1
|
Basit F, Khalid M, El-Keblawy A, Sheteiwy MS, Sulieman S, Josko I, Zulfiqar F. Hypoxia stress: plant's sensing, responses, and tolerance mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63458-63472. [PMID: 39489890 DOI: 10.1007/s11356-024-35439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Oxygen (O2) is an inhibiting factor for plant growth and development in submerged and flooding environments. Plants experience different O2 concentrations, such as normoxia, hypoxia, and anoxia, which can change over space and time. Plants have evolved various morphological, physiological, and biochemical adaptations to withstand low O2 stress, many of which have been well investigated. This review provides a detailed analysis of how plants respond to hypoxia, a significant stress factor primarily caused by flooding. Hypoxia affects plants at various cellular, developmental, and environmental levels. This review highlights genetic, molecular, and metabolic adaptations crops employ to cope with O2 deficiency. The roles of various transcription factors (TFs) and gene regulation mechanisms in enabling plants to modulate their physiological responses under hypoxic conditions are notable. The review also identifies a significant gap in research on plant responses during reoxygenation, the phase of returning to normal O2 levels, especially under natural lighting conditions. This transition poses ROS generation and photoinhibition challenges, affecting plant recovery post-hypoxia. We discuss various strategies to enhance plant hypoxia tolerance, including traditional breeding, genetic modification, and grafting techniques. It emphasizes integrating these approaches with a comprehensive understanding of hypoxia sensing and response mechanisms. We underscore the complexity of plant adaptations to hypoxia and the need for continued research in this field, especially in the face of global climate change. This is vital for developing sustainable agricultural practices and ensuring future food security.
Collapse
Affiliation(s)
- Farwa Basit
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, 325060, China.
| | - Muhammad Khalid
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Saad Sulieman
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, 13314, Shambat, Khartoum North, Sudan
| | - Izabela Josko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
2
|
Wang X, Komatsu S. Review: Proteomic Techniques for the Development of Flood-Tolerant Soybean. Int J Mol Sci 2020; 21:E7497. [PMID: 33053653 PMCID: PMC7589014 DOI: 10.3390/ijms21207497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Soybean, which is rich in protein and oil as well as phytochemicals, is cultivated in several climatic zones. However, its growth is markedly decreased by flooding stress, which is caused by climate change. Proteomic techniques were used for understanding the flood-response and -tolerant mechanisms in soybean. Subcellular proteomics has potential to elucidate localized cellular responses and investigate communications among subcellular components during plant growth and under stress stimuli. Furthermore, post-translational modifications play important roles in stress response and tolerance to flooding stress. Although many flood-response mechanisms have been reported, flood-tolerant mechanisms have not been fully clarified for soybean because of limitations in germplasm with flooding tolerance. This review provides an update on current biochemical and molecular networks involved in soybean tolerance against flooding stress, as well as recent developments in the area of functional genomics in terms of developing flood-tolerant soybeans. This work will expedite marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
3
|
Kaspary TE, Roma-Burgos N, Merotto A. Snorkeling Strategy: Tolerance to Flooding in Rice and Potential Application for Weed Management. Genes (Basel) 2020; 11:genes11090975. [PMID: 32842571 PMCID: PMC7564916 DOI: 10.3390/genes11090975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 01/28/2023] Open
Abstract
Flooding is an important strategy for weed control in paddy rice fields. However, terrestrial weeds had evolved mechanisms of tolerance to flooding, resulting in new 'snorkeling' ecotypes. The aim of this review is to discuss the mechanisms of flooding tolerance in cultivated and weedy rice at different plant stages and the putative utility of this trait for weed management. Knowledge about flooding tolerance is derived primarily from crop models, mainly rice. The rice model informs us about the possible flooding tolerance mechanisms in weedy rice, Echinochloa species, and other weeds. During germination, the gene related to carbohydrate mobilization and energy intake (RAmy3D), and genes involved in metabolism maintenance under anoxia (ADH, PDC, and OsB12D1) are the most important for flooding tolerance. Flooding tolerance during emergence involved responses promoted by ethylene and induction of RAmy3D, ADH, PDC, and OsB12D1. Plant species tolerant to complete submersion also employ escape strategies or the ability to become quiescent during the submergence period. In weedy rice, the expression of PDC1, SUS3, and SUB1 genes is not directly related to flooding tolerance, contrary to what was learned in cultivated rice. Mitigation of flooding tolerance in weeds could be achieved with biotechnological approaches and genetic manipulation of flood tolerance genes through RNAi and transposons, providing a potential new tool for weed management.
Collapse
Affiliation(s)
- Tiago Edu Kaspary
- Instituto Nacional de Investigación Agropecuaria, INIA, La Estanzuela, Colonia 70006, Uruguay;
| | - Nilda Roma-Burgos
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Aldo Merotto
- Department of Crop Sciences, Agricultural School, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, Brazil
- Correspondence:
| |
Collapse
|
4
|
Niu L, Wu Z, Liu H, Wu X, Wang W. 2-DE-based proteomic analysis of protein changes associated with etiolated mesocotyl growth in Zea mays. BMC Genomics 2019; 20:758. [PMID: 31640549 PMCID: PMC6805590 DOI: 10.1186/s12864-019-6109-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background The mesocotyl connects the coleoptilar node and the basal part of the seminal root of maize (Zea mays) seedling. The mesocotyl pushes the shoot of the seedling out of the soil during seed germination; thus, its growth is highly related to deep-sowing tolerance. Although many studies on the maize mesocotyl have been carried out at physiological and molecular levels, the proteomic changes associated with cellular and physiological activities during mesocotyl growth are still unknown. Results In the present study, the maize hybrid Zhengdan 958 was used to study mesocotyl growth and accompanying protein changes. The dark-grown etiolated mesocotyls exhibited a slow-fast-slow feature, with significant changes in the levels of indole-3-acetic acid (IAA) and cellulose and the activity of peroxidase (POD). In particular, POD activity increased with mesocotyl growth, showing higher activity at the mature (lower) end of the mesocotyl. For the proteomic analysis, soluble proteins were extracted from etiolated mesocotyls dark-grown for 48 h, 84 h, and 132 h, corresponding to the initial, rapid, and slow growth periods, respectively, and subjected to separation by two-dimensional gel electrophoresis (2-DE). As a result, 88 differentially abundant proteins (DAPs) were identified using MALDI-TOF-TOF analysis. At 48 h, most DAPs were stress proteins, heat shock proteins and storage proteins; at 84 h, oxidation/reduction proteins, carbohydrate biogenesis-related proteins and cytoskeleton-related proteins were highly accumulated; at 132 h, the most striking DAPs were those involved in the synthesis and modification of the cell wall and the biogenesis of carbohydrates. Gene ontology (GO) analysis showed that changes in the abundance and proportion of DAPs were consistent with cellular and physiological activities and biological processes during mesocotyl growth. The accumulation of nine DAPs of interest was verified by immunoblotting and RT-qPCR. Conclusions The present study revealed that the protein patterns in 2-D gels differed greatly with mesocotyl growth. At different growth periods, a specific set of DAPs participate in various biological processes and underlie the cellular and physiological activities of the mesocotyl. These results contributed to the understanding of mesocotyl growth and the cultivation of maize lines with deep-sowing tolerance.
Collapse
Affiliation(s)
- Liangjie Niu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhaokun Wu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hui Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaolin Wu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
Prajapati GK, Pandey B, Mishra AK, Baek KH, Pandey DM. Identification of GCC-box and TCC-box motifs in the promoters of differentially expressed genes in rice (Oryza sativa L.): Experimental and computational approaches. PLoS One 2019; 14:e0214964. [PMID: 31026257 PMCID: PMC6485614 DOI: 10.1371/journal.pone.0214964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/23/2019] [Indexed: 01/22/2023] Open
Abstract
The transcription factor selectively binds with the cis-regulatory elements of the promoter and regulates the differential expression of genes. In this study, we aimed to identify and validate the presence of GCC-box and TCC-box motifs in the promoters of upregulated differentially expressed genes (UR-DEGs) and downregulated differentially expressed genes (DR-DEGs) under anoxia using molecular beacon probe (MBP) based real-time PCR. The GCC-box motif was detected in UR-DEGs (DnaJ and 60S ribosomal protein L7 genes), whereas, the TCC-box was detected in DR-DEGs (DnaK and CPuORF11 genes). In addition, the mechanism of interaction of AP2/EREBP family transcription factor (LOC_Os03g22170) with GCC-box promoter motif present in DnaJ gene (LOC_Os06g09560) and 60S ribosomal protein L7 gene (LOC_Os08g42920); and TCC-box promoter motif of DnaK gene (LOC_Os02g48110) and CPuORF11 gene (LOC_Os02g01240) were explored using molecular dynamics (MD) simulations analysis including binding free energy calculations, principal component analyses, and free energy landscapes. The binding free energy analysis revealed that AP2/EREBP model residues such as Arg68, Arg72, Arg83, Lys87, and Arg90 were commonly involved in the formation of hydrogen bonds with GCC and TCC-box promoter motifs, suggesting that these residues are critical for strong interaction. The movement of the entire protein bound to DNA was restricted, confirming the stability of the complex. This study provides comprehensive binding information and a more detailed view of the dynamic interaction between proteins and DNA.
Collapse
Affiliation(s)
- Gopal Kumar Prajapati
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Bharati Pandey
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
- * E-mail: (DP); (KB)
| | - Dev Mani Pandey
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
- * E-mail: (DP); (KB)
| |
Collapse
|
6
|
Chen MX, Zhu FY, Wang FZ, Ye NH, Gao B, Chen X, Zhao SS, Fan T, Cao YY, Liu TY, Su ZZ, Xie LJ, Hu QJ, Wu HJ, Xiao S, Zhang J, Liu YG. Alternative splicing and translation play important roles in hypoxic germination in rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:817-833. [PMID: 30535157 PMCID: PMC6363088 DOI: 10.1093/jxb/ery393] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/27/2018] [Indexed: 05/04/2023]
Abstract
Post-transcriptional mechanisms (PTMs), including alternative splicing (AS) and alternative translation initiation (ATI), may explain the diversity of proteins involved in plant development and stress responses. Transcriptional regulation is important during the hypoxic germination of rice seeds, but the potential roles of PTMs in this process have not been characterized. We used a combination of proteomics and RNA sequencing to discover how AS and ATI contribute to plant responses to hypoxia. In total, 10 253 intron-containing genes were identified. Of these, ~1741 differentially expressed AS (DAS) events from 811 genes were identified in hypoxia-treated seeds compared with controls. Over 95% of these were not present in the list of differentially expressed genes. In particular, regulatory pathways such as the spliceosome, ribosome, endoplasmic reticulum protein processing and export, proteasome, phagosome, oxidative phosphorylation, and mRNA surveillance showed substantial AS changes under hypoxia, suggesting that AS responses are largely independent of transcriptional regulation. Considerable AS changes were identified, including the preferential usage of some non-conventional splice sites and enrichment of splicing factors in the DAS data sets. Taken together, these results not only demonstrate that AS and ATI function during hypoxic germination but they have also allowed the identification of numerous novel proteins/peptides produced via ATI.
Collapse
Affiliation(s)
- Mo-Xian Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Feng-Zhu Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Neng-Hui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, China
| | - Bei Gao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xi Chen
- SpecAlly Life Technology Co., Ltd, Wuhan, China
| | - Shan-Shan Zhao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Fan
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Yun-Ying Cao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- College of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Tie-Yuan Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ze-Zhuo Su
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li-Juan Xie
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Juan Hu
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hui-Jie Wu
- College of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Correspondence: or
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
- Correspondence: or
| |
Collapse
|
7
|
Sun XY, Liu QH, Huang J. iTRAQ-based quantitative proteomic analysis of differentially expressed proteins in Litopenaeus vannamei
in response to infection with WSSV strains varying in virulence. Lett Appl Microbiol 2018; 67:113-122. [DOI: 10.1111/lam.13004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
- X.-Y. Sun
- Laboratory for Marine Fisheries Science and Food Production Processes; Qingdao National Laboratory for Marine Science and Technology; Key Laboratory of Maricultural Organism Disease Control; Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute; Chinese Academy of Fishery Sciences; Qingdao China
| | - Q.-H. Liu
- Laboratory for Marine Fisheries Science and Food Production Processes; Qingdao National Laboratory for Marine Science and Technology; Key Laboratory of Maricultural Organism Disease Control; Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute; Chinese Academy of Fishery Sciences; Qingdao China
| | - J. Huang
- Laboratory for Marine Fisheries Science and Food Production Processes; Qingdao National Laboratory for Marine Science and Technology; Key Laboratory of Maricultural Organism Disease Control; Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute; Chinese Academy of Fishery Sciences; Qingdao China
| |
Collapse
|
8
|
Temperature-dependent metabolic adaptation of Triticum aestivum seedlings to anoxia. Sci Rep 2018; 8:6151. [PMID: 29670175 PMCID: PMC5906562 DOI: 10.1038/s41598-018-24419-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 04/03/2018] [Indexed: 11/30/2022] Open
Abstract
Wheat (Triticum aestivum) is considered anoxia intolerant but it shows variance in anoxia responses between genotypes and environmental treatments. We firstly examined 4 day old seedlings of five wheat genotypes in response to anoxia at 15 °C and 28 °C by assessing growth rate, tissue damage and changes in metabolite abundances. Significant genotypic variations in anoxia tolerance were observed, especially at 28 °C. Wheat seedlings grown at 15 °C appeared to be more anoxia tolerant and showed less genotypic variation than those at 28 °C. To minimize seedling size variations and define the temperature effects, we grew two contrasting genotypes at 15 °C for 3.5 d and adapted to 4 different temperatures for 0.5 d before exposing them to anoxia at each adapted temperature. Genotypic variation in abundance of anoxia induced metabolites occurred at 24 °C and 28 °C but not at 15 °C and 20 °C. Tissue- and temperature-dependent metabolic adaptations to anoxia were revealed. In roots, the ability to maintain sugar/sugar-phosphate and TCA cycle metabolite levels and the accumulation of amino acids when temperature was below 24 °C correlated with anoxia tolerance. Temperatures between 20 °C–24 °C are critical for metabolic adaptation and suggest that further assessment of waterlogging/flooding tolerance of wheat seedlings should consider the temperature-dependence of tolerance in evaluations.
Collapse
|
9
|
Onelli E, Moscatelli A, Gagliardi A, Zaninelli M, Bini L, Baldi A, Caccianiga M, Reggi S, Rossi L. Retarded germination of Nicotiana tabacum seeds following insertion of exogenous DNA mimics the seed persistent behavior. PLoS One 2017; 12:e0187929. [PMID: 29216220 PMCID: PMC5720674 DOI: 10.1371/journal.pone.0187929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/09/2017] [Indexed: 01/23/2023] Open
Abstract
Tobacco seeds show a coat-imposed dormancy in which the seed envelope tissues (testa and endosperm) impose a physical constraint on the radicle protrusion. The germination-limiting process is represented by the endosperm rupture which is induced by cell-wall weakening. Transgenic tobacco seeds, obtained by insertion of exogenous genes codifying for seed-based oral vaccines (F18 and VT2eB), showed retarded germination with respect to the wild type and modified the expression of endogenous proteins. Morphological and proteomic analyses of wild type and transgenic seeds revealed new insights into factors influencing seed germination. Our data showed that the interference of exogenous DNA influences the germination rather than the dormancy release, by modifying the maturation process. Dry seeds of F18 and VT2eB transgenic lines accumulated a higher amount of reserve and stress-related proteins with respect to the wild type. Moreover, the storage proteins accumulated in tobacco F18 and VT2eB dry seeds have structural properties that do not enable the early limited proteolysis observed in the wild type. Morphological observations by electron and light microscopy revealed a retarded mobilization of the storage material from protein and lipid bodies in transgenic seeds, thus impairing water imbibition and embryo elongation. In addition, both F18 and VT2eB dry seeds are more rounded than the wild type. Both the morphological and biochemical characteristics of transgenic seeds mimic the seed persistent profile, in which their roundness enables them to be buried in the soil, while the higher content of storage material enables the hypocotyl to elongate more and the cotyledons to emerge.
Collapse
Affiliation(s)
| | | | - Assunta Gagliardi
- Laboratory of Functional Proteomic, Department of Life Science, University of Siena, Siena, Italy
| | - Mauro Zaninelli
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele Roma, Italy, Rome, Italy
| | - Luca Bini
- Laboratory of Functional Proteomic, Department of Life Science, University of Siena, Siena, Italy
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | | | | | - Luciana Rossi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Gil-Monreal M, Zabalza A, Missihoun TD, Dörmann P, Bartels D, Royuela M. Induction of the PDH bypass and upregulation of the ALDH7B4 in plants treated with herbicides inhibiting amino acid biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:16-28. [PMID: 28969796 DOI: 10.1016/j.plantsci.2017.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/27/2017] [Accepted: 08/10/2017] [Indexed: 05/16/2023]
Abstract
Imazamox and glyphosate represent two classes of herbicides that inhibit the activity of acetohydroxyacid synthase in the branched-chain amino acid biosynthesis pathway and the activity of 5-enolpyruvylshikimate-3-phosphate synthase in the aromatic amino acid biosynthesis pathway, respectively. However, it is still unclear how imazamox and glyphosate lead to plant death. Both herbicides inhibit amino-acid biosynthesis and were found to induce ethanol fermentation in plants, but an Arabidopsis mutant deficient in alcohol dehydrogenase 1 was neither more susceptible nor more resistant than the wild-type to the herbicides. In this study, we investigated the effects of the amino acid biosynthesis inhibitors, imazamox and glyphosate, on the pyruvate dehydrogenase bypass reaction and fatty acid metabolism in A. thaliana. We found that the pyruvate dehydrogenase bypass was upregulated following the treatment by the two herbicides. Our results suggest that the Arabidopsis aldehyde dehydrogenase 7B4 gene might be participating in the pyruvate dehydrogenase bypass reaction. We evaluated the potential role of the aldehyde dehydrogenase 7B4 upon herbicide treatment in the plant defence mechanism. Plants that overexpressed the ALDH7B4 gene accumulated less soluble sugars, starch, and fatty acids and grew better than the wild-type after herbicide treatment. We discuss how the upregulation of the ALDH7B4 alleviates the effects of the herbicides, potentially through the detoxification of the metabolites produced in the pyruvate dehydrogenase bypass.
Collapse
Affiliation(s)
- Miriam Gil-Monreal
- Departamento Ciencias del Medio Natural, Universidad Pública de Navarra, Campus Arrosadía, E-31006 Pamplona, Spain
| | - Ana Zabalza
- Departamento Ciencias del Medio Natural, Universidad Pública de Navarra, Campus Arrosadía, E-31006 Pamplona, Spain
| | - Tagnon D Missihoun
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, D-53115 Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, D-53115 Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, D-53115 Bonn, Germany
| | - Mercedes Royuela
- Departamento Ciencias del Medio Natural, Universidad Pública de Navarra, Campus Arrosadía, E-31006 Pamplona, Spain.
| |
Collapse
|
11
|
Miro B, Longkumer T, Entila FD, Kohli A, Ismail AM. Rice Seed Germination Underwater: Morpho-Physiological Responses and the Bases of Differential Expression of Alcoholic Fermentation Enzymes. FRONTIERS IN PLANT SCIENCE 2017; 8:1857. [PMID: 29123541 PMCID: PMC5662645 DOI: 10.3389/fpls.2017.01857] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/11/2017] [Indexed: 05/05/2023]
Abstract
The water-, energy-, and labor-intensive system of transplanted puddled rice (Oryza sativa) is steadily being replaced by direct seeding due to the progressive scarcity of these resources. However, the alternate dry direct seeding leads to competition with weeds and poor establishment when soils are flooded. Direct seeded rice capable of anaerobic germination (germination in flooded soil, AG) is ideal, which under rainfed ecosystems would also overcome waterlogging during germination. AG tolerance is associated with faster germination and faster elongation of coleoptiles, with the activities of alcoholic fermentation enzymes replacing aerobic respiration as a source of energy. To better understand the variability in the morpho-physiological responses and in the nature of the alcoholic fermentation enzymes during AG, 21 rice genotypes were studied. The genotypes Khao Hlan On (KHO) and IR42 were used as the tolerant and susceptible checks, respectively. KHO exhibited faster germination, with 82.5% of the coleoptiles emerging out of 10 cm of water within 8 days, whereas IR42 exhibited 20% germination and limited coleoptile growth. Among the test genotypes, four performed well, including two that are drought tolerant. Increased content and activity of the alcoholic fermentation enzymes, alcohol dehydrogenase (ADH1) and acetaldehyde dehydrogenase (ALDH2a and ALDH2b), was noted in KHO under anaerobic than under aerobic conditions and also in comparison with IR42 under AG. Gene transcripts for these enzymes were also more in KHO undergoing AG. However, no major differences were observed between KHO and IR42 in the critical cis-acting regulatory elements, such as the auxin, light, and sugar response elements, in the promoters of ADH1, ALDH2a, and ALDH2b genes. Post-transcriptional and post-translational regulatory mechanisms were implicated for the increased transcript and protein content/activity of the enzymes in KHO by observing four different transcripts of ALDH2a and a unique non-glycosylated form of ADH1 under AG. IR42 lacked the non-glycosylated ADH1 and contained only a truncated form of ALDH2a, which lacked the active site. Additionally, KHO exhibited increased activity and more isoforms for reactive oxygen species detoxifying enzymes under AG compared to IR42. These results highlight the need for a deeper functional understanding of the critical enzymes involved in AG.
Collapse
Affiliation(s)
| | | | | | - Ajay Kohli
- Genetics and Biotechnology Division, International Rice Research Institute, Makati, Philippines
| | - Abdelbagi M. Ismail
- Genetics and Biotechnology Division, International Rice Research Institute, Makati, Philippines
| |
Collapse
|
12
|
Li M, Yin X, Sakata K, Yang P, Komatsu S. Proteomic Analysis of Phosphoproteins in the Rice Nucleus During the Early Stage of Seed Germination. J Proteome Res 2015; 14:2884-96. [DOI: 10.1021/acs.jproteome.5b00215] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ming Li
- Key
Laboratory of Plant Germplasm Enhancement and Specialty Agriculture,
Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- National
Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Xiaojian Yin
- National
Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Katsumi Sakata
- Department
of Life Science and Informatics, Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Pingfang Yang
- Key
Laboratory of Plant Germplasm Enhancement and Specialty Agriculture,
Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Setsuko Komatsu
- National
Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| |
Collapse
|
13
|
Estioko LP, Miro B, Baltazar AM, Merca FE, Ismail AM, Johnson DE. Differences in responses to flooding by germinating seeds of two contrasting rice cultivars and two species of economically important grass weeds. AOB PLANTS 2014; 6:plu064. [PMID: 25336336 PMCID: PMC4243074 DOI: 10.1093/aobpla/plu064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Crop productivity is largely affected by abiotic factors such as flooding and by biotic factors such as weeds. Although flooding after direct seeding of rice helps suppress weeds, it also can adversely affects germination and growth of rice, resulting in poor crop establishment. Barnyard grasses (Echinochloa spp.) are among the most widespread weeds affecting rice, especially under direct seeding. The present work aimed to establish effective management options to control these weeds. We assessed the effects of variable depths and time of submergence on germination, seedling growth and carbohydrate metabolism of (i) two cultivars of rice known to differ in their tolerance to flooding during germination and (ii) two barnyard grasses (Echinochloa colona and E. crus-galli) that commonly infest rice fields. Flooding barnyard grasses with 100-mm-deep water immediately after seeding was effective in suppressing germination and growth. Echinochloa colona showed greater reductions in emergence, shoot and root growth than E. crus-galli. Delaying flooding for 2 or 4 days was less injurious to both species. Echinochloa colona was also more susceptible to flooding than the flood-sensitive rice cultivar 'IR42'. The activity of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) in rice seedlings was increased by flooding after sowing but with greater increases in 'Khao Hlan On' compared with 'IR42'. The activity of ADH and PDC was enhanced to a similar extent in both barnyard grasses. Under aerobic conditions, the activity of ADH and PDC in the two barnyard grasses was downregulated, which might contribute to their inherently faster growth compared with rice. Aldehyde dehydrogenase activity was significantly enhanced in flood-tolerant 'Khao Hlan On' and E. crus-galli, but did not increase in flood-sensitive E. colona and 'IR42', implying a greater ability of the flood-tolerant types to detoxify acetaldehyde generated during anaerobic fermentation. Confirmation of this hypothesis is now being sought.
Collapse
Affiliation(s)
| | - Berta Miro
- International Rice Research Institute, Los Banos, Laguna, Philippines
| | - Aurora M Baltazar
- University of the Philippines Los Banos, College, Laguna, Philippines
| | - Florinia E Merca
- University of the Philippines Los Banos, College, Laguna, Philippines
| | | | - David E Johnson
- International Rice Research Institute, Los Banos, Laguna, Philippines
| |
Collapse
|
14
|
Shingaki-Wells R, Millar AH, Whelan J, Narsai R. What happens to plant mitochondria under low oxygen? An omics review of the responses to low oxygen and reoxygenation. PLANT, CELL & ENVIRONMENT 2014; 37:2260-77. [PMID: 24575773 DOI: 10.1111/pce.12312] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/09/2014] [Accepted: 02/16/2014] [Indexed: 05/19/2023]
Abstract
Floods can rapidly submerge plants, limiting oxygen to the extent that oxidative phosphorylation no longer generates adequate ATP supplies. Low-oxygen tolerant plants, such as rice, are able to adequately respond to low oxygen by successfully remodelling primary and mitochondrial metabolism to partially counteract the energy crisis that ensues. In this review, we discuss how plants respond to low-oxygen stress at the transcriptomic, proteomic, metabolomic and enzyme activity levels, particularly focusing on mitochondria and interacting pathways. The role of reactive oxygen species and nitrite as an alternative electron acceptor as well as their links to respiratory chain components is discussed. By making intra-kingdom as well as cross-kingdom comparisons, conserved mechanisms of anoxia tolerance are highlighted as well as tolerance mechanisms that are specific to anoxia-tolerant rice during germination and in coleoptiles. We discuss reoxygenation as an often overlooked, yet essential stage of this environmental stress and consider the possibility that changes occurring during low oxygen may also provide benefits upon re-aeration. Finally, we consider what it takes to be low-oxygen tolerant and argue that alternative mechanisms of ATP production, glucose signalling, starch/sucrose signalling as well as reverse metabolism of fermentation end products promote the survival of rice after this debilitating stress.
Collapse
Affiliation(s)
- Rachel Shingaki-Wells
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building University of Western Australia, Crawley, Western Australia, 6009, Australia
| | | | | | | |
Collapse
|
15
|
Dong M, Gu J, Zhang L, Chen P, Liu T, Deng J, Lu H, Han L, Zhao B. Comparative proteomics analysis of superior and inferior spikelets in hybrid rice during grain filling and response of inferior spikelets to drought stress using isobaric tags for relative and absolute quantification. J Proteomics 2014; 109:382-99. [DOI: 10.1016/j.jprot.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/27/2014] [Accepted: 07/04/2014] [Indexed: 01/30/2023]
|
16
|
Chen Y, Chen X, Wang H, Bao Y, Zhang W. Examination of the leaf proteome during flooding stress and the induction of programmed cell death in maize. Proteome Sci 2014; 12:33. [PMID: 25028572 PMCID: PMC4099015 DOI: 10.1186/1477-5956-12-33] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maize is a major economic crop worldwide, with substantial crop loss attributed to flooding. During a stress response, programmed cell death (PCD) can be an effective way for plants better adapt. To identify flooding stress related PCD proteins in maize leaves, proteomic analysis was performed using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry. RESULTS Comparative proteomics was combined with physiological and biochemical analysis of maize leaves under flooding stress. Fv/Fm, qP, qN and relative water content (RWC) were found to be altered in response to flooding stress, with an increase in H2O2 content noted in vivo. Furthermore, DNA ladder detection indicated that PCD had occurred under flooding treatment. The maize leaf proteome was analyzed via 2D-DIGE gel, with a total of 32 differentially expressed spots isolated, 31 spots were successfully identified via MALDI-TOF/TOF MS which represent 28 proteins. The identified proteins were related to energy metabolism and photosynthesis, PCD, phytohormones and polyamines. To better characterize the role of translationally controlled tumor protein (TCTP) in PCD during a stress response, mRNA expression was examined in different plants by stress-induced PCD. These included heat stress induced rice protoplasts, Tobacco Mosaic Virus infected tobacco leaves and dark induced rice and Arabidopsis thaliana leaves, all of which showed active PCD, and TCTP expression was increased in different degrees. Moreover, S-adenosylmethionine synthase 2 (SAMS2) and S-adenosylmethionine decarboxylase (SAMDC) mRNA expression were also increased, but ACC synthase (ACS) and ACC oxidase (ACO) mRNA expression were not found in maize leaves following flooding. Lastly, ethylene and polyamine concentrations were increased in response to flooding treatment in maize leaves. CONCLUSIONS Following flooding stress, the photosynthetic systems were damaged, resulting in a disruption in energy metabolism, with the noted photosynthetic decline also possibly attributed to ROS production. The observed PCD could be regulated by TCTP with a possible role for H2O2 in TCTP induction under flooding stress. Additionally, increased SAMS2 expression was closely associated with an increased polyamine synthesis during flooding treatment.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Xi Chen
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Hongjuan Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Yiqun Bao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| |
Collapse
|