1
|
Peng Q, Wu Z, Qian D, Ren H, Xie G. Comprehensive multi-omics analysis of secondary distillate from fermented Huangjiu residue: Insights into flavor formation and microbial dynamics. Food Chem 2025; 482:144145. [PMID: 40187301 DOI: 10.1016/j.foodchem.2025.144145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/20/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Huangjiu residue distillate, or Zaoshao, is a traditional Chinese liquor produced from the fermentation and distillation of Huangjiu lees. This study investigates the fermentation mechanisms and flavor formation of secondary Zaoshao, derived from the second round of Huangjiu lees fermentation, using flavoromics, amino acid and organic acid profiling, and metagenomics. Flavoromics identified ethyl octanoate, ethyl decanoate, ethyl dodecanoate, ethyl hexadecanoate, and ethyl (Z)-octadec-9-enoate as key flavor compounds. Amino acid and organic acid profiling showed continuous increases in amino acid content and significant changes in organic acids during fermentation. Metagenomics identified 9 dominant genera and 10 key species, with Saccharomyces, Saccharopolyspora, Aspergillus, Streptomyces, and Bacillus playing crucial roles in fermentation and flavor formation. These findings provide insights into microbial community functions and offer a foundation for regulating microbial consortia to enhance the flavor quality of secondary Zaoshao.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Zhitao Wu
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Dongsheng Qian
- Shaoxing Testing Institute of Quality and Technical Supervision, China
| | - Huan Ren
- Shaoxing Nverhong Winery Co Ltd, Shaoxing 312000, China
| | - Guangfa Xie
- Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
2
|
Xu C, Chen Y, Hu Z, Xie Q, Guo H, Tian S, Chen G. Comparative analysis of petal phytoconstituents reveals insights into the characteristics of an under-reported edible old rose variety native to Chongqing, China. Heliyon 2025; 11:e41505. [PMID: 39834444 PMCID: PMC11742830 DOI: 10.1016/j.heliyon.2024.e41505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/06/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
Chongqing Old Rose is an ancient edible rose variety native to Chongqing, China, but is under-reported. Further evidence is required to fully establish its potential benefits. The complete metabolic profiles were examined for comparative analysis between the Old Rose and three rose cultivars. The results showed that the pathways of flavonoid biosynthesis, monoterpenoid biosynthesis, and phenylalanine metabolism were significantly enriched in Old Rose. The predominant anthocyanins in Old Rose were cyanidin and peonidin, which may contribute to flower coloration and indicate the antioxidant potential of this plant. Additionally, this plant was rich in aromatic compounds and terpenoids such as 2-phenylethanol, linalool, geraniol, and caryophyllene α-oxide, indicating that it has a natural basis for extracting essential oil. Moreover, the presence of some active phytoconstituents, such as phenols, steroids, and alkaloids, also suggests its potential for edible and medicinal applications besides flavonoids and terpenoids.
Collapse
Affiliation(s)
- Chan Xu
- Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, 400000, China
- College of Bioengineering, Chongqing University, Chongqing, 400000, China
| | - Yuan Chen
- Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, 400000, China
| | - Zongli Hu
- College of Bioengineering, Chongqing University, Chongqing, 400000, China
| | - Qiaoli Xie
- College of Bioengineering, Chongqing University, Chongqing, 400000, China
| | - Hang Guo
- Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, 400000, China
| | - Shibing Tian
- Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, 400000, China
| | - Guoping Chen
- College of Bioengineering, Chongqing University, Chongqing, 400000, China
| |
Collapse
|
3
|
Guo X, Wang L, Huang X, Zhou Q. Characterization of the volatile compounds in tea ( Camellia sinensis L.) flowers during blooming. Front Nutr 2025; 11:1531185. [PMID: 39877541 PMCID: PMC11772201 DOI: 10.3389/fnut.2024.1531185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Tea flower, with characteristic flavor formed during blooming, are a significant tea resource. However, studies on the volatile compounds of tea flower and their aroma characteristics during flowering are scarce. In this study, the odor characteristics of tea flower during blooming were comprehensively investigated by GC-MS, PCA, ACI determination and sensory evaluation. The tea flower of unopened buds (TF-S1) contained the highest alcohol amounts, while fully opened tea flowers (TF-S3) had the highest heterocyclic compounds. Half-opened tea flowers (TF-S2) had the most volatile compounds, including high levels of linalool and its oxides, and low levels of (Z)-3-hexen-1-ol. Acetoin and cosmene were first identified in TF-S1 and TF-S2, respectively. The major ACI components differed, with linalool being prominent exhibiting ACI above 27 in all samples. Acetophenone, unique to TF-S2 with ACI of 57.35, contributed to sweet odor. Furthermore, PCA analysis and sensory evaluation revealed distinct aroma characteristics among the samples. Overall, TF-S2 and TF-S3 had higher volatile amounts and better aroma properties with floral, powdery or almond-like odors. These results advance the understanding of aroma properties of tea flower during blooming, and provide a reference for resource utilization and promotion of the application in food or cosmetics industries.
Collapse
Affiliation(s)
- Xiangyang Guo
- College of Tea and Food Science, Xinyang Normal University, Xinyang, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Dabie Mountain Laboratory, Xinyang, China
| | - Lulu Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Xiuting Huang
- College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Qiying Zhou
- College of Tea and Food Science, Xinyang Normal University, Xinyang, China
- Dabie Mountain Laboratory, Xinyang, China
| |
Collapse
|
4
|
Kim S, Choi YJ, Eom H, Ro HS. Fungal degradation of phenylacetate focusing on CRISPR/Cas9-assisted characterization of two oxidative enzyme genes of Akanthomyces muscarius AM1091. Microbiol Res 2024; 289:127934. [PMID: 39454413 DOI: 10.1016/j.micres.2024.127934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
The degradation of phenylacetate (PA) was investigated as a model to explore aromatic compound breakdown in the fungal system. Fungal strains capable of utilizing PA as their sole carbon source were isolated using a minimal solid medium supplemented with 0.5 % PA. Subsequent cultivation in minimum liquid medium revealed that selected fungal strains, including Trametes versicolor TV0876 and TV3295, Paecilomyces hepiali PH4477, and Akanthomyces muscarius AM1091, efficiently removed PA within 24 h. HPLC analysis of culture supernatants from various fungal strains revealed a time-dependent accumulation of 2-hydroxyphenylacetate (2-HPA) and 4-hydroxyphenylacetate (4-HPA), two key major metabolic products primarily found in ascomycetes and basidiomycetes, respectively. This suggests that the first hydroxylation of PA is catalyzed by two distinct hydroxylases, one for each fungal group. Furthermore, fungal species that make 4-HPA also produce phenylethanol (PE), indicating a distinct catabolic mechanism to remove PA by direct reduction of PA to PE. A. muscarius AM1091, identified as the most efficient PA degrader in this study, was studied further to determine the biochemical pathway of PA degradation. RNA-Seq and RT-PCR analyses of AM1091 revealed two oxidative enzyme genes, CYP1 and DIO4, upregulated in the presence of PA. Targeted disruption utilizing preassembled Cas9-gRNA ribonucleoprotein complexes and homologous DNAs harboring the URA3 gene as an auxotrophic marker resulted in the cyp1 and dio4 mutant strains. The cyp1 mutant was incapable of converting PA to 2-HPA, indicating its involvement in the C2 hydroxylation, whereas the dio4 mutant was unable to degrade 2,5-dihydroxyphenylacetate (2,5-DHPA), resulting in the accumulation of 2,5-DHPA. Our findings indicate that A. muscarius AM1091 degrades PA through the activities of CYP1 and DIO4 for the C2 hydroxylation and subsequent ring-opening reactions, respectively.
Collapse
Affiliation(s)
- Sinil Kim
- Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Biological Resources Utilization Division, National Institute of Biological Resources (NIBR), Incheon 22689, Republic of Korea
| | - Yeon-Jae Choi
- Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyerang Eom
- Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeon-Su Ro
- Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
5
|
Yang Y, Cao Y, Zhu C, Jin Y, Sun H, Wang R, Li M, Zhang Z. Functional activities of three Rehmannia glutinosa enzymes: Elucidation of the Rehmannia glutinosa salidroside biosynthesis pathway in Saccharomyces cerevisiae. Gene 2024; 928:148815. [PMID: 39097208 DOI: 10.1016/j.gene.2024.148815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Rehmannia glutinosa produces many phenylethanoid glycoside (PhG) compounds, including salidroside, which not only possesses various biological activities but also is a core precursor of some medicinal PhGs, so it is very important to elucidate the species' salidroside biosynthesis pathway to enhance the production of salidroside and its derivations. Although some plant copper-containing amine oxidases (CuAOs), phenylacetaldehyde reductases (PARs) and UDP-glucose glucosyltransferases (UGTs) are thought to be vital catalytic enzymes involved in the downstream salidroside biosynthesis pathways, to date, none of these proteins or the associated genes in R. glutinosa have been characterized. To verify a postulated R. glutinosa salidroside biosynthetic pathway starting from tyrosine, this study identified and characterized a set of R. glutinosa genes encoding RgCuAO, RgPAR and RgUGT enzymes for salidroside biosynthesis. The functional activities of these proteins were tested in vitro by heterologous expression of these genes in Escherichia coli, confirming these catalytic abilities in these corresponding reaction steps of the biosynthetic pathway. Importantly, four enzyme-encoding genes (including the previously reported RgTyDC2 encoding tyrosine decarboxylase and the RgCuAO1, RgPAR1 and RgUGT2 genes) were cointegrated into Saccharomyces cerevisiae to reconstitute the R. glutinosa salidroside biosynthetic pathway, achieving an engineered strain that produced salidroside and validating these enzymes' catalytic functions. This study elucidates the complete R. glutinosa salidroside biosynthesis pathway from tyrosine metabolism in S. cerevisiae, establishing a basic platform for the efficient production of salidroside and its derivatives.
Collapse
Affiliation(s)
- Yanhui Yang
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China.
| | - Yiming Cao
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Changrui Zhu
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Yan Jin
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Huiwen Sun
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Rong Wang
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Mingjie Li
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou 350002, China
| | - Zhongyi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|
6
|
Li H, Li Y, Yan H, Bao T, Shan X, Caissard JC, Zhang L, Fang H, Bai X, Zhang J, Wang Z, Wang M, Guan Q, Cai M, Ning G, Jia X, Boachon B, Baudino S, Gao X. The complexity of volatile terpene biosynthesis in roses: Particular insights into β-citronellol production. PLANT PHYSIOLOGY 2024; 196:1908-1922. [PMID: 39186538 DOI: 10.1093/plphys/kiae444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024]
Abstract
The fascinating scent of rose (Rosa genus) flowers has captivated human senses for centuries, making them one of the most popular and widely used floral fragrances. Despite much progress over the last decade, many biochemical pathways responsible for rose scents remain unclear. We analyzed the floral scent compositions from various rose varieties and selected the modern cultivar Rosa hybrida "Double Delight" as a model system to unravel the formation of rose dominant volatile terpenes, which contribute substantially to the rose fragrance. Key genes involved in rose terpene biosynthesis were functionally characterized. Cytosolic geranyl diphosphate (GPP) generated by geranyl/farnesyl diphosphate synthase (G/FPPS1) catalysis played a pivotal role in rose scent production, and terpene synthases in roses play an important role in the formation of most volatile terpenes, but not for geraniol, citral, or β-citronellol. Subsequently, a series of enzymes, including geraniol dehydrogenase, geranial reductase, 12-oxophytodienoate reductase, and citronellal reductase, were characterized as involved in the transformation of geraniol to β-citronellol in roses through three successive steps. Interestingly, the β-citronellol biosynthesis pathway appears to be conserved in other horticultural plants like Lagerstroemia caudata and Paeonia lactiflora. Our findings provide valuable insights into the biosynthesis of rose volatile terpenoid compounds and offer essential gene resources for future breeding and molecular modification efforts.
Collapse
Affiliation(s)
- Hongjie Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Huijun Yan
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Tingting Bao
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Xiaotong Shan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Jean-Claude Caissard
- CNRS UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Université Jean Monnet Saint-Etienne, Saint-Etienne 42023, France
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huiyi Fang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xue Bai
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Jia Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Zhaoxuan Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Min Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Qian Guan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Ming Cai
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Guogui Ning
- Key laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University Wuhan 430070, China
| | - Xiujuan Jia
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Benoît Boachon
- CNRS UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Université Jean Monnet Saint-Etienne, Saint-Etienne 42023, France
| | - Sylvie Baudino
- CNRS UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Université Jean Monnet Saint-Etienne, Saint-Etienne 42023, France
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
7
|
Lv M, Zhang L, Wang Y, Ma L, Yang Y, Zhou X, Wang L, Yu X, Li S. Floral volatile benzenoids/phenylpropanoids: biosynthetic pathway, regulation and ecological value. HORTICULTURE RESEARCH 2024; 11:uhae220. [PMID: 39398951 PMCID: PMC11469922 DOI: 10.1093/hr/uhae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/28/2024] [Indexed: 10/15/2024]
Abstract
Benzenoids/phenylpropanoids, the second most diverse group of plant volatiles, exhibit significant structural diversity and play crucial roles in attracting pollinators and protecting against pathogens, insects, and herbivores. This review summarizes their complex biosynthetic pathways and regulatory mechanisms, highlighting their links to plant growth, development, hormone levels, circadian rhythms, and flower coloration. External factors like light, humidity, and temperature also influence their biosynthesis. Their ecological value is discussed, offering insights for enhancing floral scent, pollinator attraction, pest resistance, and metabolic engineering through genetic modification.
Collapse
Affiliation(s)
- Mengwen Lv
- School of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing 100083, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Ling Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhou Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xian Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangsheng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaonan Yu
- School of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing 100083, China
| | - Shanshan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Kiani HS, Noudehi MS, Shokrpour M, Zargar M, Naghavi MR. Investigation of genes involved in scent and color production in Rosa damascena Mill. Sci Rep 2024; 14:20576. [PMID: 39242697 PMCID: PMC11379714 DOI: 10.1038/s41598-024-71518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Rosa damascena Mill., commonly known as the King Flower, is a fragrant and important species of the Rosaceae family. It is widely used in the perfumery and pharmaceutical industries. The scent and color of the flowers are significant characteristics of this ornamental plant. This study aimed to investigate the relative expression of MYB1, CCD1, FLS, PAL, CER1, GT1, ANS and PAR genes under two growth stages (S1 and S2) in two morphs. The CCD1 gene pathway is highly correlated with the biosynthesis of volatile compounds. The results showed that the overexpression of MYB1, one of the important transcription factors in the production of fragrance and color, in the Hot pink morph of sample S2 increased the expression of PAR, PAL, FLS, RhGT1, CCD1, ANS, CER1, and GGPPS. The methyl jasmonate (MeJA) stimulant had a positive and cumulative effect on gene expression in most genes, such as FLS in ACC.26 of the S2 sample, RhGT1, MYB1, CCD1, PAR, ANS, CER1, and PAL in ACC.1. To further study, a comprehensive analysis was performed to evaluate the relationship between the principal volatile compounds and colors. Our data suggest that the rose with pink flowers had a higher accumulation content of flavonoids and anthocyanin. To separate essential oil compounds, GC/MS analysis identified 26 compounds in four samples. The highest amount of geraniol, one of the main components of damask rose, was found in the Hot pink flower, 23.54%, under the influence of the MeJA hormone.
Collapse
Affiliation(s)
- Hoda Sadat Kiani
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Manijeh Sabokdast Noudehi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Majid Shokrpour
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, Russia, 117198
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, Russia, 117198.
| |
Collapse
|
9
|
Shang J, Feng D, Liu H, Niu L, Li R, Li Y, Chen M, Li A, Liu Z, He Y, Gao X, Jian H, Wang C, Tang K, Bao M, Wang J, Yang S, Yan H, Ning G. Evolution of the biosynthetic pathways of terpene scent compounds in roses. Curr Biol 2024; 34:3550-3563.e8. [PMID: 39043188 DOI: 10.1016/j.cub.2024.06.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/28/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
It is unknown why roses are terpene-rich, what the terpene biosynthetic pathways in roses are, and why only a few rose species produce the major components of rose essential oil. Here, we assembled two high-quality chromosome-level genomes for Rosa rugosa and Rosa multiflora. We also re-sequenced 132 individuals from the F1 progeny of Rosa chinensis and Rosa wichuraiana and 36 of their related species. Comparative genomics revealed that expansions of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) and terpene synthases (TPSs) gene families led to the enrichment of terpenes in rose scent components. We constructed a terpene biosynthesis network and discovered a TPS-independent citronellol biosynthetic pathway in roses through gene functional identification, genome-wide association studies (GWASs), and multi-omic analysis. Heterologous co-expression of rose citronellol biosynthetic genes in Nicotiana benthamiana led to citronellol production. Our genomic and metabolomic analyses suggested that the copy number of NUDX1-1a determines the citronellol content in different rose species. Our findings not only provide additional genome and gene resources and reveal the evolution of the terpene biosynthetic pathways but also present a nearly complete scenario for terpenoid metabolism that will facilitate the breeding of fragrant roses and the production of rose oil.
Collapse
Affiliation(s)
- Junzhong Shang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Dedang Feng
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 671003, China
| | - Heng Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Lintao Niu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Runhui Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yajun Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengxi Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ao Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Yanhong He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Hongying Jian
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 671003, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kaixue Tang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 671003, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 671003, China.
| | - Shuhua Yang
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Huijun Yan
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 671003, China.
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Noh YM, Ait Hida A, Raymond O, Comte G, Bendahmane M. The scent of roses, a bouquet of fragrance diversity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1252-1264. [PMID: 38015983 DOI: 10.1093/jxb/erad470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Roses have been domesticated since antiquity for their therapeutic, cosmetic, and ornamental properties. Their floral fragrance has great economic value, which has influenced the production of rose varieties. The production of rose water and essential oil is one of the most lucrative activities, supplying bioactive molecules to the cosmetic, pharmaceutical, and therapeutic industries. In recent years, major advances in molecular genetics, genomic, and biochemical tools have paved the way for the identification of molecules that make up the specific fragrance of various rose cultivars. The aim of this review is to highlight current knowledge on metabolite profiles, and more specifically on fragrance compounds, as well as the specificities and differences between rose species and cultivars belonging to different rose sections and how they contribute to modern roses fragrance.
Collapse
Affiliation(s)
- Yuo-Myoung Noh
- Laboratoire Reproduction et Développement des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, Lyon, France
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Amal Ait Hida
- Institut Agronomique et Vétérinaire, Complexe Horticole, Agadir, Morocco
| | - Olivier Raymond
- Laboratoire Reproduction et Développement des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Gilles Comte
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
11
|
Peng Q, Tao W, Yu F, Xiong Q, Nong C, Zhang W, Fan J. Physiological and Biochemical Analysis Revealing the Key Factors Influencing 2-Phenylethanol and Benzyl Alcohol Production in Crabapple Flowers. PLANTS (BASEL, SWITZERLAND) 2024; 13:631. [PMID: 38475477 DOI: 10.3390/plants13050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Floral scent (FS) plays a crucial role in the ecological functions and industrial applications of plants. However, the physiological and metabolic mechanisms underlying FS formation remain inadequately explored. Our investigation focused on elucidating the differential formation mechanisms of 2-phenylethanol (2-PE) and benzyl alcohol (BA) by examining seven related enzyme concentrations and the content of soluble sugar, soluble proteins, carbon (C) and nitrogen (N), as well as the C/N ratio. The findings revealed that the peak content of 2-PE in M. 'Praire Rose' and BA in M. 'Lollipop' occurred during the end flowering stage (S4) and flowering stage (S3) periods, respectively. The enzyme concentration change trends of phenylpyruvate decarboxylase (PDL), phenylacetaldehyde reductase (PAR), soluble protein, C, N, and C/N ratio changes during the S3-S4 period in M. 'Praire Rose' and M. 'Lollipop' were entirely opposite. Correlation and PCA analysis demonstrated that the content of CYP79D73 (a P450) and N, and the C/N ratio were key factors in 2-PE production in M. 'Praire Rose'. The production of BA in M. 'Lollipop' was more influenced by the content of phenylacetaldehyde synthase (PAAS), CYP79D73, and soluble sugar. As CYP79D73 exits oppositely in correlation to 2-PE (M. 'Praire Rose') and BA (M. 'Lollipop'), it is hypothesized that CYP79D73 was postulated as the primary factor contributing to the observed differences of 2-PE (M. 'Praire Rose') and BA (M. 'Lollipop') formation. These results carry significant implications for crabapple aromatic flower breeding and the essential oil industry etc.
Collapse
Affiliation(s)
- Qin Peng
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Wenkai Tao
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Fangyuan Yu
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Qinqin Xiong
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Chunshi Nong
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Wangxiang Zhang
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Junjun Fan
- College of Horticulture, Jinling Institute of Technology, No. 99 Hongjing Avenue, Jiangning District, Nanjing 211169, China
| |
Collapse
|
12
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
13
|
Jin J, Zhao M, Jing T, Zhang M, Lu M, Yu G, Wang J, Guo D, Pan Y, Hoffmann TD, Schwab W, Song C. Volatile compound-mediated plant-plant interactions under stress with the tea plant as a model. HORTICULTURE RESEARCH 2023; 10:uhad143. [PMID: 37691961 PMCID: PMC10483893 DOI: 10.1093/hr/uhad143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/15/2023] [Indexed: 09/12/2023]
Abstract
Plants respond to environmental stimuli via the release of volatile organic compounds (VOCs), and neighboring plants constantly monitor and respond to these VOCs with great sensitivity and discrimination. This sensing can trigger increased plant fitness and reduce future plant damage through the priming of their own defenses. The defense mechanism in neighboring plants can either be induced by activation of the regulatory or transcriptional machinery, or it can be delayed by the absorption and storage of VOCs for the generation of an appropriate response later. Despite much research, many key questions remain on the role of VOCs in interplant communication and plant fitness. Here we review recent research on the VOCs induced by biotic (i.e. insects and pathogens) and abiotic (i.e. cold, drought, and salt) stresses, and elucidate the biosynthesis of stress-induced VOCs in tea plants. Our focus is on the role of stress-induced VOCs in complex ecological environments. Particularly, the roles of VOCs under abiotic stress are highlighted. Finally, we discuss pertinent questions and future research directions for advancing our understanding of plant interactions via VOCs.
Collapse
Affiliation(s)
- Jieyang Jin
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mengting Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Guomeng Yu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Jingming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Danyang Guo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yuting Pan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| |
Collapse
|
14
|
Li Y, He L, Song Y, Zhang P, Chen D, Guan L, Liu S. Comprehensive study of volatile compounds and transcriptome data providing genes for grape aroma. BMC PLANT BIOLOGY 2023; 23:171. [PMID: 37003985 PMCID: PMC10064686 DOI: 10.1186/s12870-023-04191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Fruit aroma is an important quality with respect to consumer preference, but the most important aroma compounds and their genetic regulatory mechanisms remain elusive. RESULTS In this study, we qualitatively analysed volatile compounds in the pulp and skin of five table grape cultivars with three aroma types (muscat, strawberry, and neutral) using solid-phase microextraction gas chromatography/mass spectrometry. We identified 215 aroma compounds, including 88 esters, 64 terpenes, and 29 alcohols, and found significant differences in the number of compounds between the pulp and skin, especially for terpenes. Skin transcriptome data for the five grape cultivars were generated and subjected to aroma compound-gene correlation analysis. The combined transcriptomic analysis and terpene profiling data revealed 20 candidate genes, which were assessed in terms of their involvement in aroma biosynthetic regulation, including 1 VvCYP (VIT_08s0007g07730), 2 VvCCR (VIT_13s0067g00620, VIT_13s0047g00940), 3 VvADH (VIT_00s0615g00010, VIT_00s0615g00030, VIT_ 00s0615g00020), and 1 VvSDR (VIT_08s0040g01200) in the phenylpropanoids synthesis pathway, and 1 VvDXS (VIT_05s0020g02130) and 6 VvTPS (VIT_13s0067g00370, Vitis_vinifera_newGene_3216, VIT_13s0067g00380, VIT_13s0084g00010, VIT_00s0271g00010, and VIT_13s0067g00050) in the methylerythritol phosphate pathway (involved in the production and accumulation of aromatic compounds). Additionally, 2 VvMYB (VIT_17s0000g07950, VIT_03s0063g02620) and 1 VvGATA (VIT_15s0024g00980) transcription factor played important regulatory roles in the accumulation of key biosynthetic precursors of these compounds in grapes. Our results indicated that downstream genes, specifically 1 VvBGLU (VIT_03s0063g02490) and 2 VvUGT (VIT_17s0000g07070, VIT_17s0000g07060) are involved in regulating the formation and volatilization of bound compounds in grapes. CONCLUSIONS The results of this study shed light on the volatile compounds and "anchor points" of synthetic pathways in the pulp and skin of muscat and strawberry grapes, and provide new insight into the regulation of different aromas in grapes.
Collapse
Affiliation(s)
- Yongzhou Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Liangliang He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Yinhua Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Peng Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Doudou Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Liping Guan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Sanjun Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China.
| |
Collapse
|
15
|
Pichersky E. Biochemistry and genetics of floral scent: a historical perspective. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36995899 DOI: 10.1111/tpj.16220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Floral scent plays a crucial role in the reproductive process of many plants. Humans have been fascinated by floral scents throughout history, and have transported and traded floral scent products for which they have found multiple uses, such as in food additives, hygiene and perfume products, and medicines. Yet the scientific study of how plants synthesize floral scent compounds began later than studies on most other major plant metabolites, and the first report of the characterization of an enzyme responsible for the synthesis of a floral scent compound, namely linalool in Clarkia breweri, a California annual, appeared in 1994. In the almost 30 years since, enzymes and genes involved in the synthesis of hundreds of scent compounds from multiple plant species have been described. This review recapitulates this history and describes the major findings relating to the various aspects of floral scent biosynthesis and emission, including genes and enzymes and their evolution, storage and emission of scent volatiles, and the regulation of the biochemical processes.
Collapse
Affiliation(s)
- Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Xie L, Bai X, Zhang H, Qiu X, Jian H, Wang Q, Wang H, Feng D, Tang K, Yan H. Loss of Rose Fragrance under Chilling Stress Is Associated with Changes in DNA Methylation and Volatile Biosynthesis. Genes (Basel) 2023; 14:genes14030692. [PMID: 36980964 PMCID: PMC10048243 DOI: 10.3390/genes14030692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Rose plants are widely cultivated as cut flowers worldwide and have economic value as sources of natural fragrance and flavoring. Rosa ‘Crimson Glory’, whose petals have a pleasant fragrance, is one of the most important cultivars of edible rose plants. Flower storage at low-temperature is widely applied in production to maintain quality; however, chilling results in a decrease in aromatic volatiles. To determine the molecular basis underlying the changes in aromatic volatile emissions, we investigated the changes in volatile compounds, DNA methylation patterns, and patterns of the transcriptome in response to chilling temperature. The results demonstrated that chilling roses substantially reduced aromatic volatile emissions. We found that these reductions were correlated with the changes in the methylation status of the promoters and genic regions of the genes involved in volatile biosynthesis. These changes mainly occurred for CHH (H = A, T, or C) which accounted for 51% of the total methylation. Furthermore, transcript levels of scent-related gene Germacrene D synthase (RhGDS), Nudix hydrolase 1 (RhNUDX1), and Phenylacetaldehyde reductase (RhPAR) of roses were strikingly depressed after 24 h at low-temperature and remained low-level after 24 h of recovery at 20 °C. Overall, our findings indicated that epigenetic regulation plays an important role in the chilling tolerance of roses and lays a foundation for practical significance in the production of edible roses.
Collapse
Affiliation(s)
- Limei Xie
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- Institute of Resource Plants, Yunnan University, Kunming 650000, China
| | - Xue Bai
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- Institute of Resource Plants, Yunnan University, Kunming 650000, China
| | - Hao Zhang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Xianqin Qiu
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Hongying Jian
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Qigang Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Huichun Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Dedang Feng
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Kaixue Tang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- Correspondence: (K.T.); (H.Y.)
| | - Huijun Yan
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- National Engineering Research Center for Ornamental Horticulture, Kunming 650000, China
- Correspondence: (K.T.); (H.Y.)
| |
Collapse
|
17
|
Zhou Y, He Y, Zhu Z. Understanding of formation and change of chiral aroma compounds from tea leaf to tea cup provides essential information for tea quality improvement. Food Res Int 2023; 167:112703. [PMID: 37087269 DOI: 10.1016/j.foodres.2023.112703] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Abundant secondary metabolites endow tea with unique quality characteristics, among which aroma is the core component of tea quality. The ratio of chiral isomers of aroma compounds greatly affects the flavor of tea leaves. In this paper, we review the progress of research on chiral aroma compounds in tea. With the well-established GC-MS methods, the formation of, and changes in, the chiral configuration of tea aroma compounds during the whole cycle of tea leaves from the plant to the tea cup has been studied in detail. The ratio of aroma chiral isomers varies among different tea varieties and finished teas. Enzymatic reactions involving tea aroma synthases and glycoside hydrolases participate the formation of aroma compound chiral isomers during tea tree growth and tea processing. Non-enzymatic reactions including environmental factors such as high temperature and microbial fermentation involve in the change of aroma compound chiral isomers during tea processing and storage. In the future, it will be interesting to determine how changes in the proportions of chiral isomers of aroma compounds affect the environmental adaptability of tea trees; and to determine how to improve tea flavor by modifying processing methods or targeting specific genes to alter the ratio of chiral isomers of aroma compounds.
Collapse
Affiliation(s)
- Ying Zhou
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China.
| | - Yunchuan He
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China; College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| | - Zengrong Zhu
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China; College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| |
Collapse
|
18
|
Bienzymatic Cascade Combining a Peroxygenase with an Oxidase for the Synthesis of Aromatic Aldehydes from Benzyl Alcohols. Catalysts 2023. [DOI: 10.3390/catal13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aromatic aldehydes are important aromatic compounds for the flavour and fragrance industry. In this study, a parallel cascade combining aryl alcohol oxidase from Pleurotus eryngii (PeAAOx) and unspecific peroxygenase from the basidiomycete Agrocybe aegerita (AaeUPO) to convert aromatic primary alcohols into high-value aromatic aldehydes is proposed. Key influencing factors in the process of enzyme cascade catalysis, such as enzyme dosage, pH and temperature, were investigated. The universality of PeAAOx coupled with AaeUPO cascade catalysis for the synthesis of aromatic aldehyde flavour compounds from aromatic primary alcohols was evaluated. In a partially optimised system (comprising 30 μM PeAAOx, 2 μM AaeUPO at pH 7 and 40 °C) up to 84% conversion of 50 mM veratryl alcohol into veratryl aldehyde was achieved in a self-sufficient aerobic reaction. Promising turnover numbers of 2800 and 21,000 for PeAAOx and AaeUPO, respectively, point towards practical applicability.
Collapse
|
19
|
Han J, Kong T, Jiang J, Zhao X, Zhao X, Li P, Gu Q. Characteristic flavor metabolic network of fish sauce microbiota with different fermentation processes based on metagenomics. Front Nutr 2023; 10:1121310. [PMID: 36950329 PMCID: PMC10025566 DOI: 10.3389/fnut.2023.1121310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
This article purposed to discuss the connection between microbiota and characteristic flavor of different fish sauces (Natural fermentation (WQ), koji outdoor fermentation (YQ), heat preservation with enzyme (BWE), and heat preservation with koji (BWQ)) at the early (3 months) and late stage (7 months). A total of 117 flavor compounds were determined according to SPME-GC-MS analysis. O2PLS-DA and VIP values were used to reveal 15 and 28 flavor markers of different fish sauces at 3 and 7 M of fermentation. Further, the possible flavor formation pathways were analyzed using metagenomic sequencing, and the key microbes associated with flavor formation were identified at the genetic level. The top 10 genera related to flavor generation, such as Lactobacillus, Staphylococcus, Enterobacter, etc., appeared to play a prominent part in the flavor formation of fish sauce. The difference was that only BWQ and BWE groups could produce ethyl-alcohol through amino acid metabolism, while YQ, BWE and BWQ groups could generate phenylacetaldehyde through the transformation of Phe by α-ketoacid decarboxylase and aromatic amino acid transferase. Our research contributes to clarifying the various metabolic roles of microorganisms in the flavor generation of fish sauce.
Collapse
|
20
|
Xiujun W, Zhenqi S, Yujing T, Kaifeng M, Qingwei L. Comparative transcriptome analysis linked to key volatiles reveals molecular mechanisms of aroma compound biosynthesis in Prunus mume. BMC PLANT BIOLOGY 2022; 22:395. [PMID: 35945501 PMCID: PMC9361687 DOI: 10.1186/s12870-022-03779-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/27/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Mei (Prunus mume) is the only woody plant in the genus Prunus with a floral fragrance, but the underlying mechanisms of aroma compound biosynthesis are unclear despite being a matter of considerable interest. RESULTS The volatile contents of the petals of two cultivars with significantly different aromas, Prunus mume 'Xiao Lve' and Prunus mume 'Xiangxue Gongfen', were characterised by GC-MS at different flowering periods, and a total of 44 volatile compounds were detected. Among these, the main substances forming the typical aroma of P. mume were identified as eugenol, cinnamyl acetate, hexyl acetate and benzyl acetate, with variations in their relative concentrations leading to sensory differences in the aroma of the two cultivars. We compiled a transcriptome database at key stages of floral fragrance formation in the two cultivars and used it in combination with differential analysis of floral volatiles to construct a regulatory network for the biosynthesis of key aroma compounds. The results indicated that PmPAL enzymes and PmMYB4 transcription factors play important roles in regulating the accumulation of key biosynthetic precursors to these compounds. Cytochrome P450s and short-chain dehydrogenases/reductases might also influence the biosynthesis of benzyl acetate by regulating production of key precursors such as benzaldehyde and benzyl alcohol. Furthermore, by analogy to genes with verified functions in Arabidopsis, we predicted that three PmCAD genes, two 4CL genes, three CCR genes and two IGS genes all make important contributions to the synthesis of cinnamyl acetate and eugenol in P. mume. This analysis also suggested that the downstream genes PmBGLU18-like, PmUGT71A16 and PmUGT73C6 participate in regulation of the matrix-bound and volatile states of P. mume aroma compounds. CONCLUSIONS These findings present potential new anchor points for further exploration of floral aroma compound biosynthesis pathways in P. mume, and provide new insights into aroma induction and regulation mechanisms in woody plants.
Collapse
Affiliation(s)
- Wang Xiujun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Song Zhenqi
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Ti Yujing
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Ma Kaifeng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Li Qingwei
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| |
Collapse
|
21
|
Genetic and Biochemical Aspects of Floral Scents in Roses. Int J Mol Sci 2022; 23:ijms23148014. [PMID: 35887360 PMCID: PMC9321236 DOI: 10.3390/ijms23148014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022] Open
Abstract
Floral scents possess high ornamental and economic values to rose production in the floricultural industry. In the past two decades, molecular bases of floral scent production have been studied in the rose as well as their genetic inheritance. Some significant achievements have been acquired, such as the comprehensive rose genome and the finding of a novel geraniol synthase in plants. In this review, we summarize the composition of floral scents in modern roses, focusing on the recent advances in the molecular mechanisms of floral scent production and emission, as well as the latest developments in molecular breeding and metabolic engineering of rose scents. It could provide useful information for both studying and improving the floral scent production in the rose.
Collapse
|
22
|
Deeper Insight into the Volatile Profile of Rosa willmottiae with Headspace Solid-Phase Microextraction and GC–MS Analysis. Molecules 2022; 27:molecules27041240. [PMID: 35209030 PMCID: PMC8874665 DOI: 10.3390/molecules27041240] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/20/2022] Open
Abstract
As the distribution center of Rosa in the world, China has abundant wild germplasm resources, which can contribute to the breeding of modern roses. To explore the potential value of wild roses distributed in the Sichuan–Tibet region, solid phase microextraction (SPME) and gas chromatography–mass spectrometry (GC–MS) were used to determine the volatile organic compounds (VOCs) in Rosa willmottiae flowers at three flowering stages (bud stage, initial flowering stage, full flowering stage). Meanwhile, we compared the VOCs of R. willmottiae with different phenotypes (double flowers and single flowers). A total of 74 volatile compounds were identified. The results show that the essential substances belong to alcohols and terpenoids. The main volatile organic compounds are 2-phenyl ethanol (20.49%), benzyl alcohol (10.69%), β-maaliene (8.66%), geranyl acetate (8.47%), and (+)-α-long pinene (6.127%). Different flowering stages had great influence on the volatile profile, from the bud stage to full flowering stage; the content of terpenoids released decreased by 6.17%, whereas alcohols and esters increased by 8.58% and 11.56%, respectively. The chemical diversity and the content of the main components with a different phenotype were not significantly different. Our result will provide a theoretical basis for the development and utilization of Rosa willmottiae in Sichuan and Tibet.
Collapse
|
23
|
Sánchez R, Bahamonde C, Sanz C, Pérez AG. Identification and Functional Characterization of Genes Encoding Phenylacetaldehyde Reductases That Catalyze the Last Step in the Biosynthesis of Hydroxytyrosol in Olive. PLANTS 2021; 10:plants10071268. [PMID: 34206363 PMCID: PMC8309162 DOI: 10.3390/plants10071268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 01/12/2023]
Abstract
Hydroxytyrosol derivatives are the most important phenolic components in virgin olive oil due to their well-demonstrated biological activities. In this regard, two phenyl acetaldehyde reductase genes, OePAR1.1 and OePAR1.2, involved in hydroxytyrosol synthesis, have been identified from an olive transcriptome. Both genes were synthesized and expressed in Escherichia coli, and their encoded proteins were purified. The recombinant enzymes display high substrate specificity for 2,4-dihydroxyphenylacetaldehyde (3,4-DHPAA) to form hydroxytyrosol. The reaction catalyzed by OePAR constitutes the second, and last, biochemical step in the formation of hydroxytyrosol from the amino acid L-3,4-dihydroxyphenylalanine (L-DOPA) in olive. OePAR1.1 and OePAR1.2 enzymes exhibit high thermal stability, similar pH optima (pH 6.5), and high affinity for 3,4-DHPAA (apparent Km 0.6 and 0.8 µmol min−1 mg−1, respectively). However, OePAR1.2 exhibited higher specific activity and higher expression levels in all the olive cultivars under study. The expression analyses indicate that both OePAR1.1 and OePAR1.2 genes are temporally regulated in a cultivar-dependent manner. The information provided here could be of interest for olive breeding programs searching for new olive genotypes with the capacity to produce oils with higher levels of hydroxytyrosol derivatives.
Collapse
|
24
|
Li M, Lang X, Moran Cabrera M, De Keyser S, Sun X, Da Silva N, Wheeldon I. CRISPR-mediated multigene integration enables Shikimate pathway refactoring for enhanced 2-phenylethanol biosynthesis in Kluyveromyces marxianus. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:3. [PMID: 33407831 PMCID: PMC7788952 DOI: 10.1186/s13068-020-01852-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/09/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND 2-phenylethanol (2-PE) is a rose-scented flavor and fragrance compound that is used in food, beverages, and personal care products. Compatibility with gasoline also makes it a potential biofuel or fuel additive. A biochemical process converting glucose or other fermentable sugars to 2-PE can potentially provide a more sustainable and economical production route than current methods that use chemical synthesis and/or isolation from plant material. RESULTS We work toward this goal by engineering the Shikimate and Ehrlich pathways in the stress-tolerant yeast Kluyveromyces marxianus. First, we develop a multigene integration tool that uses CRISPR-Cas9 induced breaks on the genome as a selection for the one-step integration of an insert that encodes one, two, or three gene expression cassettes. Integration of a 5-kbp insert containing three overexpression cassettes successfully occurs with an efficiency of 51 ± 9% at the ABZ1 locus and was used to create a library of K. marxianus CBS 6556 strains with refactored Shikimate pathway genes. The 33-factorial library includes all combinations of KmARO4, KmARO7, and KmPHA2, each driven by three different promoters that span a wide expression range. Analysis of the refactored pathway library reveals that high expression of the tyrosine-deregulated KmARO4K221L and native KmPHA2, with the medium expression of feedback insensitive KmARO7G141S, results in the highest increase in 2-PE biosynthesis, producing 684 ± 73 mg/L. Ehrlich pathway engineering by overexpression of KmARO10 and disruption of KmEAT1 further increases 2-PE production to 766 ± 6 mg/L. The best strain achieves 1943 ± 63 mg/L 2-PE after 120 h fed-batch operation in shake flask cultures. CONCLUSIONS The CRISPR-mediated multigene integration system expands the genome-editing toolset for K. marxianus, a promising multi-stress tolerant host for the biosynthesis of 2-PE and other aromatic compounds derived from the Shikimate pathway.
Collapse
Affiliation(s)
- Mengwan Li
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Xuye Lang
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Marcos Moran Cabrera
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Sawyer De Keyser
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Xiyan Sun
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Nancy Da Silva
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Ian Wheeldon
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA.
- Center for Industrial Biotechnology, University of California Riverside, Riverside, CA, 92527, USA.
| |
Collapse
|
25
|
Plant Volatile Organic Compounds Evolution: Transcriptional Regulation, Epigenetics and Polyploidy. Int J Mol Sci 2020; 21:ijms21238956. [PMID: 33255749 PMCID: PMC7728353 DOI: 10.3390/ijms21238956] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Volatile organic compounds (VOCs) are emitted by plants as a consequence of their interaction with biotic and abiotic factors, and have a very important role in plant evolution. Floral VOCs are often involved in defense and pollinator attraction. These interactions often change rapidly over time, so a quick response to those changes is required. Epigenetic factors, such as DNA methylation and histone modification, which regulate both genes and transcription factors, might trigger adaptive responses to these evolutionary pressures as well as regulating the rhythmic emission of VOCs through circadian clock regulation. In addition, transgenerational epigenetic effects and whole genome polyploidy could modify the generation of VOCs’ profiles of offspring, contributing to long-term evolutionary shifts. In this article, we review the available knowledge about the mechanisms that may act as epigenetic regulators of the main VOC biosynthetic pathways, and their importance in plant evolution.
Collapse
|
26
|
Bao F, Zhang T, Ding A, Ding A, Yang W, Wang J, Cheng T, Zhang Q. Metabolic, Enzymatic Activity, and Transcriptomic Analysis Reveals the Mechanism Underlying the Lack of Characteristic Floral Scent in Apricot Mei Varieties. FRONTIERS IN PLANT SCIENCE 2020; 11:574982. [PMID: 33193512 PMCID: PMC7642261 DOI: 10.3389/fpls.2020.574982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/30/2020] [Indexed: 06/01/2023]
Abstract
Apricot mei, a hybrid of Prunus mume and Prunus sibirica, usually has greater cold resistance than P. mume; however, most varieties of Apricot mei lack the characteristic floral scent of P. mume. The volatile and intracellular metabolites, activity levels of key enzymes, and transcriptomes of blooming flowers were comprehensively investigated in five varieties of P. mume. Benzyl acetate and eugenol were determined to be the main components of the P. mume floral scent. However, benzyl benzoate and benzyl alcohol benzoyltransferase activity was detected in only the low-fragrance varieties "Dan Fenghou" and "Yanxing." No benzyl alcohol or benzaldehyde reductase (BAR) activity was detected in the non-fragrant variety "Fenghou." PmBAR1 and PmBAR3 were identified as the key genes responsible for BAR activity. The lack of benzyl alcohol synthesis in the "Fenghou" variety was caused by low activity of PmBAR1-Fen and low expression of PmBAR3. The 60-aa segment at the N-terminus of PmBAR3 was found to play an important role in its enzymatic activity. Correlation tests between floral scent metabolites and the transcriptomes of the five different scented varieties showed that some transcripts associated with hormones, stresses, posttranslational modifications and transporters may also play important regulatory roles in floral scent metabolism in the different varieties.
Collapse
Affiliation(s)
- Fei Bao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tengxun Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Anqi Ding
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Aiqin Ding
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Weiru Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
27
|
Hoffarth ER, Rothchild KW, Ryan KS. Emergence of oxygen- and pyridoxal phosphate-dependent reactions. FEBS J 2020; 287:1403-1428. [PMID: 32142210 DOI: 10.1111/febs.15277] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/29/2019] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) is an organic cofactor employed by ~ 4% of enzymes. The structure of the PLP cofactor allows for the stabilization of carbanions through resonance. A small number of PLP-dependent enzymes employ molecular oxygen as a cosubstrate. Here, we review the biological roles and possible mechanisms of these enzymes, and we observe that these enzymes are found in multiple protein families, suggesting that reaction with oxygen might have emerged de novo in several protein families and thus could be directed to emerge again through laboratory evolution experiments.
Collapse
Affiliation(s)
- Elesha R Hoffarth
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Zeng L, Tan H, Liao Y, Jian G, Kang M, Dong F, Watanabe N, Yang Z. Increasing Temperature Changes Flux into Multiple Biosynthetic Pathways for 2-Phenylethanol in Model Systems of Tea ( Camellia sinensis) and Other Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10145-10154. [PMID: 31418564 DOI: 10.1021/acs.jafc.9b03749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
2-Phenylethanol (2PE) is a representative aromatic aroma compound in tea (Camellia sinensis) leaves. However, its formation in tea remains unexplored. In our study, feeding experiments of [2H8]L-phenylalanine (Phe), [2H5]phenylpyruvic acid (PPA), or (E/Z)-phenylacetaldoxime (PAOx) showed that three biosynthesis pathways for 2PE derived from L-Phe occurred in tea leaves, namely, pathway I (via phenylacetaldehyde (PAld)), pathway II (via PPA and PAld), and pathway III (via (E/Z)-PAOx and PAld). Furthermore, increasing temperature resulted in increased flux into the pathway for 2PE from L-Phe via PPA and PAld. In addition, tomato fruits and petunia flowers also contained the 2PE biosynthetic pathway from L-Phe via PPA and PAld and increasing temperatures led to increased flux into this pathway, suggesting that such a phenomenon might be common among most plants containing 2PE. This represents a characteristic example of changes in flux into the biosynthesis pathways of volatile compounds in plants in response to stresses.
Collapse
Affiliation(s)
- Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- Center of Economic Botany, Core Botanical Gardens , Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
| | - Haibo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- Center of Economic Botany, Core Botanical Gardens , Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Guotai Jian
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Ming Kang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
| | - Fang Dong
- Guangdong Food and Drug Vocational College , No. 321 Longdongbei Road , Tianhe District , Guangzhou 510520 , China
| | - Naoharu Watanabe
- Graduate School of Science and Technology, Shizuoka University , No. 3-5-1 Johoku , Naka-ku, Hamamatsu 432-8561 , Japan
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- Center of Economic Botany, Core Botanical Gardens , Chinese Academy of Sciences , No. 723 Xingke Road , Tianhe District , Guangzhou 510650 , China
- University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| |
Collapse
|
29
|
Ansari E, Karami A, Ebrahimie E. Isolation of 2-phenylethanol biosynthesis related gene and developmental patterns of emission of scent compounds in Persian musk rose (Rosa moschata Herrm.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Smulders MJM, Arens P, Bourke PM, Debener T, Linde M, Riek JD, Leus L, Ruttink T, Baudino S, Hibrant Saint-Oyant L, Clotault J, Foucher F. In the name of the rose: a roadmap for rose research in the genome era. HORTICULTURE RESEARCH 2019; 6:65. [PMID: 31069087 PMCID: PMC6499834 DOI: 10.1038/s41438-019-0156-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/18/2019] [Indexed: 05/07/2023]
Abstract
The recent completion of the rose genome sequence is not the end of a process, but rather a starting point that opens up a whole set of new and exciting activities. Next to a high-quality genome sequence other genomic tools have also become available for rose, including transcriptomics data, a high-density single-nucleotide polymorphism array and software to perform linkage and quantitative trait locus mapping in polyploids. Rose cultivars are highly heterogeneous and diverse. This vast diversity in cultivated roses can be explained through the genetic potential of the genus, introgressions from wild species into commercial tetraploid germplasm and the inimitable efforts of historical breeders. We can now investigate how this diversity can best be exploited and refined in future breeding work, given the rich molecular toolbox now available to the rose breeding community. This paper presents possible lines of research now that rose has entered the genomics era, and attempts to partially answer the question that arises after the completion of any draft genome sequence: 'Now that we have "the" genome, what's next?'. Having access to a genome sequence will allow both (fundamental) scientific and (applied) breeding-orientated questions to be addressed. We outline possible approaches for a number of these questions.
Collapse
Affiliation(s)
- Marinus J. M. Smulders
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Peter M. Bourke
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Thomas Debener
- Faculty of Natural Sciences, Institute for Plant Genetics, Molecular Plant Breeding, Leibniz University of Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Marcus Linde
- Faculty of Natural Sciences, Institute for Plant Genetics, Molecular Plant Breeding, Leibniz University of Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Jan De Riek
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Leen Leus
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Tom Ruttink
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Sylvie Baudino
- BVpam CNRS, FRE 3727, UJM-Saint-Étienne, Univ. Lyon, Saint-Etienne, France
| | - Laurence Hibrant Saint-Oyant
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| | - Jeremy Clotault
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| | - Fabrice Foucher
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| |
Collapse
|
31
|
Zhou Y, Peng Q, Zhang L, Cheng S, Zeng L, Dong F, Yang Z. Characterization of enzymes specifically producing chiral flavor compounds (R)- and (S)-1-phenylethanol from tea (Camellia sinensis) flowers. Food Chem 2018; 280:27-33. [PMID: 30642496 DOI: 10.1016/j.foodchem.2018.12.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/12/2018] [Accepted: 12/09/2018] [Indexed: 12/30/2022]
Abstract
1-Phenylethanol is a chiral flavor compound that has enantiomers, (R)- and (S)-1-phenylethanol, with different flavor properties. Given that isolating these enantiomers from plants is low yielding and costly, enzymatic synthesis presents an alternative approach. However, the genes/enzymes that specifically produce (R)- and (S)-1-phenylethanol in plants are unknown. To identify these enzymes in tea (Camellia sinensis) flowers, 21 short chain dehydrogenase (SDR) genes were isolated from tea flowers, cloned, and functionally characterized. Several recombinant SDRs in Escherichia coli exhibited activity for converting acetophenone to (S)-1-phenylethanol (CsSPESs, >99.0%), while only one SDR produced (R)-1-phenylethanol (CsRPES, 98.6%). A pair of homologue enzymes (CsSPES and CsRPES) showed a strong preference for NADPH cofactor, with optimal enzymatic reaction conditions of 45-55 °C and pH 8.0. Identification of the tea flower-derived gene responsible for specific synthesis of (R)- and (S)-1-phenylethanolsuggests enzymatic synthesis of enantiopure 1-phenylethanol is possible using a plant-derived gene.
Collapse
Affiliation(s)
- Ying Zhou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qiyuan Peng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ling Zhang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| | - Sihua Cheng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Fang Dong
- Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou 510520, China
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
32
|
Solís A, Martínez RM, Cervantes F, Pérez HI, Manjarrez N, Solís M. Reduction of substituted benzaldehydes, acetophenone and 2-acetylpyridine using bean seeds as crude reductase enzymes. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1510492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Aida Solís
- Departmento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - Rosa María Martínez
- Departmento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - Fadia Cervantes
- Departmento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - Herminia I. Pérez
- Departmento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - Norberto Manjarrez
- Departmento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - Myrna Solís
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tlaxcala, México
| |
Collapse
|
33
|
Nakamura N, Hirakawa H, Sato S, Otagaki S, Matsumoto S, Tabata S, Tanaka Y. Genome structure of Rosa multiflora, a wild ancestor of cultivated roses. DNA Res 2018; 25:113-121. [PMID: 29045613 PMCID: PMC5909451 DOI: 10.1093/dnares/dsx042] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/19/2017] [Indexed: 12/25/2022] Open
Abstract
The draft genome sequence of a wild rose (Rosa multiflora Thunb.) was determined using Illumina MiSeq and HiSeq platforms. The total length of the scaffolds was 739,637,845 bp, consisting of 83,189 scaffolds, which was close to the 711 Mbp length estimated by k-mer analysis. N50 length of the scaffolds was 90,830 bp, and extent of the longest was 1,133,259 bp. The average GC content of the scaffolds was 38.9%. After gene prediction, 67,380 candidates exhibiting sequence homology to known genes and domains were extracted, which included complete and partial gene structures. This large number of genes for a diploid plant may reflect heterogeneity of the genome originating from self-incompatibility in R. multiflora. According to CEGMA analysis, 91.9% and 98.0% of the core eukaryotic genes were completely and partially conserved in the scaffolds, respectively. Genes presumably involved in flower color, scent and flowering are assigned. The results of this study will serve as a valuable resource for fundamental and applied research in the rose, including breeding and phylogenetic study of cultivated roses.
Collapse
Affiliation(s)
- Noriko Nakamura
- Suntory Global Innovation Center Ltd, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Yoshikazu Tanaka
- Suntory Global Innovation Center Ltd, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| |
Collapse
|
34
|
Maoz I, Rikanati RD, Schlesinger D, Bar E, Gonda I, Levin E, Kaplunov T, Sela N, Lichter A, Lewinsohn E. Concealed ester formation and amino acid metabolism to volatile compounds in table grape (Vitis vinifera L.) berries. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:223-230. [PMID: 30080607 DOI: 10.1016/j.plantsci.2018.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/25/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Volatile esters contribute to the aroma and flavor of many fruits but are normally absent in grape berries (Vitis vinifera L.). To examine the biosynthetic potential of grape berries to form volatile esters, berry sections were incubated with exogenous L-Phe, L-Leu or L-Met. In general, amino-acid incubation caused the accumulation of the respective aldehydes and alcohols. Moreover, L-Leu incubation resulted in the accumulation of 3-methylbutyl acetate and L-Phe incubation resulted in the accumulation 2-phenylethyl acetate in 'Muscat Hamburg' but not in the other grape accessions. Exogenous L-Met administration did not result in volatile esters accumulation but the accumulation of sulfur volatile compounds such as methional and dimethyl disulfide was prominent. Berry-derived cell-free extracts displayed differential alcohol acetyltransferase activities and supported the formation of 3-methylbutyl acetate and benzyl acetate. 2-Phenylethyl acetate was produced only in 'Muscat Hamburg' cell-free extracts. VvAAT2, a newly characterized gene, was preferentially expressed in 'Muscat Hamburg' berries and functionally expressed in E. coli. VvAAT2 possesses alcohol acetyltransferase activity utilizing benzyl alcohol, 2-phenylethanol, hexanol or 3-methylbutanol as substrates. Our study demonstrates that grape berries have a concealed potential to accumulate volatile esters and this process is limited by substrate availability.
Collapse
Affiliation(s)
- Itay Maoz
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion 50250, Israel; Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; Department of Vegetable Crops, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
| | | | - Daniel Schlesinger
- Department of Vegetable Crops, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel; Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Einat Bar
- Department of Vegetable Crops, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
| | - Itay Gonda
- Department of Vegetable Crops, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
| | - Elena Levin
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion 50250, Israel
| | - Tatiana Kaplunov
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion 50250, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 50250, Israel
| | - Amnon Lichter
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion 50250, Israel
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel.
| |
Collapse
|
35
|
Study of the biochemical formation pathway of aroma compound 1-phenylethanol in tea ( Camellia sinensis (L.) O. Kuntze) flowers and other plants. Food Chem 2018; 258:352-358. [DOI: 10.1016/j.foodchem.2018.03.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022]
|
36
|
Shi S, Duan G, Li D, Wu J, Liu X, Hong B, Yi M, Zhang Z. Two-dimensional analysis provides molecular insight into flower scent of Lilium 'Siberia'. Sci Rep 2018; 8:5352. [PMID: 29599431 PMCID: PMC5876372 DOI: 10.1038/s41598-018-23588-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/16/2018] [Indexed: 11/10/2022] Open
Abstract
Lily is a popular flower around the world not only because of its elegant appearance, but also due to its appealing scent. Little is known about the regulation of the volatile compound biosynthesis in lily flower scent. Here, we conducted an approach combining two-dimensional analysis and weighted gene co-expression network analysis (WGCNA) to explore candidate genes regulating flower scent production. In the approach, changes of flower volatile emissions and corresponding gene expression profiles at four flower developmental stages and four circadian times were both captured by GC-MS and RNA-seq methods. By overlapping differentially-expressed genes (DEGs) that responded to flower scent changes in flower development and circadian rhythm, 3,426 DEGs were initially identified to be candidates for flower scent production, of which 1,270 were predicted as transcriptional factors (TFs). The DEGs were further correlated to individual flower volatiles by WGCNA. Finally, 37, 41 and 90 genes were identified as candidate TFs likely regulating terpenoids, phenylpropanoids and fatty acid derivatives productions, respectively. Moreover, by WGCNA several genes related to auxin, gibberellins and ABC transporter were revealed to be responsible for flower scent production. Thus, this strategy provides an important foundation for future studies on the molecular mechanisms involved in floral scent production.
Collapse
Affiliation(s)
- Shaochuan Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Guangyou Duan
- Energy Plant Research Center, School of Life Sciences, Qilu Normal University, Jinan, China
| | - Dandan Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
37
|
Wang P, Yang X, Lin B, Huang J, Tao Y. Cofactor self-sufficient whole-cell biocatalysts for the production of 2-phenylethanol. Metab Eng 2017; 44:143-149. [DOI: 10.1016/j.ymben.2017.09.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/11/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022]
|
38
|
Zhao K, Yang W, Zhou Y, Zhang J, Li Y, Ahmad S, Zhang Q. Comparative Transcriptome Reveals Benzenoid Biosynthesis Regulation as Inducer of Floral Scent in the Woody Plant Prunus mume. FRONTIERS IN PLANT SCIENCE 2017; 8:319. [PMID: 28344586 PMCID: PMC5345196 DOI: 10.3389/fpls.2017.00319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/22/2017] [Indexed: 05/08/2023]
Abstract
Mei (Prunus mume) is a peculiar woody ornamental plant famous for its inviting fragrance in winter. However, in this valuable plant, the mechanism behind floral volatile development remains poorly defined. Therefore, to explore the floral scent formation, a comparative transcriptome was conducted in order to identify the global transcripts specifying flower buds and blooming flowers of P. mume. Differentially expressed genes were identified between the two different stages showing great discrepancy in floral volatile production. Moreover, according to the expression specificity among the organs (stem, root, fruit, leaf), we summarized one gene cluster regulating the benzenoid floral scent. Significant gene changes were observed in accordance with the formation of benzenoid, thus pointing the pivotal roles of genes as well as cytochrome-P450s and short chain dehydrogenases in the benzenoid biosynthetic process. Further, transcription factors like EMISSION OF BENZENOID I and ODORANT I performed the same expression pattern suggesting key roles in the management of the downstream genes. Taken together, these data provide potential novel anchors for the benzenoid pathway, and the insight for the floral scent induction and regulation mechanism in woody plants.
Collapse
|
39
|
Iijima M, Kenmoku H, Takahashi H, Lee JB, Toyota M, Asakawa Y, Kurosaki F, Taura F. Characterization of 12-Oxophytodienoic Acid Reductases from Rose-scented Geranium (Pelargonium graveolens). Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pelargonium graveolens L'Hér, also referred to as rose geranium, is a popular herbal plant with typical rosy fragrance largely based on the blend of monoterpenoid constituents. Among them, citronellol, which is biosynthesized from geraniol via double bond reduction, is the most abundant scent compound. In this study, three 12-oxophytodienoic acid reductases (PgOPR1–3) have been cloned from P. graveolens, as possible candidates for the double-bond reductase involved in citronellol biosynthesis. The bacterially expressed recombinant PgOPRs did not reduce geraniol to citronellol, but stereoselectively converted citral into ( S)-citronellal in the presence of NADPH. Thus, the α,β-unsaturated carbonyl moiety in the substrate is essential for the catalytic activity of PgOPRs, as reported for OPRs from other plants and structurally related yeast old yellow enzymes. PgOPRs promiscuously accepted linear and cyclic α,β-unsaturated carbonyl substrates, including methacrolein, a typical reactive carbonyl compound. The possible biotechnological applications for PgOPRs in plant metabolic engineering, based on their catalytic properties, are discussed herein.
Collapse
Affiliation(s)
- Miu Iijima
- Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Hiromichi Kenmoku
- Institute of Pharmacognosy, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Hironobu Takahashi
- Institute of Pharmacognosy, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Jung-Bum Lee
- Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Masao Toyota
- Institute of Pharmacognosy, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yoshinori Asakawa
- Institute of Pharmacognosy, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Fumiya Kurosaki
- Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Futoshi Taura
- Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
40
|
Hirata H, Ohnishi T, Watanabe N. Biosynthesis of floral scent 2-phenylethanol in rose flowers. Biosci Biotechnol Biochem 2016; 80:1865-73. [DOI: 10.1080/09168451.2016.1191333] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Plants emit chemically diverse volatile compounds for attracting pollinators or putting up a chemical defense against herbivores. 2-Phenylethanol (2PE) is one of the abundantly emitted scent compounds in rose flowers. Feeding experiments with l-[2H8]phenylalanine into rose flowers and subsequent analysis using gas chromatography–mass spectrometry analysis revealed the hypothetical biosynthetic intermediates to [2H8]-2PE, and the biochemical and genetic analyses elucidated the principal pathway to [2H8]-2PE. We recently found season-specific 2PE pathway producing [2H7]-2PE from l-[2H8]phenylalanine. This is a unique example where the dominant pathway to a specific compound changes with the seasons. This review focuses on the biosynthesis of floral volatiles and their regulation to adapt to the changes in the environment.
Collapse
Affiliation(s)
- Hiroshi Hirata
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Toshiyuki Ohnishi
- Graduate School of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Naoharu Watanabe
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
- Graduate School of Engineering, Shizuoka University, Hamamatsu, Japan
| |
Collapse
|
41
|
Sun P, Schuurink RC, Caissard JC, Hugueney P, Baudino S. My Way: Noncanonical Biosynthesis Pathways for Plant Volatiles. TRENDS IN PLANT SCIENCE 2016; 21:884-894. [PMID: 27475252 DOI: 10.1016/j.tplants.2016.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 05/24/2023]
Abstract
Plant volatiles are crucial for various interactions with other organisms and their surrounding environment. A large number of these volatiles belong to the terpenoid and benzenoid/phenylpropanoid classes, which have long been considered to be exclusively synthesized from a few canonical pathways. However, several alternative pathways producing these plant volatiles have been discovered recently. This review summarizes the current knowledge about new pathways for these two major groups of plant volatiles, which open new perspectives for applications in metabolic engineering.
Collapse
Affiliation(s)
- Pulu Sun
- Université de Lyon, UJM-Saint-Étienne, CNRS, BVpam FRE 3727, F-42023 Saint-Étienne, France; Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jean-Claude Caissard
- Université de Lyon, UJM-Saint-Étienne, CNRS, BVpam FRE 3727, F-42023 Saint-Étienne, France
| | | | - Sylvie Baudino
- Université de Lyon, UJM-Saint-Étienne, CNRS, BVpam FRE 3727, F-42023 Saint-Étienne, France.
| |
Collapse
|
42
|
Dong F, Zhou Y, Zeng L, Peng Q, Chen Y, Zhang L, Su X, Watanabe N, Yang Z. Elucidation of Differential Accumulation of 1-Phenylethanol in Flowers and Leaves of Tea (Camellia sinensis) Plants. Molecules 2016; 21:molecules21091106. [PMID: 27563859 PMCID: PMC6274408 DOI: 10.3390/molecules21091106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 11/16/2022] Open
Abstract
1-Phenylethanol (1PE) is a major aromatic volatile in tea (Camellia sinensis) flowers, whereas it occurs in a much smaller amounts in leaves. Enzymes involved in the formation of 1PE in plants and the reason why 1PE differentially accumulates in plants is unknown. In the present study, enzymes in the last step leading from acetophenone to 1PE were isolated from tea flowers by traditional biochemical chromatography. The two types of partially purified enzymes were proposed to be responsible for formations of (R)-1PE and (S)-1PE, respectively. Tea leaves also contained such enzymes having equivalent activities with flowers. Stable isotope labeling experiments indicated that weak transformation from l-phenylalanine to acetophenone in leaves mainly resulted in little occurrence of 1PE in leaves. This study provided an example that differential distribution of some metabolites in plant tissues was not only determined by enzyme(s) in the last step of metabolite formation, but also can be due to substrate availability.
Collapse
Affiliation(s)
- Fang Dong
- Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou 510520, China.
| | - Ying Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
| | - Qiyuan Peng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
| | - Yiyong Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
| | - Ling Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
| | - Xinguo Su
- Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou 510520, China.
| | - Naoharu Watanabe
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
| |
Collapse
|
43
|
Seasonal induction of alternative principal pathway for rose flower scent. Sci Rep 2016; 6:20234. [PMID: 26831950 PMCID: PMC4735289 DOI: 10.1038/srep20234] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/23/2015] [Indexed: 01/30/2023] Open
Abstract
Ecological adaptations to seasonal changes are often observed in the phenotypic traits of plants and animals, and these adaptations are usually expressed through the production of different biochemical end products. In this study, ecological adaptations are observed in a biochemical pathway without alteration of the end products. We present an alternative principal pathway to the characteristic floral scent compound 2-phenylethanol (2PE) in roses. The new pathway is seasonally induced in summer as a heat adaptation that uses rose phenylpyruvate decarboxylase (RyPPDC) as a novel enzyme. RyPPDC transcript levels and the resulting production of 2PE are increased time-dependently under high temperatures. The novel summer pathway produces levels of 2PE that are several orders of magnitude higher than those produced by the previously known pathway. Our results indicate that the alternative principal pathway identified here is a seasonal adaptation for managing the weakened volatility of summer roses.
Collapse
|
44
|
Yang Z, Yao X, Xiao Z, Chen H, Ji H. Preparation and release behaviour of the inclusion complexes of phenylethanol withβ-cyclodextrin. FLAVOUR FRAG J 2015. [DOI: 10.1002/ffj.3302] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zujin Yang
- School of Chemistry and Chemical Engineering / The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province; Sun Yat-sen University; Guangzhou 510275 China
- Huizhou Research Institute; Huizhou 516216 China
| | - Xingdong Yao
- School of chemistry & chemical engineering; Guangxi university for Nationalities; Nanning 530006 China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai 200235 China
| | - Hongyan Chen
- Department of Chemical Engineering; Huizhou University; Huizhou 516007 China
| | - Hongbing Ji
- School of Chemistry and Chemical Engineering / The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province; Sun Yat-sen University; Guangzhou 510275 China
- Huizhou Research Institute; Huizhou 516216 China
| |
Collapse
|
45
|
Nielsen LJ, Møller BL. Scent emission profiles from Darwin's orchid--Angraecum sesquipedale: Investigation of the aldoxime metabolism using clustering analysis. PHYTOCHEMISTRY 2015; 120:3-18. [PMID: 26603277 DOI: 10.1016/j.phytochem.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/12/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
The display of scent is crucial for plants in attracting pollinating insects to flowers and ensuring successful pollination and reproduction. The large number of aldoxime volatile species present in the scent of the Madagascan orchid Angraecum sesquipedale has been suggested to play a primary role in attracting the sphingid moth Xanthopan morgani praedicta. By solid phase micro-extraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS), we monitored the scent release from different flowers of a single orchid, day and night throughout the entire flowering period. In separate experiments, the diurnal release was monitored in 3h intervals and the tissue specific release from the different floral parts was tracked. Numerous novel compounds related to the aldoxime metabolism not previously detected in A. sesquipedale were identified and positioned into a proposed pathway for aldoxime metabolism. From the results, we hypothesize that (E/Z)-phenylacetaldoxime and its derivatives could be important attractants for the pollinating moth X. morgani praedicta. By applying an untargeted Partitioning Around Medoids (PAM) cluster analysis to the metabolite profiles in the scent, the proposed pathways for the formation of aldoximes were substantiated. With this study, we demonstrate the powerful utility of a bioinformatics tool to aid in the elucidation of the routes of formation for volatiles and provide a benchmark and guidelines for future detailed observations of hawkmoth pollination of Angraecum species, and in particular A. sesquipedale, in the wild.
Collapse
Affiliation(s)
- Lasse Janniche Nielsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Copenhagen, Frederiksberg, Denmark; VILLUM Research Center of Excellence "Plant Plasticity", University of Copenhagen, Thorvaldsensvej 40, DK-1871 Copenhagen, Frederiksberg, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Copenhagen, Frederiksberg, Denmark; VILLUM Research Center of Excellence "Plant Plasticity", University of Copenhagen, Thorvaldsensvej 40, DK-1871 Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
46
|
Tian X, Ye R, Wang J, Chen Y, Cai B, Guan S, Rong S, Li Q. Effects of aroma quality on the biotransformation of natural 2-phenylethanol produced using ascorbic acid. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
47
|
Aspergillus oryzae pathways that convert phenylalanine into the flavor volatile 2-phenylethanol. Fungal Genet Biol 2015; 77:22-30. [DOI: 10.1016/j.fgb.2015.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/17/2015] [Accepted: 03/12/2015] [Indexed: 11/24/2022]
|
48
|
Chen X, Baldermann S, Cao S, Lu Y, Liu C, Hirata H, Watanabe N. Developmental patterns of emission of scent compounds and related gene expression in roses of the cultivar Rosa x hybrida cv. 'Yves Piaget'. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 87:109-14. [PMID: 25576838 DOI: 10.1016/j.plaphy.2014.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/22/2014] [Indexed: 05/14/2023]
Abstract
2-Phenylethanol (2PE) and 3,5-dimethoxytoluene (DMT) are characteristic scent compounds in specific roses such as Rosa x hybrida cv. 'Yves Piaget'. We analyzed the endogenous concentrations and emission of 2PE and DMT during the unfurling process in different floral organs, as well as changes in transcript levels of the two key genes, PAR and OOMT2. The emission of both 2PE and DMT increased during floral development to reach peaks at the fully unfurled stage. The relative transcripts of PAR and OOMT2 also increased during floral development. Whereas the maximum for OOMT2 was found at the fully unfurled stage (stage 4), similar expression levels of PAR were detected at stage 4 and the senescence stage (stage 6). The results demonstrate a positive correlation between the expression levels of PAR and OOMT2 and the emission of 2PE and DMT. In addition, endogenous volatiles and relative transcripts showed tissue- and development-specific patterns.
Collapse
Affiliation(s)
- Xiaomin Chen
- Research Academy of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China.
| | - Susanne Baldermann
- Leibniz-Institute of Vegetable and Ornamental Crops, Grossbeeren/Erfurt e.V., Theodor-Echternmeyer-Weg 1, 14979 Großbeeren, Germany; Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Shuyan Cao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China.
| | - Yao Lu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, PR China.
| | - Caixia Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China.
| | - Hiroshi Hirata
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| | - Naoharu Watanabe
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| |
Collapse
|
49
|
Karami A, Niazi A, Kavoosi G, Khosh-Khui M, Salehi H. Temporal characterization of 2-phenylethanol in strongly and weakly scented genotypes of damask rose. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:43-49. [PMID: 25648161 PMCID: PMC4312323 DOI: 10.1007/s12298-014-0274-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 06/04/2023]
Abstract
The molecular and physiological properties of 2-phenylethanol (2-PE) in the strongly scented genotype (SSG) and a weakly scented genotype (WSG) of damask rose at six floral developmental stages were investigated. The chemical compositions of volatile emissions were determined by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analysis of the floral headspace. In both genotypes, the relative percentage of 2-PE increased more in SSG than WSG, as flowers developed. In the petals of damask rose the relative transcript levels of phenyl acetaldehyde reductase (PAR) were higher at stages 3 and 4 in SSG and WSG, respectively. Also, the expression pattern of PAR indicated a significant difference between two genotypes during flower developmental stages. In this study, enzymatic activity leading to the synthesis of 2-PE from the phenyl acetaldehyde (PAld) moderately increased during flower development up to stage 5 in SSG. However, high level of PAR enzymatic activity was observed in stage 3 of WSG. These results indicated that the pattern activity of PAR was different in two used genotypes of damask rose. For SSG, PAR activities were low in early stage of flower development and then gradually increased reaching its highest value at full bloom stage. In WSG, no significant change in enzyme activity was seen after stage 3.
Collapse
Affiliation(s)
- Akbar Karami
- />Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- />Biotechnology Institute, Shiraz University, Shiraz, Iran
| | | | - Morteza Khosh-Khui
- />Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Hassan Salehi
- />Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
50
|
Muhlemann JK, Klempien A, Dudareva N. Floral volatiles: from biosynthesis to function. PLANT, CELL & ENVIRONMENT 2014; 37:1936-49. [PMID: 24588567 DOI: 10.1111/pce.12314] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/11/2014] [Accepted: 02/18/2014] [Indexed: 05/20/2023]
Abstract
Floral volatiles have attracted humans' attention since antiquity and have since then permeated many aspects of our lives. Indeed, they are heavily used in perfumes, cosmetics, flavourings and medicinal applications. However, their primary function is to mediate ecological interactions between flowers and a diverse array of visitors, including pollinators, florivores and pathogens. As such, they ultimately ensure the plants' reproductive and evolutionary success. To date, over 1700 floral volatile organic compounds (VOCs) have been identified. Interestingly, they are derived from only a few biochemical networks, which include the terpenoid, phenylpropanoid/benzenoid and fatty acid biosynthetic pathways. These pathways are intricately regulated by endogenous and external factors to enable spatially and temporally controlled emission of floral volatiles, thereby fine-tuning the ecological interactions facilitated by floral volatiles. In this review, we will focus on describing the biosynthetic pathways leading to floral VOCs, the regulation of floral volatile emission, as well as biological functions of emitted volatiles.
Collapse
Affiliation(s)
- Joëlle K Muhlemann
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | | | | |
Collapse
|