1
|
Hanzouli F, Daldoul S, Zemni H, Boubakri H, Vincenzi S, Mliki A, Gargouri M. Stilbene production as part of drought adaptation mechanisms in cultivated grapevine (Vitis vinifera L.) roots modulates antioxidant status. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:102-115. [PMID: 39499234 DOI: 10.1111/plb.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/06/2024] [Indexed: 11/07/2024]
Abstract
Stilbenes, naturally occurring polyphenolic secondary metabolites, play a pivotal role in adaptation of various plant species to biotic and abiotic factors. Recently, increased attention has been directed toward their potential to enhance plant stress tolerance. We evaluated drought tolerance of three grapevine varieties grown with different levels of water deficit. Throughout, we studied physiological mechanisms associated with drought stress tolerance, particularly stilbene accumulation in root tissues, using HPLC. Additionally, we explored the possible relationship between antioxidant potential and stilbene accumulation in response to water deficit. The results underscore the detrimental impact of water deficit on grapevine growth, water status, and membrane stability index, while revealing varying tolerance among the studied genotypes. Notably, Syrah variety had superior drought tolerance, compared to Razegui and Muscat d'Italie grapes. Under severe water deficit, Syrah exhibited a substantial increase in levels of stilbenic compounds, such as t-resveratrol, t-piceatannol, t-ɛ-viniferin, and t-piceid, in root tissues compared to other genotypes. This increase was positively correlated with total antioxidant activity (TAA), emphasizing the active role of resveratrol and its derivatives in total antioxidant potential. This demonstratres the potential involvement of resveratrol and its derivatives in enhancing antioxidant status of the drought-tolerant Syrah grape variety. Our findings suggest that these stilbenes may function as valuable markers in grapevine breeding programs, offering novel insights for the sustainable cultivation of grapevines in water-limited environments.
Collapse
Affiliation(s)
- F Hanzouli
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University Tunis El-Manar, Tunis, Tunisia
| | - S Daldoul
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - H Zemni
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - H Boubakri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - S Vincenzi
- University of Padova, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), Legnaro, Italy
| | - A Mliki
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - M Gargouri
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
2
|
Riseh RS, Vazvani MG, Kennedy JF. The application of chitosan as a carrier for fertilizer: A review. Int J Biol Macromol 2023; 252:126483. [PMID: 37625747 DOI: 10.1016/j.ijbiomac.2023.126483] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The smart combination of agriculture and other sciences can greatly reduce the limits of fertilizer use. Chitosan is a linear amino polysaccharide with a rigid structure which has hydrophilic and crystal properties. The formation of intermolecular hydrogen bonds the presence of reactive groups and cross-linking, the formation of salts with organic and inorganic acids with complexing and chelating properties ionic conductivity, film formation are the characteristics of chitosan. With the presence of amino groups, chitosan can form a complex with other compounds and also enter the vascular system of plants and lead to the activation of metabolic-physiological pathways of plants. This polymeric compound can bond with other natural polymers and in combination with fertilizers and nutritional elements, on the one hand, it can provide the nutritional needs of the plant and on the other hand, it also helps to improve the soil texture. Chitosan nanomaterials as a Next-generation fertilizers act as plant immune system enhancers through slow, controlled, and targeted delivery of nutrients to plants. Chitosan can assist agricultural researchers and has become an ideal and effective option with its many applications in various fields.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
3
|
Giorni P, Zhang L, Bavaresco L, Lucini L, Battilani P. Metabolomics Insight into the Variety-Mediated Responses to Aspergillus carbonarius Infection in Grapevine Berries. ACS OMEGA 2023; 8:32352-32364. [PMID: 37720731 PMCID: PMC10500680 DOI: 10.1021/acsomega.3c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/03/2023] [Indexed: 09/19/2023]
Abstract
Limited knowledge regarding the susceptibility of grape varieties to ochratoxin A (OTA)-producing fungi is available to date. This study aimed to investigate the susceptibility of different grape varieties to Aspergillus carbonarius concerning OTA contamination and modulation at the metabolome level. Six grape varieties were selected, sampled at early veraison and ripening, artificially inoculated with A. carbonarius, and incubated at two temperature regimes. Significant differences were observed across cultivars, with Barbera showing the highest incidence of moldy berries (around 30%), while Malvasia and Ortrugo showed the lowest incidence (about 2%). OTA contamination was the lowest in Ortrugo and Malvasia, and the highest in Croatina, although it was not significantly different from Barbera, Merlot, and Sauvignon Blanc. Fungal development and mycotoxin production changed with grape variety; the sugar content in berries could also have played a role. Unsupervised multivariate statistical analysis from metabolomic fingerprints highlighted cultivar-specific responses, although a more generalized response was observed by supervised OPLS-DA modeling. An accumulation of nitrogen-containing compounds (alkaloids and glucosinolates), phenylpropanoids, and terpenoids, in addition to phytoalexins, was observed in all samples. A broader modulation of the metabolome was observed in white grapes, which were less contaminated by OTA. Jasmonates and oxylipins were identified as critical upstream modulators in metabolomic profiles. A direct correlation between the plant defense machinery and OTA was not observed, but the information was acquired and can contribute to optimizing preventive actions.
Collapse
Affiliation(s)
- Paola Giorni
- Department
of Sustainable Crop Production, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Leilei Zhang
- Department
for Sustainable Food Process, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Bavaresco
- Department
of Sustainable Crop Production, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department
for Sustainable Food Process, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Paola Battilani
- Department
of Sustainable Crop Production, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
4
|
Ananev AA, Suprun AR, Aleynova OA, Nityagovsky NN, Ogneva ZV, Dubrovina AS, Kiselev KV. Effect of VaMyb40 and VaMyb60 Overexpression on Stilbene Biosynthesis in Cell Cultures of Grapevine Vitis amurensis Rupr. PLANTS 2022; 11:plants11151916. [PMID: 35893620 PMCID: PMC9330820 DOI: 10.3390/plants11151916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 01/10/2023]
Abstract
Stilbenes are plant defense compounds known to rapidly accumulate in grapevine and some other plant species in response to microbial infection and several abiotic stresses. Stilbenes have attracted considerable attention due to valuable biological effects with multi-spectrum therapeutic application. However, there is a lack of information on natural signaling pathways and transcription factors regulating stilbene biosynthesis. It has been previously shown that MYB R2R3 transcription factor genes VaMyb40 and VaMyb60 were up-regulated in cell cultures of wild-growing grapevine Vitis amurensis Rupr. in response to UV irradiation. In this study, the effects of VaMyb40 or VaMyb60 overexpression in cell cultures of V. amurensis on their capability to produce stilbenes were investigated. Overexpression of the VaMyb60 gene led to a considerable increase in the content of stilbenes in three independently transformed transgenic lines in 5.9–13.9 times, while overexpression of the VaMyb40 gene also increased the content of stilbenes, although to a lesser extent (in 3.4–4.0 times) in comparison with stilbene levels in the empty vector-transformed calli. Stilbene content and stilbene production in the VaMyb60-transgenic calli reached 18.8 mg/g of dry weight (DW) and 150.8 mg/L, respectively. Using HPLC analysis, we detected eight individual stilbenes: t-resveratrol diglucoside, t-piceid, t-resveratrol, ε-viniferin, δ-viniferin, cis-resveratrol, cis-piceid, t-piceatannol. T-resveratrol prevailed over other stilbenoid compounds (53.1–89.5% of all stilbenes) in the VaMyb-overexpressing cell cultures. Moreover, the VaMyb40- and VaMyb60-transformed calli were capable of producing anthocyanins up to 0.035 mg/g DW, while the control calli did not produce anthocyanins. These findings show that the VaMyb40 and VaMyb60 genes positively regulate the stilbene biosynthesis as strong positive transcription regulators and can be used in biotechnological applications for stilbene production or high-quality viticulture and winemaking.
Collapse
|
5
|
Aleynova OA, Suprun AR, Ananev AA, Nityagovsky NN, Ogneva ZV, Dubrovina AS, Kiselev KV. Effect of Calmodulin-like Gene (CML) Overexpression on Stilbene Biosynthesis in Cell Cultures of Vitis amurensis Rupr. PLANTS 2022; 11:plants11020171. [PMID: 35050059 PMCID: PMC8778512 DOI: 10.3390/plants11020171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022]
Abstract
Stilbenes are plant phenolics known to rapidly accumulate in grapevine and other plants in response to injury or pathogen attack and to exhibit a great variety of healing beneficial effects. It has previously been shown that several calmodulin-like protein (CML) genes were highly up-regulated in cell cultures of wild-growing grapevine Vitis amurensis Rupr. in response to stilbene-modulating conditions, such as stress hormones, UV-C, and stilbene precursors. Both CML functions and stilbene biosynthesis regulation are still poorly understood. In this study, we investigated the effect of overexpression of five VaCML genes on stilbene and biomass accumulation in the transformed cell cultures of V. amurensis. We obtained 16 transgenic cell lines transformed with the VaCML52, VaCML65, VaCML86, VaCML93, and VaCML95 genes (3–4 independent lines per gene) under the control of the double CaMV 35S promoter. HPLC-MS analysis showed that overexpression of the VaCML65 led to a considerable and consistent increase in the content of stilbenes of 3.8–23.7 times in all transformed lines in comparison with the control calli, while biomass accumulation was not affected. Transformation of the V. amurensis cells with other analyzed VaCML genes did not lead to a consistent and considerable effect on stilbene biosynthesis in the cell lines. The results indicate that the VaCML65 gene is implicated in the signaling pathway regulating stilbene biosynthesis as a strong positive regulator and can be useful in viticulture and winemaking for obtaining grape cultivars with a high content of stilbenes and stress resistance.
Collapse
Affiliation(s)
- Olga A. Aleynova
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
| | - Andrey R. Suprun
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
| | - Alexey A. Ananev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
- Department of Biochemistry and Biotechnology, Institute of the World Ocean, Far Eastern Federal University, 690090 Vladivostok, Russia
| | - Nikolay N. Nityagovsky
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
| | - Zlata V. Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
| | - Alexandra S. Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
| | - Konstantin V. Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
- Correspondence: ; Tel.: +8-423-2310410; Fax: +8-4232-310193
| |
Collapse
|
6
|
Martins V, Unlubayir M, Teixeira A, Gerós H, Lanoue A. Calcium and methyl jasmonate cross-talk in the secondary metabolism of grape cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:228-238. [PMID: 34077875 DOI: 10.1016/j.plaphy.2021.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/23/2021] [Indexed: 05/29/2023]
Abstract
In grape cell cultures cv. Gamay Fréaux var. Teinturier, Ca was shown to decrease cell pigmentation through the inhibition of anthocyanin biosynthesis, while stimulating stilbenoids accumulation. Because methyl jasmonate (MeJA) is a well-known inducer of secondary metabolism in grape cells, and Ca antagonizes its stimulatory effect over several enzymes of core metabolic branches, in the present study we hypothesized that Ca and MeJA signaling pathways interact to regulate specific secondary metabolism routes. Grape cultured cells were elicited with MeJA or with MeJA + Ca and an UPLC-MS-based targeted metabolomic method was implemented to characterize their polyphenolic profiles. Results were compared with the profile of cells elicited with Ca only, previously reported. Data was complemented with gene expression analysis, allowing the assembly of a metabolic map that unraveled routes specifically regulated by both elicitors. MeJA + Ca specifically boosted E-resveratrol and E-ε-viniferin levels by 180% and 140%, respectively, in comparison to cells treated with MeJA only, while the stimulatory effect of MeJA over flavonoid synthesis was inhibited by Ca. In parallel, Ca downregulated most flavonoid pathway genes, including LAR1, ANS, BAN and ANR. Ca was able to mimic or potentiate the effect of MeJA on the expression of JA signaling genes, including JAR1, PIN and PR10. Transcript/metabolite correlation networks exposed the central influence of FLS1,STS,CDPK17 and COI1 in polyphenolic biosynthetic routes. This study highlights the potential of the MeJA-Ca combination for diverting polyphenolic metabolism towards the production of specific metabolites of interest, highly relevant in a biotechnological perspective.
Collapse
Affiliation(s)
- Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal.
| | - Marianne Unlubayir
- Université de Tours, EA 2106 «Biomolécules et Biotechnologie Végétales», UFR des Sciences Pharmaceutiques, 31 Av. Monge, F37200, Tours, France.
| | - António Teixeira
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Arnaud Lanoue
- Université de Tours, EA 2106 «Biomolécules et Biotechnologie Végétales», UFR des Sciences Pharmaceutiques, 31 Av. Monge, F37200, Tours, France.
| |
Collapse
|
7
|
Kolupaev YE, Yastreb TO. Jasmonate Signaling and Plant Adaptation to Abiotic Stressors (Review). APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821010117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Jeandet P, Vannozzi A, Sobarzo-Sánchez E, Uddin MS, Bru R, Martínez-Márquez A, Clément C, Cordelier S, Manayi A, Nabavi SF, Rasekhian M, El-Saber Batiha G, Khan H, Morkunas I, Belwal T, Jiang J, Koffas M, Nabavi SM. Phytostilbenes as agrochemicals: biosynthesis, bioactivity, metabolic engineering and biotechnology. Nat Prod Rep 2021; 38:1282-1329. [PMID: 33351014 DOI: 10.1039/d0np00030b] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 1976 to 2020. Although constituting a limited chemical family, phytostilbenes represent an emblematic group of molecules among natural compounds. Ever since their discovery as antifungal compounds in plants and their ascribed role in human health and disease, phytostilbenes have never ceased to arouse interest for researchers, leading to a huge development of the literature in this field. Owing to this, the number of references to this class of compounds has reached the tens of thousands. The objective of this article is thus to offer an overview of the different aspects of these compounds through a large bibliography analysis of more than 500 articles. All the aspects regarding phytostilbenes will be covered including their chemistry and biochemistry, regulation of their biosynthesis, biological activities in plants, molecular engineering of stilbene pathways in plants and microbes as well as their biotechnological production by plant cell systems.
Collapse
Affiliation(s)
- Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain and Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh and Neuroscience Research Network, Dhaka, Bangladesh
| | - Roque Bru
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Ascension Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Christophe Clément
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Sylvain Cordelier
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, The People's Republic of China
| | - Jingjie Jiang
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Mattheos Koffas
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| |
Collapse
|
9
|
Bioactive Polyphenols Modulate Enzymes Involved in Grapevine Pathogenesis and Chitinase Activity at Increasing Complexity Levels. Int J Mol Sci 2019; 20:ijms20246357. [PMID: 31861147 PMCID: PMC6940873 DOI: 10.3390/ijms20246357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 11/25/2022] Open
Abstract
The reduction of synthetic chemistry use in modern viticulture relies on either the biological control of microorganisms or the induction of pathogenesis-related proteins. In the present study, the effects of hydro-alcoholic plant extracts (PEs) (i.e., by-products of Vitis vinifera L., leaves of Olea europaea L. and Ailanthus altissima (Mill.) Swingle) were tested on purified enzymes activity involved in plant-pathogen interactions. The polyphenolic composition was assayed and analyzed to characterize the extract profiles. In addition, suspension cell cultures of grapevine were treated with PEs to study their modulation of chitinase activity. Application of grape marc’s PE enhanced chitinase activity at 4 g L−1. Additionally, foliar treatment of grape marc’s PE at two doses (4 g L−1 and 800 g L−1) on grapevine cuttings induced a concentration-dependent stimulation of chitinase activity. The obtained results showed that the application of bioactive compounds based on PEs, rich in phenolic compounds, was effective both at in vitro and ex/in vivo level. The overall effects of PEs on plant-pathogen interaction were further discussed by applying a multi-criteria decision analysis, showing that grape marc was the most effective extract.
Collapse
|
10
|
Belchí-Navarro S, Rubio MA, Pedreño MA, Almagro L. Production and localization of hydrogen peroxide and nitric oxide in grapevine cells elicited with cyclodextrins and methyl jasmonate. JOURNAL OF PLANT PHYSIOLOGY 2019; 237:80-86. [PMID: 31030109 DOI: 10.1016/j.jplph.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
The use of methyl jasmonate, alone or in combination with cyclic oligosaccharides such as cyclodextrins, has proved to be a successful strategy for increasing the production of trans-resveratrol in Vitis vinifera cell cultures. However, understanding the intracellular signalling pathways involved in its production would improve the management of grapevine cells as biofactories of this high-value natural product. The results obtained herein confirm the involvement of hydrogen peroxide and nitric oxide in cyclodextrins and methyl jasmonate-induced trans-resveratrol production in grapevine cell cultures. In fact, methyl jasmonate led to maximal intracellular levels of hydrogen peroxide and nitric oxide after 24 h of treatment, but extracellular hydrogen peroxide was only detected in the culture medium when grapevine cells were treated with cyclodextrins. The results derived from the cytochemical detection of H2O2 in elicited grapevine cell cultures also suggested that the combined treatment with cyclodextrins and methyl jasmonate not only increased the production of H2O2 but also released cell wall fragments with electron-dense deposits. Moreover, nitric oxide was localized in all the cellular compartments, particularly in the nucleus and cytoplasmic organelles, whereas hydrogen peroxide was mainly found in cytoplasmic areas close to the cell wall, and in the nucleoplasm.
Collapse
Affiliation(s)
- Sarai Belchí-Navarro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| | - Marina Abellán Rubio
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| | - María Angeles Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain.
| |
Collapse
|
11
|
Hanaka A, Nowak A, Plak A, Dresler S, Ozimek E, Jaroszuk-Ściseł J, Wójciak-Kosior M, Sowa I. Bacterial Isolate Inhabiting Spitsbergen Soil Modifies the Physiological Response of Phaseolus coccineus in Control Conditions and under Exogenous Application of Methyl Jasmonate and Copper Excess. Int J Mol Sci 2019; 20:E1909. [PMID: 30999692 PMCID: PMC6514558 DOI: 10.3390/ijms20081909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to demonstrate the potential of the promotion and regulation of plant physiology and growth under control and copper stress conditions, and the impact of the exogenous application of methyl jasmonate on this potential. Runner bean plants were treated with methyl jasmonate (1 or 10 µM) (J; J1 or J10) and Cu (50 µM), and inoculated with a bacterial isolate (S17) originating from Spitsbergen soil, and identified as Pseudomonas luteola using the analytical profile index (API) test. Above- and under-ground plant parts were analyzed. The growth parameters; the concentration of the photosynthetic pigments, elements, flavonoids (FLAVO), phenolics (TPC), allantoin (ALLA), and low molecular weight organic acids (LMWOAs); the activity of antioxidant enzymes and enzymes of resistance induction pathways (e.g., superoxide dismutase (SOD), catalase (CAT), ascorbate (APX) and guaiacol (GPX) peroxidase, glucanase (GLU), and phenylalanine (PAL) and tyrosine ammonia-lyase (TAL)), and the antioxidant capacity (AC) were studied. The leaves exhibited substantially higher ALLA and LMWOA concentrations as well as PAL and TAL activities, whereas the roots mostly had higher activities for a majority of the enzymes tested (i.e., SOD, CAT, APX, GPX, and GLU). The inoculation with S17 mitigated the effect of the Cu stress. Under the Cu stress and in the presence of J10, isolate S17 caused an elevation of the shoot fresh weight, K concentration, and TAL activity in the leaves, and APX and GPX (also at J1) activities in the roots. In the absence of Cu, isolate S17 increased the root length and the shoot-to-root ratio, but without statistical significance. In these conditions, S17 contributed to a 236% and 34% enhancement of P and Mn, respectively, in the roots, and a 19% rise of N in the leaves. Under the Cu stress, S17 caused a significant increase in FLAVO and TPC in the leaves. Similarly, the levels of FLAVO, TPC, and AC were enhanced after inoculation with Cu and J1. Regardless of the presence of J, inoculation at Cu excess caused a reduction of SOD and CAT activities, and an elevation of GPX. The effects of inoculation were associated with the application of Cu and J, which modified plant response mainly in a concentration-dependent manner (e.g., PAL, TAL, and LMWOA levels). The conducted studies demonstrated the potential for isolate S17 in the promotion of plant growth.
Collapse
Affiliation(s)
- Agnieszka Hanaka
- Department of Plant Physiology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Artur Nowak
- Department of Environmental Microbiology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Andrzej Plak
- Department of Geology and Soil Science, Maria Curie-Skłodowska University, Kraśnicka Ave. 2cd, 20-718 Lublin, Poland.
| | - Sławomir Dresler
- Department of Plant Physiology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Ewa Ozimek
- Department of Environmental Microbiology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Jolanta Jaroszuk-Ściseł
- Department of Environmental Microbiology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Magdalena Wójciak-Kosior
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
12
|
Belchí-Navarro S, Almagro L, Bru-Martínez R, Pedreño MA. Changes in the secretome of Vitis vinifera cv. Monastrell cell cultures treated with cyclodextrins and methyl jasmonate. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:520-527. [PMID: 30448023 DOI: 10.1016/j.plaphy.2018.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Elicitors induce defense responses that resemble those triggered by pathogen attack, including the synthesis of phytoalexins and pathogen-related proteins, which are accumulated in the extracellular space. In this work we analyze the changes in the secretome of Vitis vinifera cv. Monastrell cell cultures. This refers to the secreted proteome obtained from cell suspension cultures, in response to treatment with cyclodextrins and methyl jasmonate, separately or in combination using label-free quantitative approaches. Of the proteins found, thirty-three did not show significant differences in response to the different treatments carried out, indicating that these proteins were expressed in a constitutive way in both control and elicited grapevine cell cultures. These proteins included pathogenesis-related proteins 4 and 5, class III peroxidases, NtPRp-27, chitinases and class IV endochitinases, among others. Moreover, eleven proteins were differentially expressed in the presence of cyclodextrins and/or methyl jasmonate: three different peroxidases, two pathogenesis related protein 1, LysM domain-containing GPI-anchored protein 1, glycerophosphoryl diester phosphodiesterase, reticulin oxidase, heparanase, β-1,3-glucanase and xyloglucan endotransglycosylase. Treatments with cyclodextrins reinforced the defensive arsenal and induced the accumulation of peroxidase V and xyloglucan endotransglycosylase. However, elicitation with methyl jasmonate decreased the levels of several proteins such as pathogenesis related protein 1, LysM domain-containing GPI-anchored protein 1, cationic peroxidase, and glycerophosphoryl diester phosphodiesterase, but increased the levels of new gene products such as heparanase, β-1,3 glucanase, reticulin oxidase, and peroxidase IV, all of which could be used as potential biomarkers in the grapevine defense responses.
Collapse
Affiliation(s)
- S Belchí-Navarro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| | - L Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain.
| | - R Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante and Instituto de Investigación Sanitaria y Biomédica de Alicante ISABIAL-FISABIO, Alicante, Spain
| | - M A Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| |
Collapse
|
13
|
Gbongue LR, Lalaymia I, Zeze A, Delvaux B, Declerck S. Increased Silicon Acquisition in Bananas Colonized by Rhizophagus irregularis MUCL 41833 Reduces the Incidence of Pseudocercospora fijiensis. FRONTIERS IN PLANT SCIENCE 2019; 9:1977. [PMID: 30687370 PMCID: PMC6334260 DOI: 10.3389/fpls.2018.01977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/19/2018] [Indexed: 05/20/2023]
Abstract
This work aimed to test the hypothesis that the combination of arbuscular mycorrhizal fungi (AMF) and accumulation of silicon (Si) in banana plants via its uptake and transport by the fungus reduces the incidence of Black Leaf Steak Disease (BLSD) caused by Pseudocercospora fijiensis. Methods: A pot experiment was conducted to compare BLSD symptoms on leaves of banana plants colonized or not by the AMF Rhizophagus irregularis MUCL 41833 and exposed or not to Si added to the growth substrate. Results: A marked increase in plant growth parameters (i.e., pseudostem diameter and height, leaf surface area, shoot, root and total dry weight) as well as accumulation of Si, P, and Ca were noticed in the AMF-colonized banana plants in presence as well as in absence of Si added to the growth substrate. Similarly Si addition to the substrate increased plant growth parameters. Leave symptoms caused by the pathogen were observed in all the treatments but were reduced in presence of AMF as well as in presence of Si added to the growth substrate. The more drastic reduction was noticed in the AMF-colonized plants with Si added to the growth substrate. The Severity Index as well as Area Under Disease Progress Curve were considerably decreased both at 21 (∼48% and 48%, respectively) and 35 days (∼21% and ∼32%, respectively) after inoculation of the pathogen as compared with non-AMF-colonized plants in absence of Si added to the substrate. Conclusion: Our findings revealed that AMF-colonized banana plants grown in a subs-trate supplemented with Si were less impacted by P. fijiensis than non-colonized plants grown without Si added to the growth substrate. The combination of AMF-colonized banana plants (during the weaning phase or in vitro) with the application of Si to soil seems thus a thoughtful option to mitigate the impact of BLSD in bananas, although such strategy needs first to be evaluated under field conditions to appraise its real potential.
Collapse
Affiliation(s)
- Louis-Raymond Gbongue
- Laboratoire de Biotechnologies Végétale et Microbienne, Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro, Côte d’Ivoire
| | - Ismahen Lalaymia
- Mycology, Applied Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Adolphe Zeze
- Laboratoire de Biotechnologies Végétale et Microbienne, Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro, Côte d’Ivoire
| | - Bruno Delvaux
- Faculté des Bioingénieurs, Earth and Life Institute – Soil Science, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Mycology, Applied Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
14
|
Hanaka A, Lechowski L, Mroczek-Zdyrska M, Strubińska J. Oxidative enzymes activity during abiotic and biotic stresses in Zea mays leaves and roots exposed to Cu, methyl jasmonate and Trigonotylus caelestialium. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:1-5. [PMID: 29398834 PMCID: PMC5787111 DOI: 10.1007/s12298-017-0479-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/26/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
The activities of antioxidative enzymes, i.e. superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX), in the leaves and roots of Zea mays L. plants exposed to abiotic (methyl jasmonate, MJ, or/and copper, Cu) and biotic (Trigonotylus caelestialium) factors were examined. The contribution of MJ as a signal molecule in the defense mechanism against abiotic and biotic stresses was studied. All plants were cultivated hydroponically and divided into three groups: not treated by abiotic factors (control), treated by MJ only (MJ) and by MJ and Cu (MJ + Cu) and in each group half of the plants were exposed to T. caelestialium attack. The enzymatic activities of SOD, CAT, APX, and GPX in the leaves were higher in the insect-treated than non-insect-treated control plants, but lower in both MJ + Cu- or MJ- and insect-treated plants. In the roots, the enzyme activities were elevated in all insect-treated plants with the highest rise in MJ + Cu, in comparison with the MJ-treated plants. The results showed that MJ and MJ + Cu were efficient in reducing the activity of the antioxidative enzymes in the leaves under the insect influence by elevating enzyme activity in the roots.
Collapse
Affiliation(s)
- Agnieszka Hanaka
- Department of Plant Physiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Lech Lechowski
- Department of Zoology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | | | - Joanna Strubińska
- Department of Cell Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
15
|
Chakraborty N, Basak J. Exogenous application of methyl jasmonate induces defense response and develops tolerance against mungbean yellow mosaic India virus in Vigna mungo. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 46:69-81. [PMID: 30939259 DOI: 10.1071/fp18168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/29/2018] [Indexed: 06/09/2023]
Abstract
Vigna mungo (L.)Hepper is an economically important leguminous crop in south-east Asia. However, its production is severely affected by Mungbean yellow mosaic India virus (MYMIV). It is well established that methyl jasmonate (MeJA) is effective in inducing resistance against pathogens in several plants. To assess the role of MeJA in developing MYMIV tolerance in V. mungo, we analysed time-dependent biochemical and molecular responses of MYMIV susceptible V. mungo after exogenous application of different MeJA concentrations, followed by MYMIV infection. Our analysis revealed that exogenous application of different concentrations of MeJA resulted in decreased levels of malondialdehyde with higher membrane stability index values in MYMIV susceptible V. mungo, suggesting the protective role of MeJA through restoring the membrane stability. Moreover, the level of expression of different antioxidative enzymes revealed that exogenous MeJA is also very effective in ROS homeostasis maintenance. Enhanced expressions of the defence marker genes lipoxygenase and phenylalanine ammonia-lyase and the reduced expression of the MYMIV coat-protein encoding gene in all MeJA treated plants post MYMIV infection revealed that exogenous application of MeJA is effective for MYMIV tolerance in V. mungo. Our findings provide new insights into the physiological and molecular mechanisms of MYMIV tolerance in Vigna induced by MeJA.
Collapse
Affiliation(s)
- Nibedita Chakraborty
- Department of Biotechnology, Visva-Bharati University, Santiniketan, 731235, India
| | - Jolly Basak
- Department of Biotechnology, Visva-Bharati University, Santiniketan, 731235, India
| |
Collapse
|
16
|
Dubrovina AS, Kiselev KV. Regulation of stilbene biosynthesis in plants. PLANTA 2017; 246:597-623. [PMID: 28685295 DOI: 10.1007/s00425-017-2730-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/28/2017] [Indexed: 05/18/2023]
Abstract
This review analyzes the advances in understanding the natural signaling pathways and environmental factors regulating stilbene biosynthesis. We also discuss the studies reporting on stilbene content and repertoire in plants. Stilbenes, including the most-studied stilbene resveratrol, are a family of phenolic plant secondary metabolites that have been the subject of intensive research due to their valuable pharmaceutical effects and contribution to plant disease resistance. Understanding the natural mechanisms regulating stilbene biosynthesis in plants could be useful for both the development of new plant protection strategies and for commercial stilbene production. In this review, we focus on the environmental factors and cell signaling pathways regulating stilbene biosynthesis in plants and make a comparison with the regulation of flavonoid biosynthesis. This review also analyzes the recent data on stilbene biosynthetic genes and summarizes the available studies reporting on both stilbene content and stilbene composition in different plant families.
Collapse
Affiliation(s)
- A S Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
| | - K V Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
- Department of Biotechnology and Microbiology, The School of Natural Sciences, Far Eastern Federal University, Vladivostok, 690090, Russia.
| |
Collapse
|
17
|
Pawełek A, Duszyn M, Świeżawska B, Szmidt-Jaworska A, Jaworski K. Transcriptional response of a novel HpCDPK1 kinase gene from Hippeastrum x hybr. to wounding and fungal infection. JOURNAL OF PLANT PHYSIOLOGY 2017; 216:108-117. [PMID: 28609667 DOI: 10.1016/j.jplph.2017.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 05/08/2023]
Abstract
Calcium dependent protein kinases (CDPK) are well established plant sensor and effectors for calcium ions and participate in regulation of multiple abiotic and biotic stress responses in plant cells. Here we present the identification and characterization of a new CDPK kinase gene from bulbous plant Hippeastrum x hybr. and examine the role of this kinase in stress responses leading to phytoalexin (PA) production in plant tissues. In the previous research, it was shown that Hippeastrum bulbs mechanically wounded or infected with Peyronellaea curtisii (=Phoma narcissi) are inducted to an antifungal red substance synthesis. In this research, we demonstrated Ca2+ dependence of the phytoalexin production by wounded bulbs. Furthermore, the isolated HpCDPK1 cDNA for ORF was found to be 1596bp long and encoded 531 amino acid protein with CDPK kinase activity, as was shown by recombinant GST-HpCDPK1 enzyme production and analysis. HpCDPK1 transcript was present in all vegetative and chosen generative organs of Hippeastrum plant. The dynamics of the observed HpCDPK1 mRNA changes in bulbs depended on stressor type. The mechanical injury caused one wave of transcript increase while more complex transcript changes were observed within 48h after Peyronellaea inoculation. In plant bulbs already accumulating red phytoalexin, increases in HpCDPK1 mRNA level were observed at certain intervals within 48h whereas, in the case of fungal infection, only one big increment in the transcript amount at the 10th minute after inoculation was detected. The observed transcriptional response of HpCDPK1 gene to wounding and pathogen infection stress suggests a positive correlation with phytoalexin synthesis and maintenance in bulb tissues and puts more light on CDPK kinase role in the plant stress response regulation. This also bears some potential for understanding the mechanism of a phytoalexin formation.
Collapse
Affiliation(s)
- Agnieszka Pawełek
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Maria Duszyn
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Brygida Świeżawska
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Adriana Szmidt-Jaworska
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Krzysztof Jaworski
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| |
Collapse
|
18
|
Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S. Jasmonates: Multifunctional Roles in Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:813. [PMID: 27379115 PMCID: PMC4908892 DOI: 10.3389/fpls.2016.00813] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) [Jasmonic acid (JA) and methyl jasmonates (MeJAs)] are known to take part in various physiological processes. Exogenous application of JAs so far tested on different plants under abiotic stresses particularly salinity, drought, and temperature (low/high) conditions have proved effective in improving plant stress tolerance. However, its extent of effectiveness entirely depends on the type of plant species tested or its concentration. The effects of introgression or silencing of different JA- and Me-JA-related genes have been summarized in this review, which have shown a substantial role in improving crop yield and quality in different plants under stress or non-stress conditions. Regulation of JAs synthesis is impaired in stressed as well as unstressed plant cells/tissues, which is believed to be associated with a variety of metabolic events including signal transduction. Although, mitogen activated protein kinases (MAPKs) are important components of JA signaling and biosynthesis pathways, nitric oxide, ROS, calcium, ABA, ethylene, and salicylic acid are also important mediators of plant growth and development during JA signal transduction and synthesis. The exploration of other signaling molecules can be beneficial to examine the details of underlying molecular mechanisms of JA signal transduction. Much work is to be done in near future to find the proper answers of the questions like action of JA related metabolites, and identification of universal JA receptors etc. Complete signaling pathways involving MAPKs, CDPK, TGA, SIPK, WIPK, and WRKY transcription factors are yet to be investigated to understand the complete mechanism of action of JAs.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, S.P. CollegeSrinagar, India
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Management, Faculty of Forestry, Universiti Putra MalaysiaSelangor, Malaysia
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and TechnologyIslamabad, Pakistan
| | - Subzar A. Sheikh
- Department of Botany, Govt. Degree College (Boys), AnantnagAnantnag, India
| | - Nudrat A. Akram
- Department of Botany, GC University FaisalabadFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - A. M. Kazi
- Department of Botany, University of SargodhaSargodha, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
19
|
Perazzolli M, Palmieri MC, Matafora V, Bachi A, Pertot I. Phosphoproteomic analysis of induced resistance reveals activation of signal transduction processes by beneficial and pathogenic interaction in grapevine. JOURNAL OF PLANT PHYSIOLOGY 2016; 195:59-72. [PMID: 27010348 DOI: 10.1016/j.jplph.2016.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
Protein phosphorylation regulates several key processes of the plant immune system. Protein kinases and phosphatases are pivotal regulators of defense mechanisms elicited by resistance inducers. However, the phosphorylation cascades that trigger the induced resistance mechanisms in plants have not yet been deeply investigated. The beneficial fungus Trichoderma harzianum T39 (T39) induces resistance against grapevine downy mildew (Plasmopara viticola), but its efficacy could be further improved by a better understanding of the cellular regulations involved. We investigated quantitative changes in the grapevine phosphoproteome during T39-induced resistance to get an overview of regulatory mechanisms of downy mildew resistance. Immunodetection experiments revealed activation of the 45 and 49kDa kinases by T39 treatment both before and after pathogen inoculation, and the phosphoproteomic analysis identified 103 phosphopeptides that were significantly affected by the phosphorylation cascades during T39-induced resistance. Peptides affected by T39 treatment showed comparable phosphorylation levels after P. viticola inoculation, indicating activation of the microbial recognition machinery before pathogen infection. Phosphorylation profiles of proteins related to photosynthetic processes and protein ubiquitination indicated a partial overlap of cellular responses in T39-treated and control plants. However, phosphorylation changes of proteins involved in response to stimuli, signal transduction, hormone signaling, gene expression regulation, and RNA metabolism were exclusively elicited by P. viticola inoculation in T39-treated plants. These results highlighted the relevance of phosphorylation changes during T39-induced resistance and identified key regulator candidates of the grapevine defense against downy mildew.
Collapse
Affiliation(s)
- Michele Perazzolli
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, Italy.
| | - Maria Cristina Palmieri
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Vittoria Matafora
- Biological Mass Spectrometry Unit DIBIT, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Angela Bachi
- Biological Mass Spectrometry Unit DIBIT, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Ilaria Pertot
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, Italy
| |
Collapse
|
20
|
Yarullina LG, Kasimova RI, Ibragimov RI, Akhatova AR, Umarov IA, Maksimov IV. Qualitative and quantitative changes of potato tuber proteome under the influence of signal molecules and infection with Phytophthora infestans. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816010154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Shi L, Gong L, Zhang X, Ren A, Gao T, Zhao M. The regulation of methyl jasmonate on hyphal branching and GA biosynthesis in Ganoderma lucidum partly via ROS generated by NADPH oxidase. Fungal Genet Biol 2015; 81:201-11. [DOI: 10.1016/j.fgb.2014.12.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 12/26/2022]
|
22
|
Chen Y, Takeda T, Aoki Y, Fujita K, Suzuki S, Igarashi D. Peptidoglycan from fermentation by-product triggers defense responses in grapevine. PLoS One 2014; 9:e113340. [PMID: 25427192 PMCID: PMC4245132 DOI: 10.1371/journal.pone.0113340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/22/2014] [Indexed: 12/02/2022] Open
Abstract
Plants are constantly under attack from a variety of microorganisms, and rely on a series of complex detection and response systems to protect themselves from infection. Here, we found that a by-product of glutamate fermentation triggered defense responses in grapevine, increasing the expression of defense response genes in cultured cells, foliar chitinase activity, and resistance to infection by downy mildew in leaf explants. To identify the molecule that triggered this innate immunity, we fractionated and purified candidates extracted from Corynebacterium glutamicum, a bacterium used in the production of amino acids by fermentation. Using hydrolysis by lysozyme, a silkworm larva plasma detection system, and gel filtration analysis, we identified peptidoglycan as inducing the defense responses. Peptidoglycans of Escherichia coli, Bacillus subtilis, and Staphylococcus aureus also generated similar defensive responses.
Collapse
Affiliation(s)
- Yang Chen
- Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Taito Takeda
- Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Yoshinao Aoki
- Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Keiko Fujita
- Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi, Japan
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, Japan
| | - Shunji Suzuki
- Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Daisuke Igarashi
- Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
23
|
Villa-Rodriguez JA, Palafox-Carlos H, Yahia EM, Ayala-Zavala JF, Gonzalez-Aguilar GA. Maintaining Antioxidant Potential of Fresh Fruits and Vegetables After Harvest. Crit Rev Food Sci Nutr 2014; 55:806-22. [DOI: 10.1080/10408398.2012.685631] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Weng K, Li ZQ, Liu RQ, Wang L, Wang YJ, Xu Y. Transcriptome of Erysiphe necator-infected Vitis pseudoreticulata leaves provides insight into grapevine resistance to powdery mildew. HORTICULTURE RESEARCH 2014; 1:14049. [PMID: 26504551 PMCID: PMC4596327 DOI: 10.1038/hortres.2014.49] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/11/2014] [Accepted: 08/06/2014] [Indexed: 05/23/2023]
Abstract
Powdery mildew (PM), which is caused by the pathogen Erysiphe necator (Schw.) Burr., is the single most damaging disease of cultivated grapes (Vitis vinifera) worldwide. However, little is known about the transcriptional response of grapes to infection with PM. RNA-seq analysis was used for deep sequencing of the leaf transcriptome to study PM resistance in Chinese wild grapes (V. pseudoreticulata Baihe 35-1) to better understand the interaction between host and pathogen. Greater than 100 million (M) 90-nt cDNA reads were sequenced from a cDNA library derived from PM-infected leaves. Among the sequences obtained, 6541 genes were differentially expressed (DEG) and were annotated with Gene Ontology terms and by pathway enrichment. The significant categories that were identified included the following: defense, salicylic acid (SA) and jasmonic acid (JA) responses; systemic acquired resistance (SAR); hypersensitive response; plant-pathogen interaction; flavonoid biosynthesis; and plant hormone signal transduction. Various putative secretory proteins were identified, indicating potential defense responses to PM infection. In all, 318 putative R-genes and 183 putative secreted proteins were identified, including the defense-related R-genes BAK1, MRH1 and MLO3 and the defense-related secreted proteins GLP and PR5. The expression patterns of 16 genes were further illuminated by RT-qPCR. The present study identified several candidate genes and pathways that may contribute to PM resistance in grapes and illustrated that RNA-seq is a powerful tool for studying gene expression. The RT-qPCR results reveal that effective resistance responses of grapes to PM include enhancement of JA and SAR responses and accumulation of phytoalexins.
Collapse
Affiliation(s)
- Kai Weng
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, shanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, shanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, shanxi 712100, China.
| | - Zhi-Qian Li
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, shanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, shanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, shanxi 712100, China.
| | - Rui-Qi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, shanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, shanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, shanxi 712100, China.
| | - Lan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, shanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, shanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, shanxi 712100, China.
| | - Yue-Jin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, shanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, shanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, shanxi 712100, China.
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, shanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, shanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, shanxi 712100, China.
| |
Collapse
|
25
|
Nabity PD, Haus MJ, Berenbaum MR, DeLucia EH. Leaf-galling phylloxera on grapes reprograms host metabolism and morphology. Proc Natl Acad Sci U S A 2013; 110:16663-8. [PMID: 24067657 PMCID: PMC3799386 DOI: 10.1073/pnas.1220219110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endoparasitism by gall-forming insects dramatically alters the plant phenotype by altering growth patterns and modifying plant organs in ways that appear to directly benefit the gall former. Because these morphological and physiological changes are linked to the presence of the insect, the induced phenotype is said to function as an extension of the parasite, albeit by unknown mechanisms. Here we report the gall-forming aphid-like parasite phylloxera, Daktulosphaira vitifoliae, induces stomata on the adaxial surface of grape leaves where stomata typically do not occur. We characterized the function of the phylloxera-induced stomata by tracing transport of assimilated carbon. Because induction of stomata suggests a significant manipulation of primary metabolism, we also characterized the gall transcriptome to infer the level of global reconfiguration of primary metabolism and the subsequent changes in downstream secondary metabolism. Phylloxera feeding induced stomata formation in proximity to the insect and promoted the assimilation and importation of carbon into the gall. Gene expression related to water, nutrient, and mineral transport; glycolysis; and fermentation increased in leaf-gall tissues. This shift from an autotrophic to a heterotrophic profile occurred concurrently with decreased gene expression for nonmevalonate and terpenoid synthesis and increased gene expression in shikimate and phenylpropanoid biosynthesis, secondary metabolite systems that alter defense status in grapes. These functional insect-induced stomata thus comprise part of an extended phenotype, whereby D. vitifoliae globally reprograms grape leaf development to alter patterns of primary metabolism, nutrient mobilization, and defense investment in favor of the galling habit.
Collapse
Affiliation(s)
- Paul D. Nabity
- Departments of Plant Biology and
- Institute of Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | | | - May R. Berenbaum
- Entomology, and
- Institute of Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Evan H. DeLucia
- Departments of Plant Biology and
- Institute of Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
26
|
Grant MR, Kazan K, Manners JM. Exploiting pathogens' tricks of the trade for engineering of plant disease resistance: challenges and opportunities. Microb Biotechnol 2013; 6:212-22. [PMID: 23279915 PMCID: PMC3815916 DOI: 10.1111/1751-7915.12017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 11/17/2012] [Indexed: 12/01/2022] Open
Abstract
With expansion of our understanding of pathogen effector strategies and the multiplicity of their host targets, it is becoming evident that novel approaches to engineering broad-spectrum resistance need to be deployed. The increasing availability of high temporal gene expression data of a range of plant–microbe interactions enables the judicious choices of promoters to fine-tune timing and magnitude of expression under specified stress conditions. We can therefore contemplate engineering a range of transgenic lines designed to interfere with pathogen virulence strategies that target plant hormone signalling or deploy specific disease resistance genes. An advantage of such an approach is that hormonal signalling is generic so if this strategy is effective, it can be easily implemented in a range of crop species. Additionally, multiple re-wired lines can be crossed to develop more effective responses to pathogens.
Collapse
Affiliation(s)
- Murray R Grant
- College of Life and Environmental Sciences, University of Exeter, Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | | | | |
Collapse
|
27
|
Tassoni A, Durante L, Ferri M. Combined elicitation of methyl-jasmonate and red light on stilbene and anthocyanin biosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:775-781. [PMID: 22424571 DOI: 10.1016/j.jplph.2012.01.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 05/31/2023]
Abstract
Vitis vinifera cell suspensions are a suitable system to study the metabolic regulation of a large range of polyphenols, including flavonoids and stilbenes that play important roles in plant development. Grape cv. Barbera petioles cell cultures were treated with red light and 10 μM methyl-jasmonate (MeJA), alone or in combination, to investigate their influence and/or induction effect on the production of anthocyanins, catechins and free and mono-glucosylated stilbenes. The synthesis of total anthocyanins was slightly decreased by red light alone, while MeJA and MeJA plus red light increased the levels of these metabolites. When compared to the relative controls, the red light treatment decreased the amount of catechins and increased their release in the culture medium, while MeJA alone or in combination with red light increased their production. Red light treatment generally enhanced the amount of free and mono-glucosylated stilbenes during the entire observation period, as well as the percentage of their release in the media. Treatment with MeJA strongly promoted the production of total stilbenes, which was further elicited by the MeJA plus red light treatment. During the combined treatment, the presence of the light stimulus improved the effect of MeJA by anticipating the maximum increase of stilbenes which were also largely released (up to 90%). These results demonstrate that, in grapevine, as in other plant systems, the change of conditions in which the MeJA stimulus is perceived (e.g. going from total white to red light) drastically modifies the plant response to this hormone. The present paper confirms that the jasmonate transduction pathway is integrated into an elaborate signaling network that also comprehends the red light signaling pathway.
Collapse
Affiliation(s)
- Annalisa Tassoni
- Department of Experimental Evolutionary Biology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | | | | |
Collapse
|
28
|
Ahuja I, Kissen R, Bones AM. Phytoalexins in defense against pathogens. TRENDS IN PLANT SCIENCE 2012; 17:73-90. [PMID: 22209038 DOI: 10.1016/j.tplants.2011.11.002] [Citation(s) in RCA: 610] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/04/2011] [Accepted: 11/14/2011] [Indexed: 05/18/2023]
Abstract
Plants use an intricate defense system against pests and pathogens, including the production of low molecular mass secondary metabolites with antimicrobial activity, which are synthesized de novo after stress and are collectively known as phytoalexins. In this review, we focus on the biosynthesis and regulation of camalexin, and its role in plant defense. In addition, we detail some of the phytoalexins produced by a range of crop plants from Brassicaceae, Fabaceae, Solanaceae, Vitaceae and Poaceae. This includes the very recently identified kauralexins and zealexins produced by maize, and the biosynthesis and regulation of phytoalexins produced by rice. Molecular approaches are helping to unravel some of the mechanisms and reveal the complexity of these bioactive compounds, including phytoalexin action and metabolism.
Collapse
Affiliation(s)
- Ishita Ahuja
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway.
| | | | | |
Collapse
|
29
|
Almagro L, Bru R, Pugin A, Pedreño MA. Early signaling network in tobacco cells elicited with methyl jasmonate and cyclodextrins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 51:1-9. [PMID: 22153233 DOI: 10.1016/j.plaphy.2011.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/28/2011] [Indexed: 05/31/2023]
Abstract
We analyze, for the first time, the early signal transduction pathways triggered by methyl jasmonate (MJ) and cyclodextrins (CDs) in tobacco (Nicotiana tabacum) cell cultures, paying particular attention to changes in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)), the production of hydrogen peroxide (H(2)O(2)) and nitric oxide (NO), and late events like the induction of capsidiol. Our data indicate that MJ and CDs trigger a [Ca(2+)](cyt) rise promoted by Ca(2+) influx through Ca(2+)-permeable channels. The joint presence of MJ and CDs provokes a first increase in [Ca(2+)](cyt) similar to that observed in MJ-treated cells, followed by a second peak similar to that found in the presence of CDs alone. Moreover, oxidative burst induced by MJ is more pronounced when tobacco cells are incubated with CDs alone or in combination with MJ. The presence of both elicitors provokes H(2)O(2) production similar to that found in CD-treated cells, and a sustained response similar to that found in MJ-treated cells. In all treatments, H(2)O(2) production is dependent on Ca(2+) influx and protein phosphorylation events. Similarly, the joint action of both elicitors provokes NO accumulation, although to a lesser extent that in MJ-treated cells because CDs alone do not trigger this accumulation. This NO production is dependent on Ca(2+) influx but independent of both H(2)O(2) production and staurosporine-sensitive phosphorylation events. Taken as a whole, these results suggest the existence of different intracellular signaling pathways for both elicitors. Likewise, CDs might act by regulating the signaling pathway triggered by MJ since, in the presence of both compounds, CDs neutralize the strong oxidative and nitrosative bursts triggered by MJ and therefore, they regulate both H(2)O(2) and NO levels.
Collapse
Affiliation(s)
- Lorena Almagro
- Department of Plant Biology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
30
|
Santamaria AR, Mulinacci N, Valletta A, Innocenti M, Pasqua G. Effects of elicitors on the production of resveratrol and viniferins in cell cultures of Vitis vinifera L. cv Italia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9094-9101. [PMID: 21751812 DOI: 10.1021/jf201181n] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Methyl jasmonate, jasmonic acid and chitosan were tested as elicitors on cell suspension cultures obtained from Vitis vinifera cv Italia to investigate their effect on stilbene production. Stilbene accumulation in the callus, grown under nonelicited conditions, was also investigated. Calli and cell suspensions were obtained in a B5 culture medium supplemented with 0.2 mg L(-1) NAA and 1 mg L(-1) KIN. Stilbene determination was achieved by HPLC/DAD/MS. Whereas callus biosynthesized only piceid, cell suspensions elicited with jasmonates produced several stilbenes, mainly viniferins. In suspended cells, methyl jasmonate and jasmonic acid were the most effective in stimulating stilbene biosynthesis, whereas chitosan was less effective; in fact, the amount of stilbenes obtained with this elicitor was not significantly different from that obtained for the control cells. The maximum production of total stilbenes was at day 20 of culture with 0.970 and 1.023 mg g(-1) DW for MeJA and JA, respectively.
Collapse
Affiliation(s)
- Anna Rita Santamaria
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
31
|
Thibon C, Cluzet S, Mérillon JM, Darriet P, Dubourdieu D. 3-Sulfanylhexanol precursor biogenesis in grapevine cells: the stimulating effect of Botrytis cinerea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:1344-1351. [PMID: 21235257 DOI: 10.1021/jf103915y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Volatile thiols, compounds that contribute strongly to the varietal aroma, are present in much higher concentrations in sweet wines than in dry wines. This positive effect, due to the presence of Botrytis cinerea on the berries, in fact results from a strong enrichment of cysteine S-conjugate precursors in botrytized berries. In the present study, a convenient model was investigated to reproduce and therefore study this phenomenon. A Vitis vinifera cell culture was used as a simple model, and we focused on S-3-(hexan-1-ol)-l-cysteine (P-3SH), the cysteinylated precursor of 3-sulfanylhexanol. We demonstrated that grapevine cells were able to produce P-3SH and that the presence of B. cinerea considerably increased the precursor level (up to 1000-fold). This positive result was determined to be due to metabolites secreted by the fungus. These molecules were temperature sensitive, unstable over time, and their production was activated in the presence of grapevine cells. Moreover, part of the pathway leading to P-3SH was deciphered: it was directly derived from the cleavage of S-3-(hexan-1-ol)-l-glutathione, which itself was generated after a conjugation of glutathione on (E)-2-hexenal.
Collapse
Affiliation(s)
- Cécile Thibon
- Université de Bordeaux , UMR 1219 Œnologie, INRA, ISVV, 210 chemin de Leysotte, CS 50008, Villenave d'Ornon, F-33882, France.
| | | | | | | | | |
Collapse
|
32
|
Sharathchandra RG, Stander C, Jacobson D, Ndimba B, Vivier MA. Proteomic analysis of grape berry cell cultures reveals that developmentally regulated ripening related processes can be studied using cultured cells. PLoS One 2011; 6:e14708. [PMID: 21379583 PMCID: PMC3040747 DOI: 10.1371/journal.pone.0014708] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/04/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND This work describes a proteomics profiling method, optimized and applied to berry cell suspensions to evaluate organ-specific cultures as a platform to study grape berry ripening. Variations in berry ripening within a cluster(s) on a vine and in a vineyard are a major impediment towards complete understanding of the functional processes that control ripening, specifically when a characterized and homogenous sample is required. Berry cell suspensions could overcome some of these problems, but their suitability as a model system for berry development and ripening needs to be established first. METHODOLOGY/PRINCIPAL FINDINGS In this study we report on the proteomic evaluation of the cytosolic proteins obtained from synchronized cell suspension cultures that were established from callus lines originating from green, véraison and ripe Vitis vinifera berry explants. The proteins were separated using liquid phase IEF in a Microrotofor cell and SDS PAGE. This method proved superior to gel-based 2DE. Principal component analysis confirmed that biological and technical repeats grouped tightly and importantly, showed that the proteomes of berry cultures originating from the different growth/ripening stages were distinct. A total of twenty six common bands were selected after band matching between different growth stages and twenty two of these bands were positively identified. Thirty two % of the identified proteins are currently annotated as hypothetical. The differential expression profile of the identified proteins, when compared with published literature on grape berry ripening, suggested common trends in terms of relative abundance in the different developmental stages between real berries and cell suspensions. CONCLUSIONS The advantages of having suspension cultures that accurately mimic specific developmental stages are profound and could significantly contribute to the study of the intricate regulatory and signaling networks responsible for berry development and ripening.
Collapse
Affiliation(s)
- Ramaschandra G. Sharathchandra
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| | - Charmaine Stander
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| | - Dan Jacobson
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| | - Bongani Ndimba
- Proteomics Research Laboratory, Department of Biotechnology, University of Western Cape, Bellville, South Africa
| | - Melané A. Vivier
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
- * E-mail:
| |
Collapse
|
33
|
Gonzalez A, Vera J, Castro J, Dennett G, Mellado M, Morales B, Correa JA, Moenne A. Co-occurring increases of calcium and organellar reactive oxygen species determine differential activation of antioxidant and defense enzymes in Ulva compressa (Chlorophyta) exposed to copper excess. PLANT, CELL & ENVIRONMENT 2010; 33:1627-40. [PMID: 20444222 DOI: 10.1111/j.1365-3040.2010.02169.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In order to analyse copper-induced calcium release and (reactive oxygen species) ROS accumulation and their role in antioxidant and defense enzymes activation, the marine alga Ulva compressa was exposed to 10 µM copper for 7 d. The level of calcium, extracellular hydrogen peroxide (eHP), intracellular hydrogen peroxide (iHP) and superoxide anions (SA) as well as the activities of ascorbate peroxidase (AP), glutathione reductase (GR), glutathione-S-transferase (GST), phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX) were determined. Calcium release showed a triphasic pattern with peaks at 2, 3 and 12 h. The second peak was coincident with increases in eHP and iHP and the third peak with the second increase of iHP. A delayed wave of SA occurred after day 3 and was not accompanied by calcium release. The accumulation of iHP and SA was mainly inhibited by organellar electron transport chains inhibitors (OETCI), whereas calcium release was inhibited by ryanodine. AP activation ceased almost completely after the use of OETCI. On the other hand, GR and GST activities were partially inhibited, whereas defense enzymes were not inhibited. In contrast, PAL and LOX were inhibited by ryanodine, whereas AP was not inhibited. Thus, copper stress induces calcium release and organellar ROS accumulation that determine the differential activation of antioxidant and defense enzymes.
Collapse
Affiliation(s)
- Alberto Gonzalez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Holková I, Bezáková L, Bilka F, Balažová A, Vanko M, Blanáriková V. Involvement of lipoxygenase in elicitor-stimulated sanguinarine accumulation in Papaver somniferum suspension cultures. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:887-892. [PMID: 20829053 DOI: 10.1016/j.plaphy.2010.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 04/14/2010] [Accepted: 08/13/2010] [Indexed: 05/29/2023]
Abstract
The involvement of lipoxygenase (LOX, EC 1.13.11.12) in elicitor-induced opium poppy defense response was investigated. Papaver somniferum L. suspension cultures were treated with abiotic elicitor methyl jasmonate (MJ), fungal elicitor (Botrytis cinerea homogenate) and phenidone (specific inhibitor of LOX) to determine the involvement of this enzyme in production of sanguinarine, the major secondary metabolite of opium poppy cultures. P. somniferum suspension cultures responded to elicitor treatment with strong and transient increase of LOX activity followed by sanguinarine accumulation. LOX activity increased in elicited cultures, reaching 9.8 times of the initial value at 10 h after MJ application and 2.9 times after B. cinerea application. Sanguinarine accumulated to maximal levels of 169.5 ± 12.5 μg g⁻¹ dry cell weight in MJ-elicited cultures and 288.0 ± 10.0 μg g⁻¹ dry cell weight in B. cinerea-elicited cultures. The treatment of cells with phenidone before elicitor addition, significantly reduced sanguinarine production. The relative molecular weight of P. somniferum LOX (83 kDa) was estimated by using immunobloting and its pH optimum was shown to be pH 6.5.
Collapse
Affiliation(s)
- Ivana Holková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, SK-832 32, Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|
35
|
Soares AMDS, Souza TFD, Jacinto T, Machado OLT. Effect of Methyl Jasmonate on antioxidative enzyme activities and on the contents of ROS and H2O2 in Ricinus communis leaves. ACTA ACUST UNITED AC 2010. [DOI: 10.1590/s1677-04202010000300001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Tânia Jacinto
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | | |
Collapse
|