1
|
Hashemi M, Amiel A, Zouaoui M, Adam K, Clemente HS, Aguilar M, Pendaries R, Couzigou JM, Marti G, Gaulin E, Roy S, Rey T, Dumas B. The mycoparasite Pythium oligandrum induces legume pathogen resistance and shapes rhizosphere microbiota without impacting mutualistic interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1156733. [PMID: 37929182 PMCID: PMC10625430 DOI: 10.3389/fpls.2023.1156733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
Pythium oligandrum is a soil-borne oomycete associated with rhizosphere and root tissues. Its ability to enhance plant growth, stimulate plant immunity and parasitize fungal and oomycete preys has led to the development of agricultural biocontrol products. Meanwhile, the effect of P. oligandrum on mutualistic interactions and more generally on root microbial communities has not been investigated. Here, we developed a biological system comprising P. oligandrum interacting with two legume plants, Medicago truncatula and Pisum sativum. P. oligandrum activity was investigated at the transcriptomics level through an RNAseq approach, metabolomics and finally metagenomics to investigate the impact of P. oligandrum on root microbiota. We found that P. oligandrum promotes plant growth in these two species and protects them against infection by the oomycete Aphanomyces euteiches, a devastating legume root pathogen. In addition, P. oligandrum up-regulated more than 1000 genes in M. truncatula roots including genes involved in plant defense and notably in the biosynthesis of antimicrobial compounds and validated the enhanced production of M. truncatula phytoalexins, medicarpin and formononetin. Despite this activation of plant immunity, we found that root colonization by P. oligandrum did not impaired symbiotic interactions, promoting the formation of large and multilobed symbiotic nodules with Ensifer meliloti and did not negatively affect the formation of arbuscular mycorrhizal symbiosis. Finally, metagenomic analyses showed the oomycete modifies the composition of fungal and bacterial communities. Together, our results provide novel insights regarding the involvement of P. oligandrum in the functioning of plant root microbiota.
Collapse
Affiliation(s)
- Maryam Hashemi
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Aurélien Amiel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
- DE SANGOSSE, Pont-Du-Casse, France
| | - Mohamed Zouaoui
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Kévin Adam
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Marielle Aguilar
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Rémi Pendaries
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
- DE SANGOSSE, Pont-Du-Casse, France
| | - Jean-Malo Couzigou
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Guillaume Marti
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
- Metatoul-AgromiX Platform, MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Elodie Gaulin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Sébastien Roy
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
- AGRONUTRITION, Carbonne, France
| | - Thomas Rey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
- DE SANGOSSE, Pont-Du-Casse, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| |
Collapse
|
2
|
Yang K, Wang Y, Li J, Du Y, Zhai Y, Liang D, Shen D, Ji R, Ren X, Peng H, Jing M, Dou D. The Pythium periplocum elicitin PpEli2 confers broad-spectrum disease resistance by triggering a novel receptor-dependent immune pathway in plants. HORTICULTURE RESEARCH 2023; 10:uhac255. [PMID: 37533673 PMCID: PMC10390855 DOI: 10.1093/hr/uhac255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/14/2022] [Indexed: 08/04/2023]
Abstract
Elicitins are microbe-associated molecular patterns produced by oomycetes to elicit plant defense. It is still unclear whether elicitins derived from non-pathogenic oomycetes can be used as bioactive molecules for disease control. Here, for the first time we identify and characterize an elicitin named PpEli2 from the soil-borne oomycete Pythium periplocum, which is a non-pathogenic mycoparasite colonizing the root ecosystem of diverse plant species. Perceived by a novel cell surface receptor-like protein, REli, that is conserved in various plants (e.g. tomato, pepper, soybean), PpEli2 can induce hypersensitive response cell death and an immunity response in Nicotiana benthamiana. Meanwhile, PpEli2 enhances the interaction between REli and its co-receptor BAK1. The receptor-dependent immune response triggered by PpEli2 is able to protect various plant species against Phytophthora and fungal infections. Collectively, our work reveals the potential agricultural application of non-pathogenic elicitins and their receptors in conferring broad-spectrum resistance for plant protection.
Collapse
Affiliation(s)
- Kun Yang
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Wang
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jialu Li
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaxin Du
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Dong Liang
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xuexiang Ren
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Hao Peng
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | | | - Daolong Dou
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Yang K, Wang Y, Zhao H, Shen D, Dou D, Jing M. Novel EIicitin from Pythium oligandrum Confers Disease Resistance against Phytophthora capsici in Solanaceae Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16135-16145. [PMID: 36528808 DOI: 10.1021/acs.jafc.2c06431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The mycoparasite Pythium oligandrum is a nonpathogenic oomycete that can boost plant immune responses. Elicitins are microbe-associated molecular patterns (MAMPs) specifically produced by oomycetes that activate plant defense. Here, we identified a novel elicitin, PoEli8, from P. oligandrum that exhibits immunity-inducing activity in plants. In vitro-purified PoEli8 induced strong innate immune responses and enhanced resistance to the oomycete pathogen Phytophthora capsici in Solanaceae plants, including Nicotiana benthamiana, tomato, and pepper. Cell death and reactive oxygen species (ROS) accumulation triggered by the PoEli8 protein were dependent on the plant coreceptors receptor-like kinases (RLKs) BAK1 and SOBIR1. Furthermore, REli from N. benthamiana, a cell surface receptor-like protein (RLP) was implicated in the perception of PoEli8 in N. benthamiana. These results indicate the potential value of PoEli8 as a bioactive formula to protect Solanaceae plants against Phytophthora.
Collapse
Affiliation(s)
- Kun Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hanqing Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Cheng Y, Zhang H, Zhu W, Li Q, Meng R, Yang K, Guo Z, Zhai Y, Zhang H, Ji R, Peng H, Dou D, Jing M. Ferroptosis induced by the biocontrol agent Pythium oligandrum enhances soybean resistance to Phytophthora sojae. Environ Microbiol 2022; 24:6267-6278. [PMID: 36250814 DOI: 10.1111/1462-2920.16248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/13/2022] [Indexed: 01/12/2023]
Abstract
Ferroptosis is a newly discovered form of cell death accompanied by iron accumulation and lipid peroxidation. Both biotic and abiotic stresses can induce ferroptosis in plant cells. In the case of plant interactions with pathogenic Phytophthora oomycetes, the roles of ferroptosis are still largely unknown. Here, we performed transcriptome analysis on soybean plants treated with the biocontrol agent Pythium oligandrum, a soilborne and non-pathogenic oomycete capable of inducing plant resistance against Phytophthora sojae infection. Expression of homologous soybean genes involved in ferroptosis and resistance was reprogrammed upon P. oligandrum treatment. Typical hallmarks for characterizing ferroptosis were detected in soybean hypocotyl cells, including decreased glutathione (GSH) level, accumulation of ferric ions, and lipid peroxidation by reactive oxygen species (ROS). Meanwhile, ferroptosis-like cell death was triggered by P. oligandrum to suppress P. sojae infection in soybean. Protection provided by P. oligandrum could be attenuated by the ferroptosis inhibitor ferrostatin-1 (Fer-1), suggesting the critical role of ferroptosis in soybean resistance against P. sojae. Taken together, these results demonstrate that ferroptosis is a P. oligandrum-inducible defence mechanism against oomycete infection in soybean.
Collapse
Affiliation(s)
- Yang Cheng
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Huanxin Zhang
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Wenyi Zhu
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Qing Li
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Rui Meng
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Kun Yang
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ziqian Guo
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Haijing Zhang
- Rongcheng Agricultural and Rural Services Centre, Weihai, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Hao Peng
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Daolong Dou
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Maofeng Jing
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Bělonožníková K, Hýsková V, Vašková M, Křížek T, Čokrtová K, Vaněk T, Halířová L, Chudý M, Žufić A, Ryšlavá H. Seed Protection of Solanum lycopersicum with Pythium oligandrum against Alternaria brassicicola and Verticillium albo-atrum. Microorganisms 2022; 10:microorganisms10071348. [PMID: 35889067 PMCID: PMC9315653 DOI: 10.3390/microorganisms10071348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/10/2022] Open
Abstract
Pythium oligandrum, strain M1, is a soil oomycete successfully used as a biological control agent (BCA), protecting plants against fungal, yeast, and oomycete pathogens through mycoparasitism and elicitor-dependent plant priming. The not yet described Pythium strains, X42 and 00X48, have shown potential as BCAs given the high activity of their secreted proteases, endoglycosidases, and tryptamine. Here, Solanum lycopersicum L. cv. Micro-Tom seeds were coated with Pythium strains, and seedlings were exposed to fungal pathogens, either Alternaria brassicicola or Verticillium albo-atrum. The effects of both infection and seed-coating on plant metabolism were assessed by determining the activity and isoforms of antioxidant enzymes and endoglycosidases and the content of tryptamine, amino acids, and heat shock proteins. Dual culture competition testing and microscopy analysis confirmed mycoparasitism in all three Pythium strains. In turn, seed treatment significantly increased the total free amino acid content, changing their abundance in both non-infected and infected plants. In response to pathogens, plant Hsp70 and Hsp90 isoform levels also varied among Pythium strains, most likely as a strategy for priming the plant against infection. Overall, our results show in vitro mycoparasitism between Pythium strains and fungal pathogens and in planta involvement of heat shock proteins in priming.
Collapse
Affiliation(s)
- Kateřina Bělonožníková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic; (K.B.); (V.H.); (M.V.); (T.K.); (K.Č.); (L.H.); (M.C.); (A.Ž.)
| | - Veronika Hýsková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic; (K.B.); (V.H.); (M.V.); (T.K.); (K.Č.); (L.H.); (M.C.); (A.Ž.)
| | - Marie Vašková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic; (K.B.); (V.H.); (M.V.); (T.K.); (K.Č.); (L.H.); (M.C.); (A.Ž.)
| | - Tomáš Křížek
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic; (K.B.); (V.H.); (M.V.); (T.K.); (K.Č.); (L.H.); (M.C.); (A.Ž.)
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Kateřina Čokrtová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic; (K.B.); (V.H.); (M.V.); (T.K.); (K.Č.); (L.H.); (M.C.); (A.Ž.)
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Tomáš Vaněk
- Biopreparáty, spol. s r.o., Tylišovská 1, 160 00 Prague 6, Czech Republic;
| | - Lucie Halířová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic; (K.B.); (V.H.); (M.V.); (T.K.); (K.Č.); (L.H.); (M.C.); (A.Ž.)
| | - Michal Chudý
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic; (K.B.); (V.H.); (M.V.); (T.K.); (K.Č.); (L.H.); (M.C.); (A.Ž.)
| | - Antoniana Žufić
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic; (K.B.); (V.H.); (M.V.); (T.K.); (K.Č.); (L.H.); (M.C.); (A.Ž.)
| | - Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic; (K.B.); (V.H.); (M.V.); (T.K.); (K.Č.); (L.H.); (M.C.); (A.Ž.)
- Correspondence: ; Tel.: +420-221-951-282
| |
Collapse
|
6
|
Pythium oligandrum in plant protection and growth promotion: Secretion of hydrolytic enzymes, elicitors and tryptamine as auxin precursor. Microbiol Res 2022; 258:126976. [DOI: 10.1016/j.micres.2022.126976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/25/2022]
|
7
|
Yang K, Dong X, Li J, Wang Y, Cheng Y, Zhai Y, Li X, Wei L, Jing M, Dou D. Type 2 Nep1-Like Proteins from the Biocontrol Oomycete Pythium oligandrum Suppress Phytophthora capsici Infection in Solanaceous Plants. J Fungi (Basel) 2021; 7:496. [PMID: 34206578 PMCID: PMC8303654 DOI: 10.3390/jof7070496] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/04/2023] Open
Abstract
As a non-pathogenic oomycete, the biocontrol agent Pythium oligandrum is able to control plant diseases through direct mycoparasite activity and boosting plant immune responses. Several P. oligandrum elicitors have been found to activate plant immunity as microbe-associated molecular patterns (MAMPs). Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are a group of MAMPs widely distributed in eukaryotic and prokaryotic plant pathogens. However, little is known about their distribution and functions in P. oligandrum and its sister species Pythium periplocum. Here, we identified a total of 25 NLPs from P. oligandrum (PyolNLPs) and P. periplocum (PypeNLPs). Meanwhile, we found that PyolNLPs/PypeNLPs genes cluster in two chromosomal segments, and our analysis suggests that they expand by duplication and share a common origin totally different from that of pathogenic oomycetes. Nine PyolNLPs/PypeNLPs induced necrosis in Nicotiana benthamiana by agroinfiltration. Eight partially purified PyolNLPs/PypeNLPs were tested for their potential biocontrol activity. PyolNLP5 and PyolNLP7 showed necrosis-inducing activity in N. benthamiana via direct protein infiltration. At sufficient concentrations, they both significantly reduced disease severity and suppressed the in planta growth of Phytophthora capsici in solanaceous plants including N. benthamiana (tobacco), Solanum lycopersicum (tomato) and Capsicum annuum (pepper). Our assays suggest that the Phytophthora suppression effect of PyolNLP5 and PyolNLP7 is irrelevant to reactive oxygen species (ROS) accumulation. Instead, they induce the expression of antimicrobial plant defensin genes, and the induction depends on their conserved nlp24-like peptide pattern. This work demonstrates the biocontrol role of two P. oligandrum NLPs for solanaceous plants, which uncovers a novel approach of utilizing NLPs to develop bioactive formulae for oomycete pathogen control with no ROS-caused injury to plants.
Collapse
Affiliation(s)
- Kun Yang
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (K.Y.); (X.D.); (J.L.); (Y.W.); (Y.C.)
| | - Xiaohua Dong
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (K.Y.); (X.D.); (J.L.); (Y.W.); (Y.C.)
| | - Jialu Li
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (K.Y.); (X.D.); (J.L.); (Y.W.); (Y.C.)
| | - Yi Wang
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (K.Y.); (X.D.); (J.L.); (Y.W.); (Y.C.)
| | - Yang Cheng
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (K.Y.); (X.D.); (J.L.); (Y.W.); (Y.C.)
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA;
| | - Xiaobo Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, China;
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Maofeng Jing
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (K.Y.); (X.D.); (J.L.); (Y.W.); (Y.C.)
| | - Daolong Dou
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (K.Y.); (X.D.); (J.L.); (Y.W.); (Y.C.)
| |
Collapse
|
8
|
Abbasi S, Sadeghi A, Omidvari M, Tahan V. The stimulators and responsive genes to induce systemic resistance against pathogens: An exclusive focus on tomato as a model plant. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Solanský M, Mikulášek K, Zapletalová M, Petřivalský M, Chiltz A, Zdráhal Z, Leborgne-Castel N, Lochman J. The oligomeric states of elicitins affect the hypersensitive response and resistance in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3219-3234. [PMID: 33475728 DOI: 10.1093/jxb/erab011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Successful plant defence against microbial pathogens is based on early recognition and fast activation of inducible responses. Key mechanisms include detection of microbe-associated molecular patterns by membrane-localized pattern recognition receptors that induce a basal resistance response. A well-described model of such responses to pathogens involves the interactions between Solanaceae plants and proteinaceous elicitors secreted by oomycetes, called elicitins. It has been hypothesized that the formation of oligomeric structures by elicitins could be involved in their recognition and activation of defensive transduction cascades. In this study, we tested this hypothesis using several approaches, and we observed differences in tobacco plant responses induced by the elicitin β-cryptogein (β-CRY) and its homodimer, β-CRYDIM. We also found that the C-terminal domain of elicitins of other ELI (true-elicitin) clades plays a significant role in stabilization of their oligomeric structure and restraint in the cell wall. In addition, covalently cross-linking β-CRYDIM impaired the formation of signalling complexes, thereby reducing its capacity to elicit the hypersensitive response and resistance in the host plant, with no significant changes in pathogenesis-related protein expression. By revealing the details of the effects of β-CRY dimerization on recognition and defence responses in tobacco, our results shed light on the poorly understood role of elicitins' oligomeric structures in the interactions between oomycetes and plants.
Collapse
Affiliation(s)
- Martin Solanský
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Kamil Mikulášek
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martina Zapletalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Annick Chiltz
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Nathalie Leborgne-Castel
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| |
Collapse
|
10
|
Liang D, Andersen CB, Vetukuri RR, Dou D, Grenville-Briggs LJ. Horizontal Gene Transfer and Tandem Duplication Shape the Unique CAZyme Complement of the Mycoparasitic Oomycetes Pythium oligandrum and Pythium periplocum. Front Microbiol 2020; 11:581698. [PMID: 33329445 PMCID: PMC7720654 DOI: 10.3389/fmicb.2020.581698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Crop protection strategies that are effective but that reduce our reliance on chemical pesticides are urgently needed to meet the UN sustainable development goals for global food security. Mycoparasitic oomycetes such as Pythium oligandrum and Pythium periplocum, have potential for the biological control of plant diseases that threaten crops and have attracted much attention due to their abilities to antagonize plant pathogens and modulate plant immunity. Studies of the molecular and genetic determinants of mycoparasitism in these species have been less well developed than those of their fungal counterparts. Carbohydrate-active enzymes (CAZymes) from P. oligandrum and P. periplocum are predicted to be important components of mycoparasitism, being involved in the degradation of the cell wall of their oomycete and fungal prey species. To explore the evolution of CAZymes of these species we performed an in silico identification and comparison of the full CAZyme complement (CAZyome) of the two mycoparasitic Pythium species (P. oligandrum and P. periplocum), with seven other Pythium species, and four Phytophthora species. Twenty CAZy gene families involved in the degradation of cellulose, hemicellulose, glucan, and chitin were expanded in, or unique to, mycoparasitic Pythium species and several of these genes were expressed during mycoparasitic interactions with either oomycete or fungal prey, as revealed by RNA sequencing and quantitative qRT-PCR. Genes from three of the cellulose and chitin degrading CAZy families (namely AA9, GH5_14, and GH19) were expanded via tandem duplication and predominantly located in gene sparse regions of the genome, suggesting these enzymes are putative pathogenicity factors able to undergo rapid evolution. In addition, five of the CAZy gene families were likely to have been obtained from other microbes by horizontal gene transfer events. The mycoparasitic species are able to utilize complex carbohydrates present in fungal cell walls, namely chitin and N-acetylglucosamine for growth, in contrast to their phytopathogenic counterparts. Nonetheless, a preference for the utilization of simple sugars for growth appears to be a common trait within the oomycete lineage.
Collapse
Affiliation(s)
- Dong Liang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Ramesh R. Vetukuri
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | |
Collapse
|
11
|
Bělonožníková K, Vaverová K, Vaněk T, Kolařík M, Hýsková V, Vaňková R, Dobrev P, Křížek T, Hodek O, Čokrtová K, Štípek A, Ryšlavá H. Novel Insights into the Effect of Pythium Strains on Rapeseed Metabolism. Microorganisms 2020; 8:microorganisms8101472. [PMID: 32992822 PMCID: PMC7650609 DOI: 10.3390/microorganisms8101472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pythium oligandrum is a unique biological control agent. This soil oomycete not only acts as a mycoparasite, but also interacts with plant roots and stimulates plant defense response via specific elicitors. In addition, P. oligandrum can synthetize auxin precursors and stimulate plant growth. We analyzed the secretomes and biochemical properties of eleven Pythium isolates to find a novel and effective strain with advantageous features for plants. Our results showed that even closely related P. oligandrum isolates significantly differ in the content of compounds secreted into the medium, and that all strains secrete proteins, amino acids, tryptamine, phenolics, and hydrolytic enzymes capable of degrading cell walls (endo-β-1,3-glucanase, chitinase, and cellulase), exoglycosidases (especially β-glucosidase), proteases, and phosphatases. The most different strain was identified as a not yet described Pythium species. The changes in metabolism of Brassica napus plants grown from seeds coated with the tested Pythium spp. were characterized. Enhanced levels of jasmonates, ethylene precursor, and salicylic acid may indicate better resistance to a wide variety of pathogens. Glucosinolates, as defense compounds against insects and herbivores, were enhanced in young plants. Altogether, P. oligandrum strains varied in their life strategies, and either they could perform equally as plant growth promoters and mycoparasites or they had developed one of these strategies better.
Collapse
Affiliation(s)
- Kateřina Bělonožníková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic; (K.B.); (K.V.); (V.H.)
| | - Kateřina Vaverová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic; (K.B.); (K.V.); (V.H.)
| | - Tomáš Vaněk
- Biopreparáty, spol. s r.o., Tylišovská 1, 160 00 Prague 6, Czech Republic; (T.V.); (A.Š.)
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic;
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
| | - Veronika Hýsková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic; (K.B.); (K.V.); (V.H.)
| | - Radomíra Vaňková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic; (R.V.); (P.D.)
| | - Petre Dobrev
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic; (R.V.); (P.D.)
| | - Tomáš Křížek
- Department of Analytical chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic; (T.K.); (O.H.); (K.Č.)
| | - Ondřej Hodek
- Department of Analytical chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic; (T.K.); (O.H.); (K.Č.)
| | - Kateřina Čokrtová
- Department of Analytical chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic; (T.K.); (O.H.); (K.Č.)
| | - Adam Štípek
- Biopreparáty, spol. s r.o., Tylišovská 1, 160 00 Prague 6, Czech Republic; (T.V.); (A.Š.)
| | - Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic; (K.B.); (K.V.); (V.H.)
- Correspondence:
| |
Collapse
|
12
|
Villena J, Kitazawa H, Van Wees SCM, Pieterse CMJ, Takahashi H. Receptors and Signaling Pathways for Recognition of Bacteria in Livestock and Crops: Prospects for Beneficial Microbes in Healthy Growth Strategies. Front Immunol 2018; 9:2223. [PMID: 30319660 PMCID: PMC6170637 DOI: 10.3389/fimmu.2018.02223] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/07/2018] [Indexed: 01/24/2023] Open
Abstract
Modern animal and crop production practices are associated with the regular use of antimicrobials, potentially increasing selection pressure on bacteria to become resistant. Alternative approaches are needed in order to satisfy the demands of the growing human population without the indiscriminate use of antimicrobials. Researchers have brought a different perspective to solve this problem and have emphasized the exploitation of animal- and plant-associated microorganisms that are beneficial to their hosts through the modulation of the innate immune system. There is increasing evidence that plants and animals employ microbial perception and defense pathways that closely resemble each other. Formation of pattern recognition receptor (PRR) complexes involving leucine-rich repeat (LRR)-containing proteins, mitogen-activated protein kinase (MAPK)-mediated activation of immune response genes, and subsequent production of antimicrobial products and reactive oxygen species (ROS) and nitric oxide (NO) to improve defenses against pathogens, add to the list of similarities between both systems. Recent pioneering work has identified that animal and plant cells use similar receptors for sensing beneficial commensal microbes that are important for the maintenance of the host's health. Here, we reviewed the current knowledge about the molecular mechanisms involved in the recognition of pathogenic and commensal microbes by the innate immune systems of animal and plants highlighting their differences and similarities. In addition, we discuss the idea of using beneficial microbes to modulate animal and plant immune systems in order to improve the resistance to infections and reduce the use of antimicrobial compounds.
Collapse
Affiliation(s)
- Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Science4life, Utrecht University, Utrecht, Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4life, Utrecht University, Utrecht, Netherlands
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
13
|
Postulkova M, Rezanina J, Fiala J, Ruzicka MC, Dostalek P, Branyik T. Suppression of fungal contamination by Pythium oligandrum
during malting of barley. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michaela Postulkova
- Department of Biotechnology; University of Chemistry and Technology; Technicka 5 166 28 Prague Czech Republic
- Department of Multiphase Reactors; Institute of Chemical Process Fundamentals, Czech Academy of Sciences; Rozvojova 135 165 02 Prague Czech Republic
| | - Jan Rezanina
- Department of Biotechnology; University of Chemistry and Technology; Technicka 5 166 28 Prague Czech Republic
| | - Jaromir Fiala
- Department of Biotechnology; University of Chemistry and Technology; Technicka 5 166 28 Prague Czech Republic
- Research Institute of Brewing and Malting; Lipova 15 120 44 Prague Czech Republic
| | - Marek C. Ruzicka
- Department of Multiphase Reactors; Institute of Chemical Process Fundamentals, Czech Academy of Sciences; Rozvojova 135 165 02 Prague Czech Republic
| | - Pavel Dostalek
- Department of Biotechnology; University of Chemistry and Technology; Technicka 5 166 28 Prague Czech Republic
| | - Tomas Branyik
- Department of Biotechnology; University of Chemistry and Technology; Technicka 5 166 28 Prague Czech Republic
| |
Collapse
|
14
|
Stempien E, Goddard ML, Leva Y, Bénard-Gellon M, Laloue H, Farine S, Kieffer-Mazet F, Tarnus C, Bertsch C, Chong J. Secreted proteins produced by fungi associated with Botryosphaeria dieback trigger distinct defense responses in Vitis vinifera and Vitis rupestris cells. PROTOPLASMA 2018; 255:613-628. [PMID: 29043572 DOI: 10.1007/s00709-017-1175-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/09/2017] [Indexed: 05/07/2023]
Abstract
Grapevine trunk diseases (Eutypa dieback, esca and Botryosphaeria dieback) are caused by a complex of xylem-inhabiting fungi, which severely reduce yields in vineyards. Botryosphaeria dieback is associated with Botryosphaeriaceae. In order to develop effective strategies against Botryosphaeria dieback, we investigated the molecular basis of grapevine interactions with a virulent species, Neofusicoccum parvum, and a weak pathogen, Diplodia seriata. We investigated defenses induced by purified secreted fungal proteins within suspension cells of Vitis (Vitis rupestris and Vitis vinifera cv. Gewurztraminer) with putative different susceptibility to Botryosphaeria dieback. Our results show that Vitis cells are able to detect secreted proteins produced by Botryosphaeriaceae, resulting in a rapid alkalinization of the extracellular medium and the production of reactive oxygen species. Concerning early defense responses, N. parvum proteins induced a more intense response compared to D. seriata. Early and late defense responses, i.e., extracellular medium alkalinization, cell death, and expression of PR defense genes were stronger in V. rupestris compared to V. vinifera, except for stilbene production. Secreted Botryosphaeriaceae proteins triggered a high accumulation of δ-viniferin in V. vinifera suspension cells. Artificial inoculation assays on detached canes with N. parvum and D. seriata showed that the development of necrosis is reduced in V. rupestris compared to V. vinifera cv. Gewurztraminer. This may be related to a more efficient induction of defense responses in V. rupestris, although not sufficient to completely inhibit fungal colonization. Overall, our work shows a specific signature of defense responses depending on the grapevine genotype and the fungal species.
Collapse
Affiliation(s)
- E Stempien
- Laboratoire Vigne Biotechnologie et Environnement LVBE EA 3991, Université de Haute-Alsace, 33 rue de Herrlisheim, BP 68008, Colmar Cedex, France
| | - M-L Goddard
- Laboratoire Vigne Biotechnologie et Environnement LVBE EA 3991, Université de Haute-Alsace, 33 rue de Herrlisheim, BP 68008, Colmar Cedex, France
- Laboratoire de Chimie Organique et Bio-organique COB EA 4566, Université de Haute-Alsace, 3bis rue Alfred Werner, BP 68093, Mulhouse Cedex, France
| | - Y Leva
- Laboratoire Vigne Biotechnologie et Environnement LVBE EA 3991, Université de Haute-Alsace, 33 rue de Herrlisheim, BP 68008, Colmar Cedex, France
| | - M Bénard-Gellon
- Laboratoire Vigne Biotechnologie et Environnement LVBE EA 3991, Université de Haute-Alsace, 33 rue de Herrlisheim, BP 68008, Colmar Cedex, France
| | - H Laloue
- Laboratoire Vigne Biotechnologie et Environnement LVBE EA 3991, Université de Haute-Alsace, 33 rue de Herrlisheim, BP 68008, Colmar Cedex, France
| | - S Farine
- Laboratoire Vigne Biotechnologie et Environnement LVBE EA 3991, Université de Haute-Alsace, 33 rue de Herrlisheim, BP 68008, Colmar Cedex, France
| | - F Kieffer-Mazet
- Laboratoire Vigne Biotechnologie et Environnement LVBE EA 3991, Université de Haute-Alsace, 33 rue de Herrlisheim, BP 68008, Colmar Cedex, France
| | - C Tarnus
- Laboratoire de Chimie Organique et Bio-organique COB EA 4566, Université de Haute-Alsace, 3bis rue Alfred Werner, BP 68093, Mulhouse Cedex, France
| | - C Bertsch
- Laboratoire Vigne Biotechnologie et Environnement LVBE EA 3991, Université de Haute-Alsace, 33 rue de Herrlisheim, BP 68008, Colmar Cedex, France
| | - J Chong
- Laboratoire Vigne Biotechnologie et Environnement LVBE EA 3991, Université de Haute-Alsace, 33 rue de Herrlisheim, BP 68008, Colmar Cedex, France.
| |
Collapse
|
15
|
|
16
|
Uhlíková H, Obořil M, Klempová J, Šedo O, Zdráhal Z, Kašparovský T, Skládal P, Lochman J. Elicitin-Induced Distal Systemic Resistance in Plants is Mediated Through the Protein-Protein Interactions Influenced by Selected Lysine Residues. FRONTIERS IN PLANT SCIENCE 2016; 7:59. [PMID: 26904041 PMCID: PMC4742723 DOI: 10.3389/fpls.2016.00059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/14/2016] [Indexed: 05/09/2023]
Abstract
Elicitins are a family of small proteins with sterol-binding activity that are secreted by Phytophthora and Pythium sp. classified as oomycete PAMPs. Although α- and β-elicitins bind with the same affinity to one high affinity binding site on the plasma membrane, β-elicitins (possessing 6-7 lysine residues) are generally 50- to 100-fold more active at inducing distal HR and systemic resistance than the α-isoforms (with only 1-3 lysine residues). To examine the role of lysine residues in elicitin biological activity, we employed site-directed mutagenesis to prepare a series of β-elicitin cryptogein variants with mutations on specific lysine residues. In contrast to direct infiltration of protein into leaves, application to the stem revealed a rough correlation between protein's charge and biological activity, resulting in protection against Phytophthora parasitica. A detailed analysis of proteins' movement in plants showed no substantial differences in distribution through phloem indicating differences in consequent apoplastic or symplastic transport. In this process, an important role of homodimer formation together with the ability to form a heterodimer with potential partner represented by endogenous plants LTPs is suggested. Our work demonstrates a key role of selected lysine residues in these interactions and stresses the importance of processes preceding elicitin recognition responsible for induction of distal systemic resistance.
Collapse
Affiliation(s)
- Hana Uhlíková
- Department of Biochemistry, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Michal Obořil
- Department of Biochemistry, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Jitka Klempová
- Department of Biochemistry, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Ondrej Šedo
- Research Group Proteomics, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Zbyněk Zdráhal
- Research Group Proteomics, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Tomáš Kašparovský
- Department of Biochemistry, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk UniversityBrno, Czech Republic
- *Correspondence: Jan Lochman,
| |
Collapse
|
17
|
Ouyang Z, Li X, Huang L, Hong Y, Zhang Y, Zhang H, Li D, Song F. Elicitin-like proteins Oli-D1 and Oli-D2 from Pythium oligandrum trigger hypersensitive response in Nicotiana benthamiana and induce resistance against Botrytis cinerea in tomato. MOLECULAR PLANT PATHOLOGY 2015; 16:238-50. [PMID: 25047132 PMCID: PMC6638515 DOI: 10.1111/mpp.12176] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The biocontrol agent Pythium oligandrum and its elicitin-like proteins oligandrins have been shown to induce disease resistance in a range of plants. In the present study, the ability of two oligandrins, Oli-D1 and Oli-D2, to induce an immune response and the possible molecular mechanism regulating the defence responses in Nicotiana benthamiana and tomato were investigated. Infiltration of recombinant Oli-D1 and Oli-D2 proteins induced a typical immune response in N. benthamiana including the induction of a hypersensitive response (HR), accumulation of reactive oxygen species and production of autofluorescence. Agrobacterium-mediated transient expression assays revealed that full-length Oli-D1 and Oli-D2 were required for full HR-inducing activity in N. benthamiana, and virus-induced gene silencing-mediated knockdown of some of the signalling regulatory genes demonstrated that NbSGT1 and NbNPR1 were required for Oli-D1 and Oli-D2 to induce HR in N. benthamiana. Subcellular localization analyses indicated that both Oli-D1 and Oli-D2 were targeted to the plasma membrane of N. benthamiana. When infiltrated or transiently expressed in leaves, Oli-D1 and Oli-D2 induced resistance against Botrytis cinerea in tomato and activated the expression of a set of genes involved in the jasmonic acid/ethylene (JA/ET)-mediated signalling pathway. Our results demonstrate that Oli-D1 and Oli-D2 are effective elicitors capable of inducing immune responses in plants, probably through the JA/ET-mediated signalling pathway, and that both Oli-D1 and Oli-D2 have potential for the development of bioactive formulae for crop disease control in practice.
Collapse
Affiliation(s)
- Zhigang Ouyang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Okubara PA, Dickman MB, Blechl AE. Molecular and genetic aspects of controlling the soilborne necrotrophic pathogens Rhizoctonia and Pythium. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:61-70. [PMID: 25438786 DOI: 10.1016/j.plantsci.2014.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/22/2014] [Accepted: 02/03/2014] [Indexed: 05/20/2023]
Abstract
The soilborne necrotrophic pathogens Rhizoctonia and Pythium infect a wide range of crops in the US and worldwide. These pathogens pose challenges to growers because the diseases they cause are not adequately controlled by fungicides, rotation or, for many hosts, natural genetic resistance. Although a combination of management practices are likely to be required for control of Rhizoctonia and Pythium, genetic resistance remains a key missing component. This review discusses the recent deployment of introduced genes and genome-based information for control of Rhizoctonia, with emphasis on three pathosystems: Rhizoctonia solani AG8 and wheat, R. solani AG1-IA and rice, and R. solani AG3 or AG4 and potato. Molecular mechanisms underlying disease suppression will be addressed, if appropriate. Although less is known about genes and factors suppressive to Pythium, pathogen genomics and biological control studies are providing useful leads to effectors and antifungal factors. Prospects for resistance to Rhizoctonia and Pythium spp. will continue to improve with growing knowledge of pathogenicity strategies, host defense gene action relative to the pathogen infection process, and the role of environmental factors on pathogen-host interactions.
Collapse
Affiliation(s)
- Patricia A Okubara
- USDA-ARS, Root Disease and Biological Control Research Unit, Pullman, WA, 99164-6430, USA.
| | - Martin B Dickman
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2123, USA
| | - Ann E Blechl
- USDA-ARS, Crop Improvement and Utilization Research Unit, 800 Buchanan Street, Albany, CA, 94710-1105, USA
| |
Collapse
|
19
|
Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2012 update). EFSA J 2012. [DOI: 10.2903/j.efsa.2012.3020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
20
|
Benhamou N, le Floch G, Vallance J, Gerbore J, Grizard D, Rey P. Pythium oligandrum: an example of opportunistic success. Microbiology (Reading) 2012; 158:2679-2694. [DOI: 10.1099/mic.0.061457-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Nicole Benhamou
- Centre de recherche en horticulture, Pavillon de l’ENVIROTRON, 2480 Boulevard Hochelga, Université Laval, QC G1V 0A6, Canada
| | - Gaêtan le Floch
- Université Européenne de Bretagne/Université de Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESMISAB, 29 820 Plouzané, France
| | - Jessica Vallance
- Université de Bordeaux, ISVV, UMR1065 Santé et Agroécologie du Vignoble (SAVE), Bordeaux Sciences Agro, F-33140, Villenave d’Ornon, France et INRA, ISVV, UMR1065 SAVE, F-33140, Villenave d’Ornon, France
| | - Jonathan Gerbore
- Université de Bordeaux, ISVV, UMR1065 Santé et Agroécologie du Vignoble (SAVE), Bordeaux Sciences Agro, F-33140, Villenave d’Ornon, France et INRA, ISVV, UMR1065 SAVE, F-33140, Villenave d’Ornon, France
| | | | - Patrice Rey
- Université de Bordeaux, ISVV, UMR1065 Santé et Agroécologie du Vignoble (SAVE), Bordeaux Sciences Agro, F-33140, Villenave d’Ornon, France et INRA, ISVV, UMR1065 SAVE, F-33140, Villenave d’Ornon, France
| |
Collapse
|