1
|
Thuy NT, Kim H, Hong S. Antagonistic functions of CTL1 and SUH1 mediate cell wall assembly in Arabidopsis. PLANT DIRECT 2024; 8:e580. [PMID: 38525472 PMCID: PMC10960159 DOI: 10.1002/pld3.580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024]
Abstract
Plant genomes contain numerous genes encoding chitinase-like (CTL) proteins, which have a similar protein structure to chitinase belonging to the glycoside hydrolase (GH) family but lack the chitinolytic activity to cleave the β-1,4-glycosidic bond in chitins, polymers of N-acetylglucosamine. CTL1 mutations found in rice and Arabidopsis have caused pleiotropic developmental defects, including altered cell wall composition and decreased abiotic stress tolerance, likely due to reduced cellulose content. In this study, we identified suppressor of hot2 1 (suh1) as a genetic suppressor of the ctl1 hot2-1 mutation in Arabidopsis. The mutation in SUH1 restored almost all examined ctl1 hot2-1 defects to nearly wild-type levels or at least partially. SUH1 encodes a Golgi-located type II membrane protein with glycosyltransferase (GT) activity, and its mutations lead to a reduction in cellulose content and hypersensitivity to cellulose biosynthesis inhibitors, although to a lesser extent than ctl1 hot2-1 mutation. The SUH1 promoter fused with the GUS reporter gene exhibited GUS activity in interfascicular fibers and xylem in stems; meanwhile, the ctl1 hot2-1 mutation significantly increased this activity. Our findings provide genetic and molecular evidence that the antagonistic activities of CTL1 and SUH1 play an essential role in assembling the cell wall in Arabidopsis.
Collapse
Affiliation(s)
- Nguyen Thi Thuy
- Department of the Integrative Food, Bioscience, and Biotechnology, College of Agriculture and Life SciencesChonnam National UniversityGwangjuKorea
| | - Hyun‐Jung Kim
- Department of the Integrative Food, Bioscience, and Biotechnology, College of Agriculture and Life SciencesChonnam National UniversityGwangjuKorea
| | - Suk‐Whan Hong
- Department of the Integrative Food, Bioscience, and Biotechnology, College of Agriculture and Life SciencesChonnam National UniversityGwangjuKorea
| |
Collapse
|
2
|
Zhou YY, Wang YS, Sun CC, Fei J. Cloning and Expression of Class I Chitinase Genes from Four Mangrove Species under Heavy Metal Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2772. [PMID: 37570926 PMCID: PMC10421288 DOI: 10.3390/plants12152772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 08/13/2023]
Abstract
Chitinases are believed to act as defense proteins when plants are exposed to heavy metal stress. Typical Class I chitinase genes were cloned from Bruguiera gymnorrhiza, Rhizophora stylosa, Kandelia obovata, and Avicennia marina using the methods of reverse-transcription-polymerase chain reaction and rapid amplification of cDNA ends. All four cDNA sequences of chitinase from the mangrove plants were 1092 bp in length and consisted of an open reading frame of 831 bp, encoding 276 amino acids. However, there were differences in the sequences among the four mangrove species. Four gene proteins have a signal peptide, are located in the vacuole, and belong to the GH19 chitinase family. The sequence of chitinase was highly similar to the protein sequences of Camellia fraternal chitinases. A real-time polymerase chain reaction was used to analyze the chitinase expressions of the above four mangrove species exposed to different concentrations of heavy metal at different times. The gene expression of chitinase was higher in Bruguiera gymnorrhiza leaves than in other mangrove plant species. With an increase in heavy metal stress, the expression level of Bruguiera gymnorrhiza increased continuously. These results suggest that chitinase plays an important role in improving the heavy metal tolerance of mangrove plants.
Collapse
Affiliation(s)
- Yue-Yue Zhou
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.-Y.Z.); (C.-C.S.)
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.-Y.Z.); (C.-C.S.)
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Cui-Ci Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.-Y.Z.); (C.-C.S.)
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.-Y.Z.); (C.-C.S.)
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
3
|
Xu Z, Dai J, Liang L, Zhang Y, He Y, Xing L, Ma J, Zhang D, Zhao C. Chitinase-Like Protein PpCTL1 Contributes to Maintaining Fruit Firmness by Affecting Cellulose Biosynthesis during Peach Development. Foods 2023; 12:2503. [PMID: 37444241 DOI: 10.3390/foods12132503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The firmness of the flesh fruit is a very important feature in the eating process. Peach fruit is very hard during development, but its firmness slightly decreases in the later stages of development. While there has been extensive research on changes in cell wall polysaccharides during fruit ripening, little is known about the changes that occur during growth and development. In this study, we investigated the modifications in cell wall components throughout the development and ripening of peach fruit, as well as its impact on firmness. Our findings revealed a significant positive correlation between fruit firmness and cellulose content at development stage. However, the correlation was lost during the softening process, suggesting that cellulose might be responsible for the fruit firmness during development. Members of the chitinase-like protein (CTL) group are of interest because of their possible role in plant cell wall biosynthesis. Here, two CTL homologous genes, PpCTL1 and PpCTL2, were identified in peach. Spatial and temporal expression patterns of PpCTLs revealed that PpCTL1 exhibited high expression abundance in the fruit and followed a similar trend to cellulose during fruit growth. Furthermore, silencing PpCTL1 expression resulted in reduced cellulose content at 5 DAI (days after injection), this change that would have a negative effect on fruit firmness. Our results indicate that PpCTL1 plays an important role in cellulose biosynthesis and the maintenance of peach firmness during development.
Collapse
Affiliation(s)
- Ze Xu
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Jieyu Dai
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Liping Liang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Yonglan Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Yaojun He
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Juanjuan Ma
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| |
Collapse
|
4
|
Transcriptomic Evidence Reveals Low Gelatinous Layer Biosynthesis in Neolamarckia cadamba after Gravistimulation. Int J Mol Sci 2022; 24:ijms24010268. [PMID: 36613711 PMCID: PMC9820806 DOI: 10.3390/ijms24010268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
Trees can control their shape and resist gravity by producing tension wood (TW), which is a special wood that results from trees being put under stress. TW is characterized by the presence of a gelatinous layer (G layer) and the differential distribution of cell wall polymers. In this study, we investigated whether or not gravistimulation in N. cadamba resulted in TW with an obvious G layer. The results revealed an absence of an obvious G layer in samples of the upper side of a leaning stem (UW), as well as an accumulation of cellulose and a decrease in lignin content. A negligible change in the content of these polymers was recorded and compared to untreated plant (NW) samples, revealing the presence of a G layer either in much lower concentrations or in a lignified form. A transcriptomic investigation demonstrated a higher expression of cell wall esterase- and hydrolase-related genes in the UW, suggesting an accumulation of noncellulosic sugars in the UW, similar to the spectroscopy results. Furthermore, several G-layer-specific genes were also downregulated, including fasciclin-like arabinogalactan proteins (FLA), beta-galactosidase (BGAL) and chitinase-like proteins (CTL). The gene coexpression network revealed a strong correlation between cell-wall-synthesis-related genes and G-layer-synthesis-specific genes, suggesting their probable antagonistic role during G layer formation. In brief, the G layer in N. cadamba was either synthesized in a very low amount or was lignified during an early stage of growth; further experimental validation is required to understand the exact mechanism and stage of G layer formation in N. cadamba during gravistimulation.
Collapse
|
5
|
Landi L, Peralta-Ruiz Y, Chaves-López C, Romanazzi G. Chitosan Coating Enriched With Ruta graveolens L. Essential Oil Reduces Postharvest Anthracnose of Papaya ( Carica papaya L.) and Modulates Defense-Related Gene Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:765806. [PMID: 34858463 PMCID: PMC8632526 DOI: 10.3389/fpls.2021.765806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Anthracnose of papaya (Carica papaya L.) caused by the fungus Colletotrichum spp. is one of the most economically important postharvest diseases. Coating with chitosan (CS) and Ruta graveolens essential oil (REO) might represent a novel eco-friendly method to prevent postharvest anthracnose infection. These compounds show both antimicrobial and eliciting activities, although the molecular mechanisms in papaya have not been investigated to date. In this study, the effectiveness of CS and REO alone and combined (CS-REO) on postharvest anthracnose of papaya fruit during storage were investigated, along with the expression of selected genes involved in plant defense mechanisms. Anthracnose incidence was reduced with CS, REO, and CS-REO emulsions after 9 days storage at 25°C, by 8, 21, and 37%, respectively, with disease severity reduced by 22, 29, and 44%, respectively. Thus, McKinney's decay index was reduced by 22, 30, and 44%, respectively. A protocol based on reverse transcription quantitative real-time PCR (RT-qPCR) was validated for 17 papaya target genes linked to signaling pathways that regulate plant defense, pathogenesis-related protein, cell wall-degrading enzymes, oxidative stress, abiotic stress, and the phenylpropanoid pathway. CS induced gene upregulation mainly at 6 h posttreatment (hpt) and 48 hpt, while REO induced the highest upregulation at 0.5 hpt, which then decreased over time. Furthermore, CS-REO treatment delayed gene upregulation by REO alone, from 0.5 to 6 hpt, and kept that longer over time. This study suggests that CS stabilizes the volatile and/or hydrophobic substances of highly reactive essential oils. The additive effects of CS and REO were able to reduce postharvest decay and affect gene expression in papaya fruit.
Collapse
Affiliation(s)
- Lucia Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Yeimmy Peralta-Ruiz
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Facultad de Ingeniería, Programa de Ingeniería Agroindustrial, Universidad del Atlántico, Puerto Colombia, Colombia
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
6
|
Orlando M, Buchholz PCF, Lotti M, Pleiss J. The GH19 Engineering Database: Sequence diversity, substrate scope, and evolution in glycoside hydrolase family 19. PLoS One 2021; 16:e0256817. [PMID: 34699529 PMCID: PMC8547705 DOI: 10.1371/journal.pone.0256817] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/16/2021] [Indexed: 01/21/2023] Open
Abstract
The glycoside hydrolase 19 (GH19) is a bifunctional family of chitinases and endolysins, which have been studied for the control of plant fungal pests, the recycle of chitin biomass, and the treatment of multi-drug resistant bacteria. The GH19 domain-containing sequences (22,461) were divided into a chitinase and an endolysin subfamily by analyzing sequence networks, guided by taxonomy and the substrate specificity of characterized enzymes. The chitinase subfamily was split into seventeen groups, thus extending the previous classification. The endolysin subfamily is more diverse and consists of thirty-four groups. Despite their sequence diversity, twenty-six residues are conserved in chitinases and endolysins, which can be distinguished by two specific sequence patterns at six and four positions, respectively. Their location outside the catalytic cleft suggests a possible mechanism for substrate specificity that goes beyond the direct interaction with the substrate. The evolution of the GH19 catalytic domain was investigated by large-scale phylogeny. The inferred evolutionary history and putative horizontal gene transfer events differ from previous works. While no clear patterns were detected in endolysins, chitinases varied in sequence length by up to four loop insertions, causing at least eight distinct presence/absence loop combinations. The annotated GH19 sequences and structures are accessible via the GH19 Engineering Database (GH19ED, https://gh19ed.biocatnet.de). The GH19ED has been developed to support the prediction of substrate specificity and the search for novel GH19 enzymes from neglected taxonomic groups or in regions of the sequence space where few sequences have been described yet.
Collapse
Affiliation(s)
- Marco Orlando
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Patrick C. F. Buchholz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
7
|
Zogopoulos VL, Saxami G, Malatras A, Angelopoulou A, Jen CH, Duddy WJ, Daras G, Hatzopoulos P, Westhead DR, Michalopoulos I. Arabidopsis Coexpression Tool: a tool for gene coexpression analysis in Arabidopsis thaliana. iScience 2021; 24:102848. [PMID: 34381973 PMCID: PMC8334378 DOI: 10.1016/j.isci.2021.102848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023] Open
Abstract
Gene coexpression analysis refers to the discovery of sets of genes which exhibit similar expression patterns across multiple transcriptomic data sets, such as microarray experiment data of public repositories. Arabidopsis Coexpression Tool (ACT), a gene coexpression analysis web tool for Arabidopsis thaliana, identifies genes which are correlated to a driver gene. Primary microarray data from ATH1 Affymetrix platform were processed with Single-Channel Array Normalization algorithm and combined to produce a coexpression tree which contains ∼21,000 A. thaliana genes. ACT was developed to present subclades of coexpressed genes, as well as to perform gene set enrichment analysis, being unique in revealing enriched transcription factors targeting coexpressed genes. ACT offers a simple and user-friendly interface producing working hypotheses which can be experimentally verified for the discovery of gene partnership, pathway membership, and transcriptional regulation. ACT analyses have been successful in identifying not only genes with coordinated ubiquitous expressions but also genes with tissue-specific expressions.
Collapse
Affiliation(s)
- Vasileios L. Zogopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Georgia Saxami
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Apostolos Malatras
- Center for Research in Myology, Sorbonne Université, Paris 75013, France
| | - Antonia Angelopoulou
- Department of Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Chih-Hung Jen
- Cold Spring Biotech Corp, Da Hu Science Park, New Taipei City, Taiwan
| | - William J. Duddy
- Center for Research in Myology, Sorbonne Université, Paris 75013, France
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry BT52 1SJ, UK
| | - Gerasimos Daras
- Department of Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | | | - David R. Westhead
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| |
Collapse
|
8
|
Oliveira ST, Azevedo MIG, Cunha RMS, Silva CFB, Muniz CR, Monteiro-Júnior JE, Carneiro RF, Nagano CS, Girão MS, Freitas CDT, Grangeiro TB. Structural and functional features of a class VI chitinase from cashew (Anacardium occidentale L.) with antifungal properties. PHYTOCHEMISTRY 2020; 180:112527. [PMID: 33007618 DOI: 10.1016/j.phytochem.2020.112527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/25/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
A partial cDNA sequence from Anacardium occidentale CCP 76 was obtained, encoding a GH19 chitinase (AoChi) belonging to class VI. AoChi exhibits distinct structural features in relation to previously characterized plant GH19 chitinases from classes I, II, IV and VII. For example, a conserved Glu residue at the catalytic center of typical GH19 chitinases, which acts as the proton donor during catalysis, is replaced by a Lys residue in AoChi. To verify if AoChi is a genuine chitinase or is a chitinase-like protein that has lost its ability to degrade chitin and inhibit the growth of fungal pathogens, the recombinant protein was expressed in Pichia pastoris, purified and biochemically characterized. Purified AoChi (45 kDa apparent molecular mass) was able to degrade colloidal chitin, with optimum activity at pH 6.0 and at temperatures from 30 °C to 50 °C. AoChi activity was completely lost when the protein was heated at 70 °C for 1 h or incubated at pH values of 2.0 or 10.0. Several cation ions (Al3+, Cd2+, Ca2+, Pb2+, Cu2+, Fe3+, Mn2+, Rb+, Zn2+ and Hg2+), chelating (EDTA) and reducing agents (DTT, β-mercaptoethanol) and the denaturant SDS, drastically reduced AoChi enzymatic activity. AoChi chitinase activity fitted the classical Michaelis-Menten kinetics, although turnover number and catalytic efficiency were much lower in comparison to typical GH19 plant chitinases. Moreover, AoChi inhibited in vitro the mycelial growth of Lasiodiplodia theobromae, causing several alterations in hyphae morphology. Molecular docking of a chito-oligosaccharide in the substrate-binding cleft of AoChi revealed that the Lys residue (theoretical pKa = 6.01) that replaces the catalytic Glu could act as the proton donor during catalysis.
Collapse
Affiliation(s)
- Simone T Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Mayara I G Azevedo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Rodrigo M S Cunha
- Centro de Ciências Agrárias e Biológicas, Universidade do Vale do Acaraú, Sobral, Ceará, Brazil
| | | | - Celli R Muniz
- Embrapa Agroindústria Tropical, Fortaleza, Ceará, Brazil
| | - José E Monteiro-Júnior
- Laboratório de Genética Molecular, Departamento de Biologia, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Rômulo F Carneiro
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Celso S Nagano
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Matheus S Girão
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Cleverson D T Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Thalles B Grangeiro
- Laboratório de Genética Molecular, Departamento de Biologia, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
9
|
Carlson CH, Gouker FE, Crowell CR, Evans L, DiFazio SP, Smart CD, Smart LB. Joint linkage and association mapping of complex traits in shrub willow (Salix purpurea L.). ANNALS OF BOTANY 2019; 124:701-716. [PMID: 31008500 PMCID: PMC6821232 DOI: 10.1093/aob/mcz047] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/08/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Increasing energy demands and the necessity to reduce greenhouse gas emissions are key motivating factors driving the development of lignocellulosic crops as an alternative to non-renewable energy sources. The effects of global climate change will require a better understanding of the genetic basis of complex adaptive traits to breed more resilient bioenergy feedstocks, like willow (Salix spp.). Shrub willow is a sustainable and dedicated bioenergy crop, bred to be fast-growing and high-yielding on marginal land without competing with food crops. In a rapidly changing climate, genomic advances will be vital for the sustained improvement of willow and other non-model bioenergy crops. Here, joint genetic mapping was used to exploit genetic variation garnered from both recent and historical recombination events in S. purpurea. METHODS A panel of North American naturalized S. purpurea accessions and full-sib F2S. purpurea population were genotyped and phenotyped for a suite of morphological, physiological, pest and disease resistance, and wood chemical composition traits, collected from multi-environment and multi-year replicated field trials. Controlling for population stratification and kinship in the association panel and spatial variation in the F2, a comprehensive mixed model analysis was used to dissect the complex genetic architecture and plasticity of these important traits. KEY RESULTS Individually, genome-wide association (GWAS) models differed in terms of power, but the combined approach, which corrects for yearly and environmental co-factors across datasets, improved the overall detection and resolution of associated loci. Although there were few significant GWAS hits located within support intervals of QTL for corresponding traits in the F2, many large-effect QTL were identified, as well as QTL hotspots. CONCLUSIONS This study provides the first comparison of linkage analysis and linkage disequilibrium mapping approaches in Salix, and highlights the complementarity and limits of these two methods for elucidating the genetic architecture of complex bioenergy-related traits of a woody perennial breeding programme.
Collapse
Affiliation(s)
- Craig H Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Fred E Gouker
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Chase R Crowell
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Luke Evans
- Institute for Behavioral Genetics and Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| |
Collapse
|
10
|
Ju F, Liu S, Zhang S, Ma H, Chen J, Ge C, Shen Q, Zhang X, Zhao X, Zhang Y, Pang C. Transcriptome analysis and identification of genes associated with fruiting branch internode elongation in upland cotton. BMC PLANT BIOLOGY 2019; 19:415. [PMID: 31590649 PMCID: PMC6781417 DOI: 10.1186/s12870-019-2011-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Appropriate plant architecture can improve the amount of cotton boll opening and allow increased planting density, thus increasing the level of cotton mechanical harvesting and cotton yields. The internodes of cotton fruiting branches are an important part of cotton plant architecture. Thus, studying the molecular mechanism of internode elongation in cotton fruiting branches is highly important. RESULTS In this study, we selected internodes of cotton fruiting branches at three different stages from two cultivars whose internode lengths differed significantly. A total of 76,331 genes were detected by transcriptome sequencing. By KEGG pathway analysis, we found that DEGs were significantly enriched in the plant hormone signal transduction pathway. The transcriptional data and qRT-PCR results showed that members of the GH3 gene family, which are involved in auxin signal transduction, and CKX enzymes, which can reduce the level of CKs, were highly expressed in the cultivar XLZ77, which has relatively short internodes. Genes related to ethylene synthase (ACS), EIN2/3 and ERF in the ethylene signal transduction pathway and genes related to JAR1, COI1 and MYC2 in the JA signal transduction pathway were also highly expressed in XLZ77. Plant hormone determination results showed that the IAA and CK contents significantly decreased in cultivar XLZ77 compared with those in cultivar L28, while the ACC (the precursor of ethylene) and JA contents significantly increased. GO enrichment analysis revealed that the GO categories associated with promoting cell elongation, such as cell division, the cell cycle process and cell wall organization, were significantly enriched, and related genes were highly expressed in L28. However, genes related to the sphingolipid metabolic process and lignin biosynthetic process, whose expression can affect cell elongation, were highly expressed in XLZ77. In addition, 2067 TFs were differentially expressed. The WRKY, ERF and bHLH TF families were the top three largest families whose members were active in the two varieties, and the expression levels of most of the genes encoding these TFs were upregulated in XLZ77. CONCLUSIONS Auxin and CK are positive regulators of internode elongation in cotton branches. In contrast, ethylene and JA may act as negative regulators of internode elongation in cotton branches. Furthermore, the WRKY, ERF and bHLH TFs were identified as important inhibitors of internode elongation in cotton. In XLZ77(a short-internode variety), the mass synthesis of ethylene and amino acid conjugation of auxin led to the inhibition of plant cell elongation, while an increase in JA content and degradation of CKs led to a slow rate of cell division, which eventually resulted in a phenotype that presented relatively short internodes on the fruiting branches. The results of this study not only provide gene resources for the genetic improvement of cotton plant architecture but also lay a foundation for improved understanding of the molecular mechanism of the internode elongation of cotton branches.
Collapse
Affiliation(s)
- Feiyan Ju
- State Key Laboratory of Cotton Biology (Hebei Base)/College of Agronomy, Hebei Agricultural University, Baoding, 071001 Hebei China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Shaodong Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Siping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Huijuan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Jing Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Qian Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Xiaomeng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Xinhua Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Yongjiang Zhang
- State Key Laboratory of Cotton Biology (Hebei Base)/College of Agronomy, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| |
Collapse
|
11
|
Gu SY, Wang LC, Cheuh CM, Lo WS. CHITINASE LIKE1 Regulates Root Development of Dark-Grown Seedlings by Modulating Ethylene Biosynthesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:600. [PMID: 31156671 PMCID: PMC6530356 DOI: 10.3389/fpls.2019.00600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/24/2019] [Indexed: 05/07/2023]
Abstract
The plant hormone ethylene plays a regulatory role in development in light- and dark-grown seedlings. We previously isolated a group of small-molecule compounds with a quinazolinone backbone, which were named acsinones (for ACC synthase inhibitor quinazolinones), that act as uncompetitive inhibitors of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS). Thus, the triple response phenotype, which consists of shortened hypocotyls and roots, radial swelling of hypocotyls and exaggerated curvature of apical hooks, was suppressed by acsinones in dark-grown (etiolated) ethylene overproducer (eto) seedlings. Here, we describe our isolation and characterization of an Arabidopsis revert to eto1 9 (ret9) mutant, which showed reduced sensitivity to acsinones in etiolated eto1 seedlings. Map-based cloning of RET9 revealed an amino acid substitution in CHITINASE LIKE1 (CTL1), which is required for cell wall biogenesis and stress resistance in Arabidopsis. Etiolated seedlings of ctl1ret9 showed short hypocotyls and roots, which were augmented in combination with eto1-4. Consistently, ctl1ret9 seedlings showed enhanced sensitivity to exogenous ACC to suppress primary root elongation as compared with the wild type. After introducing ctl1ret9 to mutants completely insensitive to ethylene, genetic analysis indicated that an intact ethylene response pathway is essential for the alterations in root and apical hook but not hypocotyl in etiolated ctl1ret9 seedlings. Furthermore, a mild yet significantly increased ethylene level in ctl1 mutants was related to elevated mRNA level and activity of ACC oxidase (ACO). Moreover, genes associated with ethylene biosynthesis (ACO1 and ACO2) and response (ERF1 and EDF1) were upregulated in etiolated ctl1ret9 seedlings. By characterizing a new recessive allele of CTL1, we reveal that CTL1 negatively regulates ACO activity and the ethylene response, which thus contributes to understanding a role for ethylene in root elongation in response to perturbed cell wall integrity.
Collapse
Affiliation(s)
- Shin-Yuan Gu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Sciences, National Central University, Taoyuan City, Taiwan
| | - Long-Chi Wang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chiao-Mei Cheuh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wan-Sheng Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
12
|
Li P, Liu Y, Tan W, Chen J, Zhu M, Lv Y, Liu Y, Yu S, Zhang W, Cai H. Brittle Culm 1 Encodes a COBRA-Like Protein Involved in Secondary Cell Wall Cellulose Biosynthesis in Sorghum. PLANT & CELL PHYSIOLOGY 2019; 60:788-801. [PMID: 30590744 DOI: 10.1093/pcp/pcy246] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/20/2018] [Indexed: 05/08/2023]
Abstract
Plant mechanical strength contributes to lodging resistance and grain yield, making it an agronomically important trait in sorghum (Sorghum bicolor). In this study, we isolated the brittle culm 1 (bc1) mutant and identified SbBC1 through map-based cloning. SbBC1, a homolog of rice OsBC1 and Arabidopsis thaliana AtCOBL4, encodes a COBRA-like protein that exhibits typical structural features of a glycosylphosphatidylinositol-anchored protein. A single-nucleotide mutation in SbBC1 led to reduced mechanical strength, decreased cellulose content, and increased lignin content without obviously altering plant morphology. Transmission electron microscopy revealed reduced cell wall thickness in sclerenchyma cells of the bc1 mutant. SbBC1 is primarily expressed in developing sclerenchyma cells and vascular bundles in sorghum. RNA-seq analysis further suggested a possible mechanism by which SbBC1 mediates cellulose biosynthesis and cell wall remodeling. Our results demonstrate that SbBC1 participates in the biosynthesis of cellulose in the secondary cell wall and affects the mechanical strength of sorghum plants, providing additional genetic evidence for the roles of COBRA-like genes in cellulose biosynthesis in grasses.
Collapse
Affiliation(s)
- Pan Li
- Department of Plant Genetics Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE, Beijing, China
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops North China, Ministry of Agriculture, Beijing, China
| | - Yanrong Liu
- Department of Grassland Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, China
| | - Wenqing Tan
- Department of Plant Genetics Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE, Beijing, China
| | - Jun Chen
- Department of Plant Genetics Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE, Beijing, China
| | - Mengjiao Zhu
- Department of Plant Genetics Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE, Beijing, China
| | - Ya Lv
- Department of Plant Genetics Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE, Beijing, China
| | - Yishan Liu
- Department of Plant Genetics Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE, Beijing, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops North China, Ministry of Agriculture, Beijing, China
| | - Wanjun Zhang
- Department of Grassland Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, China
| | - Hongwei Cai
- Department of Plant Genetics Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE, Beijing, China
- Forage Crop Research Institute, Japan Grassland Agricultural and Forage Seed Association, 388-5 Higashiakada, Nasushiobara, Tochigi, Japan
| |
Collapse
|
13
|
Cao J, Tan X. Comprehensive Analysis of the Chitinase Family Genes in Tomato ( Solanum lycopersicum). PLANTS 2019; 8:plants8030052. [PMID: 30823433 PMCID: PMC6473868 DOI: 10.3390/plants8030052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
Chitinase catalyzes the hydrolysis of chitin β-1,4 linkages. However, plants cannot produce chitin, suggesting that plant chitinases do not have the same function as animals. This study investigated the chitinase gene family in tomato and divided into eight groups via phylogenetic analyses with Arabidopsis and rice members. Conserved gene structures and motif arrangements indicated their functional relevance with each group. These genes were nonrandomly distributed across the tomato chromosomes, and tandem duplication contributed to the expansion of this gene family. Synteny analysis also established orthology relationships and functional linkages between Arabidopsis and tomato chitinase genes. Several positive selection sites were identified, which may contribute to the functional divergence of the protein family in evolution. In addition, differential expression profiles of the tomato chitinase genes were also investigated at some developmental stages, or under different biotic and abiotic stresses. Finally, functional network analysis found 124 physical or functional interactions, implying the diversity of physiological functions of the family proteins. These results provide a foundation for the exploration of the chitinase genes in plants and will offer some insights for further functional studies.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Life Sciences, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China.
| | - Xiaona Tan
- Institute of Life Sciences, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China.
| |
Collapse
|
14
|
Characterization of the Transcriptome and Gene Expression of Tetraploid Black Locust Cuttings in Response to Etiolation. Genes (Basel) 2017; 8:genes8120345. [PMID: 29186815 PMCID: PMC5748663 DOI: 10.3390/genes8120345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/02/2017] [Accepted: 11/11/2017] [Indexed: 11/17/2022] Open
Abstract
Etiolation (a process of growing plants in partial or complete absence of light) promotes adventitious root formation in tetraploid black locust (Robinia pseudoacacia L.) cuttings. We investigated the mechanism underlying how etiolation treatment promotes adventitious root formation in tetraploid black locust and assessed global transcriptional changes after etiolation treatment. Solexa paired-end sequencing of complementary DNAs (cDNAs) from control (non-etiolated, NE) and etiolated (E) samples resulted in 107,564 unigenes. In total, 52,590 transcripts were annotated and 474 transcripts (211 upregulated and 263 downregulated) potentially involved in etiolation were differentially regulated. These genes were associated with hormone metabolism and response, photosynthesis, signaling pathways, and starch and sucrose metabolism. In addition, we also found significant differences of phytohormone contents, activity of following enzymes i.e., peroxidase, polyphenol oxidase and indole acetic acid oxidase between NE and E tissues during some cottage periods. The genes responsive to etiolation stimulus identified in this study will provide the base for further understanding how etiolation triggers adventitious roots formation in tetraploid black locus.
Collapse
|
15
|
Wu J, Wang Y, Kim SG, Jung KH, Gupta R, Kim J, Park Y, Kang KY, Kim ST. A secreted chitinase-like protein (OsCLP) supports root growth through calcium signaling in Oryza sativa. PHYSIOLOGIA PLANTARUM 2017; 161:273-284. [PMID: 28401568 DOI: 10.1111/ppl.12579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 05/27/2023]
Abstract
Chitinases belong to a conserved protein family and play multiple roles in defense, development and growth regulation in plants. Here, we identified a secreted chitinase-like protein, OsCLP, which functions in rice growth. A T-DNA insertion mutant of OsCLP (osclp) showed significant retardation of root and shoot growth. A comparative proteomic analysis was carried out using root tissue of wild-type and the osclp mutant to understand the OsCLP-mediated rice growth retardation. Results obtained revealed that proteins related to glycolysis (phosphoglycerate kinase), stress adaption (chaperonin) and calcium signaling (calreticulin and CDPK1) were differentially regulated in osclp roots. Fura-2 molecular probe staining, which is an intracellular calcium indicator, and inductively coupled plasma-mass spectrometry (ICP-MS) analysis suggested that the intracellular calcium content was significantly lower in roots of osclp as compared with the wild-type. Exogenous application of Ca2+ resulted in successful recovery of both primary and lateral root growth in osclp. Moreover, overexpression of OsCLP resulted in improved growth with modified seed shape and starch structure; however, the overall yield remained unaffected. Taken together, our results highlight the involvement of OsCLP in rice growth by regulating the intracellular calcium concentrations.
Collapse
Affiliation(s)
- Jingni Wu
- Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, 660-701, South Korea
| | - Yiming Wang
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Sang Gon Kim
- National Institute of Crop Science, Rural Development Administration, Suwon, 16429, South Korea
| | - Ki-Hong Jung
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, South Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627-706, South Korea
| | - Joonyup Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627-706, South Korea
| | - Younghoon Park
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627-706, South Korea
- Department of Horticultural Bioscience, Pusan National University, Miryang, 627-706, South Korea
| | - Kyu Young Kang
- Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, 660-701, South Korea
- National Institute of Crop Science, Rural Development Administration, Suwon, 16429, South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea
| |
Collapse
|
16
|
Zhang H, Kjemtrup-Lovelace S, Li C, Luo Y, Chen LP, Song BH. Comparative RNA-Seq Analysis Uncovers a Complex Regulatory Network for Soybean Cyst Nematode Resistance in Wild Soybean (Glycine soja). Sci Rep 2017; 7:9699. [PMID: 28852059 PMCID: PMC5575055 DOI: 10.1038/s41598-017-09945-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/01/2017] [Indexed: 01/28/2023] Open
Abstract
Soybean cyst nematode (SCN) is the most damaging pest of soybean worldwide. The molecular mechanism of SCN resistance remains largely unknown. We conducted a global RNA-seq comparison between a resistant genotype (S54) and a susceptible genotype (S67) of Glycine soja, the wild progenitor of soybean, to understand its regulatory network in SCN defense. The number of differentially expressed genes (DEGs) in S54 (2,290) was much larger than that in S67 (555). A number of defense-related genes/pathways were significantly induced only in S54, while photosynthesis and several metabolic pathways were affected in both genotypes with SCN infection. These defense-associated DEGs were involved in pathogen recognition, calcium/calmodulin-mediated defense signaling, jasmonic acid (JA)/ethylene (ET) and sialic acid (SA)-involved signaling, the MAPK signaling cascade, and WRKY-involved transcriptional regulation. Our results revealed a comprehensive regulatory network involved in SCN resistance and provided insights into the complex molecular mechanisms of SCN resistance in wild soybean.
Collapse
Affiliation(s)
- Hengyou Zhang
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | - Changbao Li
- Double Haploid Optimization Group, Monsanto Company, St. Louis, MO 63167, USA
| | - Yan Luo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 650221, China
| | - Lars P Chen
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
17
|
Chávez Montes RA, Coello G, González-Aguilera KL, Marsch-Martínez N, de Folter S, Alvarez-Buylla ER. ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks. BMC PLANT BIOLOGY 2014; 14:97. [PMID: 24739361 PMCID: PMC4021103 DOI: 10.1186/1471-2229-14-97] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 03/27/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND Uncovering the complex transcriptional regulatory networks (TRNs) that underlie plant and animal development remains a challenge. However, a vast amount of data from public microarray experiments is available, which can be subject to inference algorithms in order to recover reliable TRN architectures. RESULTS In this study we present a simple bioinformatics methodology that uses public, carefully curated microarray data and the mutual information algorithm ARACNe in order to obtain a database of transcriptional interactions. We used data from Arabidopsis thaliana root samples to show that the transcriptional regulatory networks derived from this database successfully recover previously identified root transcriptional modules and to propose new transcription factors for the SHORT ROOT/SCARECROW and PLETHORA pathways. We further show that these networks are a powerful tool to integrate and analyze high-throughput expression data, as exemplified by our analysis of a SHORT ROOT induction time-course microarray dataset, and are a reliable source for the prediction of novel root gene functions. In particular, we used our database to predict novel genes involved in root secondary cell-wall synthesis and identified the MADS-box TF XAL1/AGL12 as an unexpected participant in this process. CONCLUSIONS This study demonstrates that network inference using carefully curated microarray data yields reliable TRN architectures. In contrast to previous efforts to obtain root TRNs, that have focused on particular functional modules or tissues, our root transcriptional interactions provide an overview of the transcriptional pathways present in Arabidopsis thaliana roots and will likely yield a plethora of novel hypotheses to be tested experimentally.
Collapse
Affiliation(s)
- Ricardo A Chávez Montes
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología and Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F. 04510, Mexico
- Present address: Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte, Carretera Irapuato-León, AP 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Gerardo Coello
- Unidad de Cómputo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F. 04510, Mexico
| | - Karla L González-Aguilera
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte, Carretera Irapuato-León, AP 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Nayelli Marsch-Martínez
- Departamento de Biotecnologıa y Bioquımica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte, Carretera Irapuato-León, AP 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Stefan de Folter
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte, Carretera Irapuato-León, AP 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Elena R Alvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología and Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F. 04510, Mexico
| |
Collapse
|
18
|
Adrangi S, Faramarzi MA. From bacteria to human: a journey into the world of chitinases. Biotechnol Adv 2013; 31:1786-95. [PMID: 24095741 DOI: 10.1016/j.biotechadv.2013.09.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/26/2013] [Accepted: 09/28/2013] [Indexed: 12/28/2022]
Abstract
Chitinases, the enzymes responsible for the biological degradation of chitin, are found in a wide range of organisms from bacteria to higher plants and animals. They participate in numerous physiological processes such as nutrition, parasitism, morphogenesis and immunity. Many organisms, in addition to chitinases, produce inactive chitinase-like lectins that despite lacking enzymatic activity are involved in several regulatory functions. Most known chitinases belong to families 18 and 19 of glycosyl hydrolases, however a few chitinases that belong to families 23 and 48 have also been identified in recent years. In this review, different aspects of chitinases and chi-lectins from bacteria, fungi, insects, plants and mammals are discussed.
Collapse
Affiliation(s)
- Sina Adrangi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
19
|
Hall H, Ellis B. Transcriptional programming during cell wall maturation in the expanding Arabidopsis stem. BMC PLANT BIOLOGY 2013; 13:14. [PMID: 23350960 PMCID: PMC3635874 DOI: 10.1186/1471-2229-13-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/21/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant cell walls are complex dynamic structures that play a vital role in coordinating the directional growth of plant tissues. The rapid elongation of the inflorescence stem in the model plant Arabidopsis thaliana is accompanied by radical changes in cell wall structure and chemistry, but analysis of the underlying mechanisms and identification of the genes that are involved has been hampered by difficulties in accurately sampling discrete developmental states along the developing stem. RESULTS By creating stem growth kinematic profiles for individual expanding Arabidopsis stems we have been able to harvest and pool developmentally-matched tissue samples, and to use these for comparative analysis of global transcript profiles at four distinct phases of stem growth: the period of elongation rate increase, the point of maximum growth rate, the point of stem growth cessation and the fully matured stem. The resulting profiles identify numerous genes whose expression is affected as the stem tissues pass through these defined growth transitions, including both novel loci and genes identified in earlier studies. Of particular note is the preponderance of highly active genes associated with secondary cell wall deposition in the region of stem growth cessation, and of genes associated with defence and stress responses in the fully mature stem. CONCLUSIONS The use of growth kinematic profiling to create tissue samples that are accurately positioned along the expansion growth continuum of Arabidopsis inflorescence stems establishes a new standard for transcript profiling analyses of such tissues. The resulting expression profiles identify a substantial number of genes whose expression is correlated for the first time with rapid cell wall extension and subsequent fortification, and thus provide an important new resource for plant biologists interested in gene discovery related to plant biomass accumulation.
Collapse
Affiliation(s)
- Hardy Hall
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Currently: Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| | - Brian Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
20
|
Wu B, Zhang B, Dai Y, Zhang L, Shang-Guan K, Peng Y, Zhou Y, Zhu Z. Brittle culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice. PLANT PHYSIOLOGY 2012; 159:1440-52. [PMID: 22665444 PMCID: PMC3425189 DOI: 10.1104/pp.112.195529] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/02/2012] [Indexed: 05/19/2023]
Abstract
Plant chitinases, a class of glycosyl hydrolases, participate in various aspects of normal plant growth and development, including cell wall metabolism and disease resistance. The rice (Oryza sativa) genome encodes 37 putative chitinases and chitinase-like proteins. However, none of them has been characterized at the genetic level. In this study, we report the isolation of a brittle culm mutant, bc15, and the map-based cloning of the BC15/OsCTL1 (for chitinase-like1) gene affected in the mutant. The gene encodes the rice chitinase-like protein BC15/OsCTL1. Mutation of BC15/OsCTL1 causes reduced cellulose content and mechanical strength without obvious alterations in plant growth. Bioinformatic analyses indicated that BC15/OsCTL1 is a class II chitinase-like protein that is devoid of both an amino-terminal cysteine-rich domain and the chitinase activity motif H-E-T-T but possesses an amino-terminal transmembrane domain. Biochemical assays demonstrated that BC15/OsCTL1 is a Golgi-localized type II membrane protein that lacks classical chitinase activity. Quantitative real-time polymerase chain reaction and β-glucuronidase activity analyses indicated that BC15/OsCTL1 is ubiquitously expressed. Investigation of the global expression profile of wild-type and bc15 plants, using Illumina RNA sequencing, further suggested a possible mechanism by which BC15/OsCTL1 mediates cellulose biosynthesis and cell wall remodeling. Our findings provide genetic evidence of a role for plant chitinases in cellulose biosynthesis in rice, which appears to differ from their roles as revealed by analysis of Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
| | | | | | - Lei Zhang
- Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Keke Shang-Guan
- Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonggang Peng
- Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
21
|
Bosch M, Mayer CD, Cookson A, Donnison IS. Identification of genes involved in cell wall biogenesis in grasses by differential gene expression profiling of elongating and non-elongating maize internodes. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3545-61. [PMID: 21402660 PMCID: PMC3130177 DOI: 10.1093/jxb/err045] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/20/2011] [Accepted: 02/01/2011] [Indexed: 05/18/2023]
Abstract
Despite the economic importance of grasses as food, feed, and energy crops, little is known about the genes that control their cell wall synthesis, assembly, and remodelling. Here a detailed transcriptome analysis that allowed the identification of genes involved in grass cell wall biogenesis is provided. Differential gene expression profiling, using maize oligonucleotide arrays, was used to identify genes differentially expressed between an elongating internode, containing cells exhibiting primary cell wall synthesis, and an internode that had just ceased elongation and in which many cells were depositing secondary cell wall material. This is one of only a few studies specifically aimed at the identification of cell wall-related genes in grasses. Analysis identified new candidate genes for a role in primary and secondary cell wall biogenesis in grasses. The results suggest that many proteins involved in cell wall processes during normal development are also recruited during defence-related cell wall remodelling events. This work provides a platform for studies in which candidate genes will be functionally tested for involvement in cell wall-related processes, increasing our knowledge of cell wall biogenesis and its regulation in grasses. Since several grasses are currently being developed as lignocellulosic feedstocks for biofuel production, this improved understanding of grass cell wall biogenesis is timely, as it will facilitate the manipulation of traits favourable for sustainable food and biofuel production.
Collapse
Affiliation(s)
- Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EB, UK.
| | | | | | | |
Collapse
|
22
|
Vaughn LM, Baldwin KL, Jia G, Verdonk JC, Strohm AK, Masson PH. The Cytoskeleton and Root Growth Behavior. THE PLANT CYTOSKELETON 2011. [DOI: 10.1007/978-1-4419-0987-9_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|