1
|
Chen L, Yang Q, Zhang Y, Sun Y. Miniature-inverted-repeat transposable elements contribute to phenotypic variation regulation of rice induced by space environment. FRONTIERS IN PLANT SCIENCE 2025; 15:1446383. [PMID: 39845491 PMCID: PMC11751223 DOI: 10.3389/fpls.2024.1446383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025]
Abstract
Introduction Rice samples exposed to the space environment have generated diverse phenotypic variations. Miniature-inverted-repeat transposable elements (MITEs), often found adjacent to genes, play a significant role in regulating the plant genome. Herein, the contribution of MITEs in regulating space-mutagenic phenotypes was explored. Methods The space-mutagenic phenotype changes in the F3 to F5 generations of three space-mutagenic lines from the rice varieties Dongnong423 (DN423) and Dongnong (DN416) were meticulously traced. Rice leaves samples at the heading stage from three space-mutagenic lines were subjected to high coverage whole-genome bisulfite sequencing and whole-genome sequencing. These analyses were conducted to investigate the effects of MITEs related epigenetic and genetic variations on space-mutagenic phenotypes. Results and discussion Studies have indicated that MITEs within gene regulatory regions might contribute to the formation and differentiation of space-mutagenic phenotypes. The space environment has been shown to induce the transposable elements insertion polymorphisms of MITEs (MITEs-TIPs), with a notable preference for insertion near genes involved in stress response and phenotype regulation. The space-induced MITEs-TIPs contributed to the formation of space-mutagenic phenotype by modulating the expression of gene near the insertion site. This study underscored the pivotal role of MITEs in modulating plant phenotypic variation induced by the space environment, as well as the transgenerational stability of these phenotypic variants.
Collapse
Affiliation(s)
| | | | | | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| |
Collapse
|
2
|
Yang Q, Chen L, Zhang M, Wang W, Zhang B, Zhou D, Sun Y. Activation characteristics of Ty3-retrotransposons after spaceflight and genetic stability of insertion sites in rice progeny. FRONTIERS IN PLANT SCIENCE 2024; 15:1452592. [PMID: 39687316 PMCID: PMC11646775 DOI: 10.3389/fpls.2024.1452592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Introduction The space environment is mutagenic and may induce genomic and phenotypic variations. Exploring the changes in transposon activity in the rice genome under space radiation is of great significance. Methods To analyze the activation characteristics of Ty3-retrotransposons and genetic stability of insertion sites in rice progeny after spaceflight, seeds of Nipponbare, DN416, and DN423 were exposed on board the SJ-10 recoverable satellite for 12.5 days. The differential methylation and transcription levels of Ty3-retrotransposons in the genome of Nipponbare's F0 generation after spaceflight, as well as the genetic stability of Ty3-retrotransposon insertion sites in DN416 and DN423 from F3 to F5 generations, was analyzed. Results The study found that the retrotransposons of ancient and young transposon families underwent demethylation from the tillering to heading stages of Nipponbare plants, which were F0 generation of space-exposed seeds, when the Nipponbare seeds were hit by single space high charge and energy (HZE) particles with LET ≥ 100 keV/μm. the transcription levels significantly increased in ancient transposon families (osr30, osr40, and rire10) and young transposon families (dagul, rn215-125, osr37, RLG_15, osr34, rire8, rire3, rire2, and hopi) (p ≤ 0.05) when LET > 100 keV/μm. Furthermore, the young Ty3-retrotransposons, which included the hopi, squiq, dasheng, rire2, rire3, rire8, osr34, rn_215-125, dagul, and RLG_15 families, underwent 1 to 8 transpositions in the F3 to F5 of DN416 and DN423 mutants, and some of these transposon insertion sites were stably inherited. Discussion The research holds great significance for understanding the activation characteristics of Ty3-retrotransposons in the rice genome induced by space radiation and the genetic characteristics of transposon insertion sites in its progeny.
Collapse
Affiliation(s)
- Qing Yang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Lishan Chen
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Meng Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Wei Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Binquan Zhang
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Dazhuang Zhou
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| |
Collapse
|
3
|
Genome-Wide Comparison of Structural Variations and Transposon Alterations in Soybean Cultivars Induced by Spaceflight. Int J Mol Sci 2022; 23:ijms232213721. [PMID: 36430198 PMCID: PMC9696660 DOI: 10.3390/ijms232213721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Space mutation causes genetic and phenotypic changes in biological materials. Transposon activation is an adaptive mechanism for organisms to cope with changes in the external environment, such as space mutation. Although transposon alterations have been widely reported in diverse plant species, few studies have assessed the global transposon alterations in plants exposed to the space environment. In this study, for the first time, the effects of transposon alterations in soybean caused by space mutation were considered. A new vegetable soybean variety, 'Zhexian 9' (Z9), derived from space mutation treatment of 'Taiwan 75' (T75), was genetically analyzed. Comparative analyses of these two soybean genomes uncovered surprising structural differences, especially with respect to translocation breakends, deletions, and inversions. In total, 12,028 structural variations (SVs) and 29,063 transposable elements (TEs) between T75 and Z9 were detected. In addition, 1336 potential genes were variable between T75 and Z9 in terms of SVs and TEs. These differential genes were enriched in functions such as defense response, cell wall-related processes, epigenetics, auxin metabolism and transport, signal transduction, and especially methylation, which implied that regulation of epigenetic mechanisms and TE activity are important in the space environment. These results are helpful for understanding the role of TEs in response to the space environment and provide a theoretical basis for the selection of wild plant materials suitable for space breeding.
Collapse
|
4
|
Yadav NS, Titov V, Ayemere I, Byeon B, Ilnytskyy Y, Kovalchuk I. Multigenerational Exposure to Heat Stress Induces Phenotypic Resilience, and Genetic and Epigenetic Variations in Arabidopsis thaliana Offspring. FRONTIERS IN PLANT SCIENCE 2022; 13:728167. [PMID: 35419019 PMCID: PMC8996174 DOI: 10.3389/fpls.2022.728167] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Plants are sedentary organisms that constantly sense changes in their environment and react to various environmental cues. On a short-time scale, plants respond through alterations in their physiology, and on a long-time scale, plants alter their development and pass on the memory of stress to the progeny. The latter is controlled genetically and epigenetically and allows the progeny to be primed for future stress encounters, thus increasing the likelihood of survival. The current study intended to explore the effects of multigenerational heat stress in Arabidopsis thaliana. Twenty-five generations of Arabidopsis thaliana were propagated in the presence of heat stress. The multigenerational stressed lineage F25H exhibited a higher tolerance to heat stress and elevated frequency of homologous recombination, as compared to the parallel control progeny F25C. A comparison of genomic sequences revealed that the F25H lineage had a three-fold higher number of mutations [single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs)] as compared control lineages, suggesting that heat stress induced genetic variations in the heat-stressed progeny. The F25H stressed progeny showed a 7-fold higher number of non-synonymous mutations than the F25C line. Methylome analysis revealed that the F25H stressed progeny showed a lower global methylation level in the CHH context than the control progeny. The F25H and F25C lineages were different from the parental control lineage F2C by 66,491 and 80,464 differentially methylated positions (DMPs), respectively. F25H stressed progeny displayed higher frequency of methylation changes in the gene body and lower in the body of transposable elements (TEs). Gene Ontology analysis revealed that CG-DMRs were enriched in processes such as response to abiotic and biotic stimulus, cell organizations and biogenesis, and DNA or RNA metabolism. Hierarchical clustering of these epimutations separated the heat stressed and control parental progenies into distinct groups which revealed the non-random nature of epimutations. We observed an overall higher number of epigenetic variations than genetic variations in all comparison groups, indicating that epigenetic variations are more prevalent than genetic variations. The largest difference in epigenetic and genetic variations was observed between control plants comparison (F25C vs. F2C), which clearly indicated that the spontaneous nature of epigenetic variations and heat-inducible nature of genetic variations. Overall, our study showed that progenies derived from multigenerational heat stress displayed a notable adaption in context of phenotypic, genotypic and epigenotypic resilience.
Collapse
|
5
|
Li C, Tang J, Hu Z, Wang J, Yu T, Yi H, Cao M. A novel maize dwarf mutant generated by Ty1-copia LTR-retrotransposon insertion in Brachytic2 after spaceflight. PLANT CELL REPORTS 2020; 39:393-408. [PMID: 31834482 DOI: 10.1007/s00299-019-02498-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/02/2019] [Indexed: 05/12/2023]
Abstract
Retrotransposon insertion in Brachytic2 generated a new incomplete recessive dwarf allele after spaceflight can moderately reduce plant height in heterozygous and potentially improve maize yield. Plant height and ear height are two important agronomic traits in maize breeding. In this study, two dwarf mutants short internode length1 (sil1) and short internode length2 (sil2) were obtained from two of 398 spaceflighted seeds of inbred line 18-599. The decrease in longitudinal cell number and cell length led to the shortened internodes of sil1 and sil2. A Ty1-copia LTR-retrotransposon, termed ZmRE-1, inserted in the fifth exon of Brachytic2 (Br2) was identified in sil1 and sil2 at exactly the same site, which indicated the transposition of ZmRE-1 probably correlated with the spaceflight. This new dwarf mutant allele was named as br2-sil in this study. The insertion of ZmRE-1 not only led to the loss of normal transcript of Br2 allele, but also reduced the transcript expression of br2-sil allele. Chop-qPCR displayed that the promoter region DNA methylation level of br2-sil allele in sil1 was higher than that of Br2 allele in WT-sil1. We speculated that the increased methylation level might downregulate the br2-sil expression. There was no difference in the seed-setting rate between sil1 and WT-sil1. Meanwhile, br2-sil could reduce plant and ear height effectively in Br2/br2-sil genotype without negative effects on grain yield. Therefore, the application of br2-sil in breeding has the potential to improve the grain yield per unit area through increasing the planting density.
Collapse
Affiliation(s)
- Chuan Li
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jin Tang
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Zhaoyong Hu
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jingwen Wang
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Tao Yu
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Hongyang Yi
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Moju Cao
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| |
Collapse
|
6
|
Intraspecific Diversity in the Cold Stress Response of Transposable Elements in the Diatom Leptocylindrus aporus. Genes (Basel) 2019; 11:genes11010009. [PMID: 31861932 PMCID: PMC7017206 DOI: 10.3390/genes11010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 01/18/2023] Open
Abstract
Transposable elements (TEs), activated as a response to unfavorable conditions, have been proposed to contribute to the generation of genetic and phenotypic diversity in diatoms. Here we explore the transcriptome of three warm water strains of the diatom Leptocylindrus aporus, and the possible involvement of TEs in their response to changing temperature conditions. At low temperature (13 °C) several stress response proteins were overexpressed, confirming low temperature to be unfavorable for L. aporus, while TE-related transcripts of the LTR retrotransposon superfamily were the most enriched transcripts. Their expression levels, as well as most of the stress-related proteins, were found to vary significantly among strains, and even within the same strains analysed at different times. The lack of overexpression after many months of culturing suggests a possible role of physiological plasticity in response to growth under controlled laboratory conditions. While further investigation on the possible central role of TEs in the diatom stress response is warranted, the strain-specific responses and possible role of in-culture evolution draw attention to the interplay between the high intraspecific variability and the physiological plasticity of diatoms, which can both contribute to the adaptation of a species to a wide range of conditions in the marine environment.
Collapse
|
7
|
Zhou M, Sng NJ, LeFrois CE, Paul AL, Ferl RJ. Epigenomics in an extraterrestrial environment: organ-specific alteration of DNA methylation and gene expression elicited by spaceflight in Arabidopsis thaliana. BMC Genomics 2019; 20:205. [PMID: 30866818 PMCID: PMC6416986 DOI: 10.1186/s12864-019-5554-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/21/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Plants adapted to diverse environments on Earth throughout their evolutionary history, and developed mechanisms to thrive in a variety of terrestrial habitats. When plants are grown in the novel environment of spaceflight aboard the International Space Station (ISS), an environment completely outside their evolutionary history, they respond with unique alterations to their gene expression profile. Identifying the genes important for physiological adaptation to spaceflight and dissecting the biological processes and pathways engaged by plants during spaceflight has helped reveal spaceflight adaptation, and has furthered understanding of terrestrial growth processes. However, the underlying regulatory mechanisms responsible for these changes in gene expression patterns are just beginning to be explored. Epigenetic modifications, such as DNA methylation at position five in cytosine, has been shown to play a role in the physiological adaptation to adverse terrestrial environments, and may play a role in spaceflight as well. RESULTS Whole Genome Bisulfite Sequencing of DNA of Arabidopsis grown on the ISS from seed revealed organ-specific patterns of differential methylation compared to ground controls. The overall levels of methylation in CG, CHG, and CHH contexts were similar between flight and ground DNA, however, thousands of specifically differentially methylated cytosines were discovered, and there were clear organ-specific differences in methylation patterns. Spaceflight leaves had higher methylation levels in CHG and CHH contexts within protein-coding genes in spaceflight; about a fifth of the leaf genes were also differentially regulated in spaceflight, almost half of which were associated with reactive oxygen signaling. CONCLUSIONS The physiological adaptation of plants to spaceflight is likely nuanced by epigenomic modification. This is the first examination of differential genomic methylation from plants grown completely in the spaceflight environment of the ISS in plant growth hardware developed for informing exploration life support strategies. Yet even in this optimized plant habitat, plants respond as if stressed. These data suggest that gene expression associated with physiological adaptation to spaceflight is regulated in part by methylation strategies similar to those engaged with familiar terrestrial stress responses. The differential methylation maps generated here provide a useful reference for elucidating the layers of regulation of spaceflight responses.
Collapse
Affiliation(s)
- Mingqi Zhou
- 0000 0004 1936 8091grid.15276.37Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL USA ,0000 0004 1936 8091grid.15276.37Horticultural Sciences Department, University of Florida, Gainesville, FL USA
| | - Natasha J. Sng
- 0000 0004 1936 8091grid.15276.37Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL USA ,0000 0004 1936 8091grid.15276.37Horticultural Sciences Department, University of Florida, Gainesville, FL USA
| | - Collin E. LeFrois
- 0000 0004 1936 8091grid.15276.37Horticultural Sciences Department, University of Florida, Gainesville, FL USA
| | - Anna-Lisa Paul
- 0000 0004 1936 8091grid.15276.37Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL USA ,0000 0004 1936 8091grid.15276.37Horticultural Sciences Department, University of Florida, Gainesville, FL USA
| | - Robert J. Ferl
- 0000 0004 1936 8091grid.15276.37Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL USA ,0000 0004 1936 8091grid.15276.37Horticultural Sciences Department, University of Florida, Gainesville, FL USA ,0000 0004 1936 8091grid.15276.37Interdisciplinary Center for Biotechnology, University of Florida, Gainesville, FL USA
| |
Collapse
|
8
|
Banerjee A, Roychoudhury A. The gymnastics of epigenomics in rice. PLANT CELL REPORTS 2018; 37:25-49. [PMID: 28866772 DOI: 10.1007/s00299-017-2192-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/01/2017] [Indexed: 05/21/2023]
Abstract
Epigenomics is represented by the high-throughput investigations of genome-wide epigenetic alterations, which ultimately dictate genomic, transcriptomic, proteomic and metabolomic dynamism. Rice has been accepted as the global staple crop. As a result, this model crop deserves significant importance in the rapidly emerging field of plant epigenomics. A large number of recently available data reveal the immense flexibility and potential of variable epigenomic landscapes. Such epigenomic impacts and variability are determined by a number of epigenetic regulators and several crucial inheritable epialleles, respectively. This article highlights the correlation of the epigenomic landscape with growth, flowering, reproduction, non-coding RNA-mediated post-transcriptional regulation, transposon mobility and even heterosis in rice. We have also discussed the drastic epigenetic alterations which are reported in rice plants grown from seeds exposed to the extraterrestrial environment. Such abiotic conditions impose stress on the plants leading to epigenomic modifications in a genotype-specific manner. Some significant bioinformatic databases and in silico approaches have also been explained in this article. These softwares provide important interfaces for comparative epigenomics. The discussion concludes with a unified goal of developing epigenome editing to promote biological hacking of the rice epigenome. Such a cutting-edge technology if properly standardized, can integrate genomics and epigenomics together with the generation of high-yielding trait in several cultivars of rice.
Collapse
Affiliation(s)
- Aditya Banerjee
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India.
| |
Collapse
|
9
|
Negi P, Rai AN, Suprasanna P. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:1448. [PMID: 27777577 PMCID: PMC5056178 DOI: 10.3389/fpls.2016.01448] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/12/2016] [Indexed: 05/02/2023]
Abstract
The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original 'Controlling Element' hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as "distributed genomic control modules." According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement.
Collapse
Affiliation(s)
| | | | - Penna Suprasanna
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research CentreTrombay, India
| |
Collapse
|
10
|
Bilichak A, Kovalchuk I. Transgenerational response to stress in plants and its application for breeding. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2081-92. [PMID: 26944635 DOI: 10.1093/jxb/erw066] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A growing number of reports indicate that plants possess the ability to maintain a memory of stress exposure throughout their ontogenesis and even transmit it faithfully to the following generation. Some of the features of transgenerational memory include elevated genome instability, a higher tolerance to stress experienced by parents, and a cross-tolerance. Although the underlying molecular mechanisms of this phenomenon are not clear, a likely contributing factor is the absence of full-scale reprogramming of the epigenetic landscape during gametogenesis; therefore, epigenetic marks can occasionally escape the reprogramming process and can be passed on to the progeny. To date, it is not entirely clear which part of the epigenetic landscape is more likely to escape the reprogramming events, and whether such a process is random or directed and sequence specific. The identification of specific epigenetic marks associated with specific stressors would allow generation of stress-tolerant plants through the recently discovered techniques for precision epigenome engineering. The engineered DNA-binding domains (e.g. ZF, TALE, and dCas9) fused to particular chromatin modifiers would make it possible to target epigenetic modifications to the selected loci, probably allowing stress tolerance to be achieved in the progeny. This approach, termed epigenetic breeding, along with other methods has great potential to be used for both the assessment of the propagation of epigenetic marks across generations and trait improvement in plants. In this communication, we provide a short overview of recent reports demonstrating a transgenerational response to stress in plants, and discuss the underlying potential molecular mechanisms of this phenomenon and its use for plant biotechnology applications.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, University Drive 4401, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
11
|
Grandbastien MA. LTR retrotransposons, handy hitchhikers of plant regulation and stress response. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:403-16. [DOI: 10.1016/j.bbagrm.2014.07.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 11/30/2022]
|
12
|
Alzohairy AM, Sabir JSM, Gyulai GB, Younis RAA, Jansen RK, Bahieldin A. Environmental stress activation of plant long-terminal repeat retrotransposons. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:557-567. [PMID: 32481013 DOI: 10.1071/fp13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/23/2014] [Indexed: 06/11/2023]
Abstract
Genomic retrotransposons (RTs) are major components of most plant genomes. They spread throughout the genomes by a process termed retrotransposition, which consists of reverse transcription and reinsertion of the copied element into a new genomic location (a copy-and-paste system). Abiotic and biotic stresses activate long-terminal repeat (LTR) RTs in photosynthetic eukaryotes from algae to angiosperms. LTR RTs could represent a threat to the integrity of host genomes because of their activity and mutagenic potential by epigenetic regulation. Host genomes have developed mechanisms to control the activity of the retroelements and their mutagenic potential. Some LTR RTs escape these defense mechanisms, and maintain their ability to be activated and transpose as a result of biotic or abiotic stress stimuli. These stimuli include pathogen infection, mechanical damage, in vitro tissue culturing, heat, drought and salt stress, generation of doubled haploids, X-ray irradiation and many others. Reactivation of LTR RTs differs between different plant genomes. The expression levels of reactivated RTs are influenced by the transcriptional and post-transcriptional gene silencing mechanisms (e.g. DNA methylation, heterochromatin formation and RNA interference). Moreover, the insertion of RTs (e.g. Triticum aestivum L. Wis2-1A) into or next to coding regions of the host genome can generate changes in the expression of adjacent host genes of the host. In this paper, we review the ways that plant genomic LTR RTs are activated by environmental stimuli to affect restructuring and diversification of the host genome.
Collapse
Affiliation(s)
- Ahmed M Alzohairy
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Jamal S M Sabir
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia
| | - G Bor Gyulai
- Institute of Genetics and Biotechnology, St. Stephanus University, Gödöll? H-2103, Hungary
| | - Rania A A Younis
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Robert K Jansen
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia
| | - Ahmed Bahieldin
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Shi J, Lu W, Sun Y. Comparison of space flight and heavy ion radiation induced genomic/epigenomic mutations in rice (Oryza sativa). LIFE SCIENCES IN SPACE RESEARCH 2014; 1:74-79. [PMID: 26432592 DOI: 10.1016/j.lssr.2014.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 01/15/2014] [Accepted: 01/23/2014] [Indexed: 06/05/2023]
Abstract
Rice seeds, after space flight and low dose heavy ion radiation treatment were cultured on ground. Leaves of the mature plants were obtained for examination of genomic/epigenomic mutations by using amplified fragment length polymorphism (AFLP) and methylation sensitive amplification polymorphism (MSAP) method, respectively. The mutation sites were identified by fragment recovery and sequencing. The heritability of the mutations was detected in the next generation. Results showed that both space flight and low dose heavy ion radiation can induce significant alterations on rice genome and epigenome (P<0.05). For both genetic and epigenetic assays, while there was no significant difference in mutation rates and their ability to be inherited to the next generation, the site of mutations differed between the space flight and radiation treated groups. More than 50% of the mutation sites were shared by two radiation treated groups, radiated with different LET value and dose, while only about 20% of the mutation sites were shared by space flight group and radiation treated group. Moreover, in space flight group, we found that DNA methylation changes were more prone to occur on CNG sequence than CG sequence. Sequencing results proved that both space flight and heavy ion radiation induced mutations were widely spread on rice genome including coding region and repeated region. Our study described and compared the characters of space flight and low dose heavy ion radiation induced genomic/epigenomic mutations. Our data revealed the mechanisms of application of space environment for mutagenesis and crop breeding. Furthermore, this work implicated that the nature of mutations induced under space flight conditions may involve factors beyond ion radiation.
Collapse
Affiliation(s)
- Jinming Shi
- College of Life Science, Northeast Forestry University, Harbin, PR China
| | - Weihong Lu
- Institute of Extreme Environment Nutrition and Protection, School of Food Science and Engineering, Harbin Institute of Technology, Harbin, PR China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Dalian Maritime University, Dalian, PR China.
| |
Collapse
|
14
|
Migicovsky Z, Kovalchuk I. Transgenerational changes in plant physiology and in transposon expression in response to UV-C stress in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2014; 9:e976490. [PMID: 25482751 PMCID: PMC4622705 DOI: 10.4161/15592324.2014.976490] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 05/26/2023]
Abstract
Stress has a negative impact on crop yield by altering a gain in biomass and affecting seed set. Recent reports suggest that exposure to stress also influences the response of the progeny. In this paper, we analyzed seed size, leaf size, bolting time and transposon expression in 2 consecutive generations of Arabidopsis thaliana plants exposed to moderate UV-C stress. Since previous reports suggested a potential role of Dicer-like (DCL) proteins in the establishment of transgenerational response, we used dcl2, dcl3 and dcl4 mutants in parallel with wild-type plants. These studies revealed that leaf number decreased in the progeny of UV-C stressed plants, and bolting occurred later. Transposons were also re-activated in the progeny of stressed plants. Changes in the dcl mutants were less prominent than in wild-type plants. DCL2 and DCL3 appeared to be more important in the transgenerational stress memory than DCL4 because transgenerational changes were less profound in the dcl2 and dcl3 mutants.
Collapse
Affiliation(s)
- Zoe Migicovsky
- Department of Biological Sciences; University of Lethbridge; Lethbridge, AB, Canada
- Department of Biology; Dalhousie University; Halifax, Nova Scotia
| | - Igor Kovalchuk
- Department of Biological Sciences; University of Lethbridge; Lethbridge, AB, Canada
| |
Collapse
|
15
|
Neelakandan AK, Wang K. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. PLANT CELL REPORTS 2012; 31:597-620. [PMID: 22179259 DOI: 10.1007/s00299-011-1202-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 05/23/2023]
Abstract
In vitro cell and tissue-based systems have tremendous potential in fundamental research and for commercial applications such as clonal propagation, genetic engineering and production of valuable metabolites. Since the invention of plant cell and tissue culture techniques more than half a century ago, scientists have been trying to understand the morphological, physiological, biochemical and molecular changes associated with tissue culture responses. Establishment of de novo developmental cell fate in vitro is governed by factors such as genetic make-up, stress and plant growth regulators. In vitro culture is believed to destabilize the genetic and epigenetic program of intact plant tissue and can lead to chromosomal and DNA sequence variations, methylation changes, transposon activation, and generation of somaclonal variants. In this review, we discuss the current status of understanding the genomic and epigenomic changes that take place under in vitro conditions. It is hoped that a precise and comprehensive knowledge of the molecular basis of these variations and acquisition of developmental cell fate would help to devise strategies to improve the totipotency and embryogenic capability in recalcitrant species and genotypes, and to address bottlenecks associated with clonal propagation.
Collapse
|
16
|
Genotype-dependent Burst of Transposable Element Expression in Crowns of Hexaploid Wheat (Triticum aestivum L.) during Cold Acclimation. Comp Funct Genomics 2012; 2012:232530. [PMID: 22474410 PMCID: PMC3299314 DOI: 10.1155/2012/232530] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/15/2011] [Indexed: 11/17/2022] Open
Abstract
The expression of 1,613 transposable elements (TEs) represented in the Affymetrix Wheat Genome Chip was examined during cold treatment in crowns of four hexaploid wheat genotypes that vary in tolerance to cold and in flowering time. The TE expression profiles showed a constant level of expression throughout the experiment in three of the genotypes. In winter Norstar, the most cold-hardy of the four genotypes, a subset of the TEs showed a burst of expression after vernalization saturation was achieved. About 47% of the TEs were expressed, and both Class I (retrotransposons) and Class II (DNA transposons) types were well represented. Gypsy and Copia were the most represented among the retrotransposons while CACTA and Mariner were the most represented DNA transposons. The data suggests that the Vrn-A1 region plays a role in the stage-specific induction of TE expression in this genotype.
Collapse
|
17
|
Grafi G, Florentin A, Ransbotyn V, Morgenstern Y. The stem cell state in plant development and in response to stress. FRONTIERS IN PLANT SCIENCE 2011; 2:53. [PMID: 22645540 PMCID: PMC3355748 DOI: 10.3389/fpls.2011.00053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/03/2011] [Indexed: 05/18/2023]
Abstract
Stem cells are commonly defined by their developmental capabilities, namely, self-renewal and multitype differentiation, yet the biology of stem cells and their inherent features both in plants and animals are only beginning to be elucidated. In this review article we highlight the stem cell state in plants with reference to animals and the plastic nature of plant somatic cells often referred to as totipotency as well as the essence of cellular dedifferentiation. Based on recent published data, we illustrate the picture of stem cells with emphasis on their open chromatin conformation. We discuss the process of dedifferentiation and highlight its transient nature, its distinction from re-entry into the cell cycle and its activation following exposure to stress. We also discuss the potential hazard that can be brought about by stress-induced dedifferentiation and its major impact on the genome, which can undergo stochastic, abnormal reorganization leading to genetic variation by means of DNA transposition and/or DNA recombination.
Collapse
Affiliation(s)
- Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev Midreshet Ben-Gurion, Israel
| | | | | | | |
Collapse
|
18
|
Ou X, Long L, Wu Y, Yu Y, Lin X, Qi X, Liu B. Spaceflight-induced genetic and epigenetic changes in the rice (Oryza sativa L.) genome are independent of each other. Genome 2010; 53:524-32. [PMID: 20616874 DOI: 10.1139/g10-030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An array of studies have reported that the spaceflight environment is mutagenic and may induce phenotypic and genetic changes in diverse organisms. We reported recently that in at least some plant species (e.g., rice) the spaceflight environment can be particularly potent in generating heritable epigenetic changes in the form of altered cytosine methylation patterns and activation of transposable elements. To further study the issue of spaceflight-induced genomic instability, and in particular to test whether the incurred genetic and epigenetic changes are connected or independent of each other, we performed the present study. We subjected seeds of the standard laboratory rice (Oryza sativa L.) cultivar Nipponbare to a spaceflight in the spaceship Long March 2 for 18 days. We then investigated the genetic and DNA methylation stabilities of 11 randomly selected plants germinated from the spaceflown seeds by using two kinds of DNA markers, amplified fragment length polymorphism (AFLP) and methylation sensitive amplified polymorphism (MSAP). For AFLP, by using 15 primer combinations, we assessed 460 genomic loci and found that the frequencies of genetic changes across the 11 plants ranged from 0.7% to 6.7% with an average frequency of 3.5%. For MSAP, by using 14 primer combinations, we assessed 467 loci and detected the occurrence of four major types of cytosine methylation alterations at the CCGG sites, namely CG or CNG hypomethylation and CG or CNG hypermethylation. Collectively, the frequencies of the two kinds of hypermethylation, CG (1.95%) and CNG (1.44%), are about two times higher than those of the two kinds of hypomethylation, CG (0.76%) and CNG (0.80%), though different plants showed variable frequencies for each type of alteration. Further analysis suggested that both the genetic and cytosine methylation changes manifested apparent mutational bias towards specific genomic regions, but the two kinds of instabilities are independent of each other based on correlation analysis.
Collapse
Affiliation(s)
- Xiufang Ou
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | | | |
Collapse
|