (LEP-CBBC), PO Box 901, 2050, Hammam-Lif, Tunisia
| | - Micaela Carvajal
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain.
| |
Collapse
|
30
|
Abstract
AbstractThis study was aimed to investigate the possibility of regulating free proline content and ethylene production in the resistant to abiotic stress cv. ‘Hornet H’ and the tolerant to stress cv. ‘Sunday’ of winter rapeseed seedlings by pretreatment with exogenous L-proline and L-glutamine in non-acclimated and cold-acclimated seedlings in relation to freezing tolerance. The ratio of proline content in acclimated (at 4°C) versus non-acclimated (18°C) ‘Hornet H’ seedlings increased 2.12-fold and in ‘Sunday’ seedlings 1.95-fold. Exogenously applied, proline and glutamine produced a positive effect on free proline content in both cold-acclimated and non-acclimated seedlings. At a temperature of -1°C the proline content significantly increased in non-acclimated and especially in cold-acclimated seedlings. At an intensified freezing temperature (−3°C, −5°C, −7°C), the proline content decreased in comparison with that at −1°C, but glutamine, especially proline, in cold-acclimated seedlings takes part in free proline level increase and in seedlings’ resistance to freezing. Ethylene production increased in cold-acclimated conditions and under the effect of exogenous proline and glutamine. In freezing conditions, ethylene production decreased, but in cold-acclimated seedlings and under pretreatment of proline and glutamine the ethylene synthesis was intensive. Thus, free proline content and ethylene production increase in cold-acclimated winter rapeseed seedlings and under pretreatment with glutamine and especially with proline. Free proline is involved in the response to cold stress, and its level may be an indicator of cold-hardening and freezing tolerance, but the role of ethylene in the regulation of cold tolerance remains not quite clear.
Collapse
|
31
|
Ren L, Sun J, Chen S, Gao J, Dong B, Liu Y, Xia X, Wang Y, Liao Y, Teng N, Fang W, Guan Z, Chen F, Jiang J. A transcriptomic analysis of Chrysanthemum nankingense provides insights into the basis of low temperature tolerance. BMC Genomics 2014; 15:844. [PMID: 25277256 PMCID: PMC4197275 DOI: 10.1186/1471-2164-15-844] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A major constraint affecting the quality and productivity of chrysanthemum is the unusual period of low temperature occurring during early spring, late autumn, and winter. Yet, there has been no systematic investigation on the genes underlying the response to low temperature in chrysanthemum. Herein, we used RNA-Seq platform to characterize the transcriptomic response to low temperature by comparing different transcriptome of Chrysanthemum nankingense plants and subjecting them to a period of sub-zero temperature, with or without a prior low temperature acclimation. RESULTS Six separate RNA-Seq libraries were generated from the RNA samples of leaves and stems from six different temperature treatments, including one cold acclimation (CA), two freezing treatments without prior CA, two freezing treatments with prior CA and the control. At least seven million clean reads were obtained from each library. Over 77% of the reads could be mapped to sets of C. nankingense unigenes established previously. The differentially transcribed genes (DTGs) were identified as low temperature sensing and signalling genes, transcription factors, functional proteins associated with the abiotic response, and low temperature-responsive genes involved in post-transcriptional regulation. The differential transcription of 15 DTGs was validated using quantitative RT-PCR. CONCLUSIONS The large number of DTGs identified in this study, confirmed the complexity of the regulatory machinery involved in the processes of low temperature acclimation and low temperature/freezing tolerance.
Collapse
Affiliation(s)
- Liping Ren
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- />Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, No. 1 Weigang, Nanjing, 210095 Jiangsu Province China
| | - Jing Sun
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sumei Chen
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiaojiao Gao
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bin Dong
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yanan Liu
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaolong Xia
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yinjie Wang
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuan Liao
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Nianjun Teng
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weimin Fang
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhiyong Guan
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fadi Chen
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- />Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, No. 1 Weigang, Nanjing, 210095 Jiangsu Province China
| | - Jiafu Jiang
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
32
|
Kazemi-Shahandashti SS, Maali-Amiri R, Zeinali H, Khazaei M, Talei A, Ramezanpour SS. Effect of short-term cold stress on oxidative damage and transcript accumulation of defense-related genes in chickpea seedlings. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1106-1116. [PMID: 24972025 DOI: 10.1016/j.jplph.2014.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/20/2014] [Accepted: 03/23/2014] [Indexed: 05/28/2023]
Abstract
Cold stress affects many plant physiological and biochemical components and induces cascades of alterations in metabolic pathways, amongst them the membrane fatty acid compositions, the activity of antioxidative enzymes and the regulation of gene expression. The present work aimed to characterize the changes of some of these factors in both cold acclimated (CA) and non-acclimated (NA) plants of chickpea (Cicer arietinum L.) to identify the role of the acclimation process in adjusting plant responses to severe cold stress. The results showed an increase in the unsaturated fatty acids (UFAs) ratio compared to saturated fatty acids, which was more obvious in CA plants. Defense enzymes had an important role in CA plants to create greater cold tolerance compared to NA ones in the cases of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX) and lipoxygenase (LOX) activities. During cold stress, a high transcription level of CaCAT and CaSOD genes was detected in CA plants, but a low transcription of CaLOX gene was observed in CA plants compared to NA plants, which might have prevented the decline of UFAs (confirmed by double bond index (DBI) data). Moreover, the transcription level of the Carubisco gene, as an energy producing agent, was higher in CA plants than in NA plants and the transcription of the Catubulin gene, as a crucial substance of cell cytoskeleton, showed a decreasing trend in both CA and NA plants, but this decline was greater in NA plants. These responses showed the possible targets of cold stress as chloroplast and signal transduction to balance stress programs. The above results indicate the crucial role of FA compositions in creating cold tolerance in susceptible chickpea plants with possible responsive components and the possible interactions in protein and transcript levels even in facing extreme cold stress.
Collapse
Affiliation(s)
- Seyyedeh-Sanam Kazemi-Shahandashti
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran.
| | - Hassan Zeinali
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Mona Khazaei
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Alireza Talei
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Seyyedeh-Sanaz Ramezanpour
- Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
33
|
Ramalho JC, DaMatta FM, Rodrigues AP, Scotti-Campos P, Pais I, Batista-Santos P, Partelli FL, Ribeiro A, Lidon FC, Leitão AE. Cold impact and acclimation response of Coffea spp. plants. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2014; 26:5-18. [PMID: 0 DOI: 10.1007/s40626-014-0001-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
34
|
Scotti-Campos P, Pais IP, Partelli FL, Batista-Santos P, Ramalho JC. Phospholipids profile in chloroplasts of Coffea spp. genotypes differing in cold acclimation ability. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:243-9. [PMID: 23988560 DOI: 10.1016/j.jplph.2013.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 07/25/2013] [Indexed: 05/11/2023]
Abstract
Environmental temperature change may induce modifications in membrane lipid properties and composition, which account for different physiological responses among plant species. Coffee plants, as many tropical species, are particularly sensitive to cold, but genotypes can present differences that can be exploited to improve crop management and breeding. This work intended to highlight the changes promoted by low non-freezing temperatures (chilling) in phospholipid (PL) composition of chloroplast membranes of genotypes from two Coffea species, Coffea arabica cv. Catuaí (moderately tolerant) and Coffea canephora cv. Conilon (Clone 153, more susceptible), and relate them with cold sensitivity differences. Such evaluation was performed considering a gradual temperature decrease, chilling (4 °C) exposure and a recovery period under rewarming conditions. Catuaí presented an earlier acclimation response than Clone 153 (CL 153). It displayed a higher metabolic activity during acclimation (total fatty acids and total PL increases) and chilling (phosphatidylglycerol increases), and an overall better recovery. Catuaí also showed the highest phosphatidylglycerol unsaturation (higher double bond index) after chilling, in contrast with CL 153 (gradual unsaturation decrease). Higher unsaturation degree in Catuaí than in CL 153 was also observed for phosphatidylcholine and phosphatidylinositol, resulting, mainly, from raises in unsaturated C18:2 and C18:3. It is suggested that an enhanced PL synthesis and turnover induced by a gradual cold exposure, as well as unsaturation increases in major PL classes, is related to decreased Catuaí susceptibility to low temperatures and strongly contributes to sustain photosynthetic activity in this genotype under chilling conditions, as reported in previous work by this team.
Collapse
Affiliation(s)
- Paula Scotti-Campos
- Unidade Estratégica de Investigação e Serviços de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Av. República, Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - Isabel P Pais
- Unidade Estratégica de Investigação e Serviços de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Av. República, Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - Fábio L Partelli
- Dept. Ciências Agrárias e Biológicas, Centro Univ. Norte Espírito Santo, Univ. Federal Espírito Santo, Rodovia BR 101 Norte, Km. 60, Bairro Litorâneo, CEP 29932-540, São Mateus, ES, Brazil
| | - Paula Batista-Santos
- Grupo Interações Planta-Ambiente (Plant Stress), Centro de Ambiente, Agricultura e Desenvolvimento (BioTrop), Instituto de Investigação Científica Tropical, I.P. (IICT), Av. República, Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - José C Ramalho
- Grupo Interações Planta-Ambiente (Plant Stress), Centro de Ambiente, Agricultura e Desenvolvimento (BioTrop), Instituto de Investigação Científica Tropical, I.P. (IICT), Av. República, Quinta do Marquês, 2784-505 Oeiras, Portugal.
| |
Collapse
|
35
|
Sudden collapse of vacuoles in Saintpaulia sp. palisade cells induced by a rapid temperature decrease. PLoS One 2013; 8:e57259. [PMID: 23451194 PMCID: PMC3581458 DOI: 10.1371/journal.pone.0057259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 01/22/2013] [Indexed: 11/19/2022] Open
Abstract
It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. ‘Iceberg’) and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.
Collapse
|
36
|
Zárate R, Cequier-Sánchez E, Rodríguez C, Dorta-Guerra R, El Jaber-Vazdekis N, Ravelo ÁG. Improvement of Polyunsaturated Fatty Acid Production in Echium acanthocarpum Transformed Hairy Root Cultures by Application of Different Abiotic Stress Conditions. ISRN BIOTECHNOLOGY 2013; 2013:169510. [PMID: 25937970 PMCID: PMC4393039 DOI: 10.5402/2013/169510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/24/2013] [Indexed: 01/30/2023]
Abstract
Fatty acids are of great nutritional, therapeutic, and physiological importance, especially the polyunsaturated n-3 fatty acids, possessing larger carbon chains and abundant double bonds or their immediate precursors. A few higher plant species are able to accumulate these compounds, like those belonging to the Echium genus. Here, the novel E. acanthocarpum hairy root system, which is able to accumulate many fatty acids, including stearidonic and α-linolenic acids, was optimized for a better production. The application of abiotic stress resulted in larger yields of stearidonic and α-linolenic acids, 60 and 35%, respectively, with a decrease in linoleic acid, when grown in a nutrient medium consisting of B5 basal salts, sucrose or glucose, and, more importantly, at a temperature of 15°C. The application of osmotic stress employing sorbitol showed no positive influence on the fatty acid yields; furthermore, the combination of a lower culture temperature and glucose did not show a cumulative boosting effect on the yield, although this carbon source was similarly attractive. The abiotic stress also influenced the lipid profile of the cultures, significantly increasing the phosphatidylglycerol fraction but not the total lipid neither their biomass, proving the appropriateness of applying various abiotic stress in this culture to achieve larger yields.
Collapse
Affiliation(s)
- Rafael Zárate
- Canary Islands Cancer Research Institute (ICIC), 61 Avenida La Trinidad, Torre A. Arévalo, 7th Floor, 38204 La Laguna, Tenerife, Spain
| | - Elena Cequier-Sánchez
- Canary Islands Cancer Research Institute (ICIC), 61 Avenida La Trinidad, Torre A. Arévalo, 7th Floor, 38204 La Laguna, Tenerife, Spain ; Bio-Organic University Institute A.G. González, University of La Laguna, Ave. Fco. Sánchez, 38206 La Laguna, Tenerife, Spain
| | - Covadonga Rodríguez
- Animal Biology Deptartment (Physiology Unit), Biology Faculty, University of La Laguna, Ave. Fco. Sánchez, 38206 La Laguna, Tenerife, Spain ; Institute of Biomedical Technologies (ITB), University of La Laguna, Campus de Ofra, 38071 La Laguna, Tenerife, Spain
| | - Roberto Dorta-Guerra
- Statistics and Computation Deptartment, Maths Faculty, University of La Laguna, Ave. Fco. Sánchez, 38206 La Laguna, Tenerife, Spain
| | - Nabil El Jaber-Vazdekis
- Bio-Organic University Institute A.G. González, University of La Laguna, Ave. Fco. Sánchez, 38206 La Laguna, Tenerife, Spain
| | - Ángel G Ravelo
- Canary Islands Cancer Research Institute (ICIC), 61 Avenida La Trinidad, Torre A. Arévalo, 7th Floor, 38204 La Laguna, Tenerife, Spain ; Bio-Organic University Institute A.G. González, University of La Laguna, Ave. Fco. Sánchez, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
37
|
Guo ZF, Li FZ, Ma XG, Lin F, Ma H, Chen LJ, Zhong M, Bai LP, Yi Y. Molecular cloning of two novel stearoyl-acyl desaturase genes from winterness wheat. Genes Genomics 2011. [DOI: 10.1007/s13258-010-0167-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Lidon FC, Ramalho JC. Impact of UV-B irradiation on photosynthetic performance and chloroplast membrane components in Oryza sativa L. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:457-66. [PMID: 21696979 DOI: 10.1016/j.jphotobiol.2011.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 12/26/2022]
Abstract
The impact of UV-B radiation on photosynthetic related parameters was studied in Oryza sativa L. cv. Safari plants, after an UV-B irradiation performed 1h per day for 7days (between 8 and 14days after germination) with a ten narrow-band (λ 311nm) that resulted in a total biological effective UV-B (UVB(BE)) of 2.975kJm(-2)day(-1) and a total of 20.825kJm(-2). Gas exchange measurements were severely affected, showing reductions higher than 80% in net photosynthesis (P(n)), stomatal conductance and photosynthetic capacity (A(max)), 1day after the end of the 7-days UV-B treatment. Similarly, several fluorescence parameters (F(o), F(v)/F(m), Fv'/Fm', ϕ(e), q(P) and q(E)) and thylakoid electron transport (involving both photosystems) were also severely reduced. Concomitantly, a decline of xanthophylls, carotenes, Chl a, Chl (a+b) and Chl (a/b) values was accompanied by the increase of the lipoperoxidation level in chloroplast membranes, altogether reflecting a loss of protection against oxidative stress. Seven days after of the end of UV-B treatment, most fluorescence parameters recovered, but in P(n), A(max), thylakoid electron transport rates, Chl a and lipid classes, as well as the level of lipoperoxidation, the impacts were even stronger than immediately after the end of stress, denoting a clear loss of performance of photosynthetic structures. However, only a moderate impact on total lipids was observed, accompanied by some changes in the relative weight of the major chloroplast membrane lipid classes, with emphasis on the decrease of MGDG and the increase of phospholipids. That suggested an ability to de novo lipid synthesis allowing qualitative changes in the lipid matrix. Notably, the leaves developed after the end of UV-B irradiation showed a much lower impact, with significantly decreased values only in P(n) and g(s), rises in several fluorescence parameters, thylakoid electron transport, photosynthetic pigments (xanthophylls and chls) and DEPS, while lipid classes presented values close to control. The results showed a global impact of UV-B in the photosynthetic structures and performance in irradiated leaves, but revealed also a low impairment extent in the leaves entirely developed after the end of the irradiation, reflecting a remarkable recovery of the plant after the end of stress, what could constitute an advantage under occasional UV-B exposure events in this vital worldwide staple food crop.
Collapse
Affiliation(s)
- F C Lidon
- Dept. Ciências e Tecnologia da Biomassa, Campus da Caparica, Fac. Ciências e Tecnologia, Univ. Nova de Lisboa, 2829-516 Monte de Caparica, Portugal. ,
| | | |
Collapse
|
39
|
Furt F, Simon-Plas F, Mongrand S. Lipids of the Plant Plasma Membrane. THE PLANT PLASMA MEMBRANE 2011. [DOI: 10.1007/978-3-642-13431-9_1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
WANG XN, FU LS, LI ZF, SUN YL, WANG YB, LIU C, WANG JW, CHEN YX. Morphogenesis and Physiological Basis in Wheat Cultivars with Different Levels of Cold-Resistance during Cold Acclimation and Freezing Period. ZUOWU XUEBAO 2009. [DOI: 10.3724/sp.j.1006.2009.01313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Crucial contribution of membrane lipids’ unsaturation to acquisition of chilling-tolerance in peach fruit stored at 0°С. Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.12.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Costanzo JP, Lee RE, Ultsch GR. Physiological ecology of overwintering in hatchling turtles. ACTA ACUST UNITED AC 2008; 309:297-379. [PMID: 18484621 DOI: 10.1002/jez.460] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Temperate species of turtles hatch from eggs in late summer. The hatchlings of some species leave their natal nest to hibernate elsewhere on land or under water, whereas others usually remain inside the nest until spring; thus, post-hatching behavior strongly influences the hibernation ecology and physiology of this age class. Little is known about the habitats of and environmental conditions affecting aquatic hibernators, although laboratory studies suggest that chronically hypoxic sites are inhospitable to hatchlings. Field biologists have long been intrigued by the environmental conditions survived by hatchlings using terrestrial hibernacula, especially nests that ultimately serve as winter refugia. Hatchlings are unable to feed, although as metabolism is greatly reduced in hibernation, they are not at risk of starvation. Dehydration and injury from cold are more formidable challenges. Differential tolerances to these stressors may explain variation in hatchling overwintering habits among turtle taxa. Much study has been devoted to the cold-hardiness adaptations exhibited by terrestrial hibernators. All tolerate a degree of chilling, but survival of frost exposure depends on either freeze avoidance through supercooling or freeze tolerance. Freeze avoidance is promoted by behavioral, anatomical, and physiological features that minimize risk of inoculation by ice and ice-nucleating agents. Freeze tolerance is promoted by a complex suite of molecular, biochemical, and physiological responses enabling certain organisms to survive the freezing and thawing of extracellular fluids. Some species apparently can switch between freeze avoidance or freeze tolerance, the mode utilized in a particular instance of chilling depending on prevailing physiological and environmental conditions.
Collapse
Affiliation(s)
- Jon P Costanzo
- Department of Zoology, Miami University, Oxford, OH 45056, USA.
| | | | | |
Collapse
|
43
|
Lüthje S. Plasma Membrane Redox Systems: Lipid Rafts and Protein Assemblies. PROGRESS IN BOTANY 2008. [DOI: 10.1007/978-3-540-72954-9_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|