1
|
Jiang Z, Li YP, Gai PZ, Gao J, Xu L. Exogenously applied ABA alleviates dysplasia of maize ( Zea mays L.) ear under drought stress by altering photosynthesis and sucrose transport. PLANT SIGNALING & BEHAVIOR 2025; 20:2462497. [PMID: 39907639 PMCID: PMC11801349 DOI: 10.1080/15592324.2025.2462497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/06/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Drought stress inhibits the development of maize ears. Abscisic acid (ABA) is a plant hormone that can regulate the physicology metabolism under abiotic stress. In this study, maize varieties Zhengdan 958 (ZD958) and Xianyu 335 (XY335) with different filling stages were used as materials. Three treatments were set in the filling period: normal irrigation (CK), drought stress (stress); exogenous ABA + drought stress (ABA+stress). They were used to study the physiological regulation of exogenous ABA on maize ears development during drought stress. Exogenous ABA inhibited bald tip and the decline of maize plant biomass, and increased the number and weight of grains per ear at harvest under drought stress by regulating photosynthetic pigment content (Chla, Chlb, Car), gas exchange parameters (Pn, Tr, gs, Ci, Ls), Chla fluorescence parameters (Fv/Fm, ФPSII, ETR, qP, NPQ), chloroplast structure and function, photosynthetic enzyme activity, and the transcription level of genes coding SUTs (ZmSUT1, ZmSUT2, ZmSUT4, ZmSUT6). There was a significant correlation between physiological indexes of sucrose loading in maize and yield factors. This study discussed the mechanism of exogenous ABA alleviating maize ear dysplasia at grain filling stage under drought stress from the perspective of photosynthesis and sucrose transport.
Collapse
Affiliation(s)
- Zizhu Jiang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yu Peng Li
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Ping Zhuo Gai
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Jinsheng Gao
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Lijian Xu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
2
|
Mondal S, Jespersen D. Understanding salinity tolerance mechanisms in finger millet through metabolomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109742. [PMID: 40088583 DOI: 10.1016/j.plaphy.2025.109742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Finger millet (Eleusine coracana Gaertn L.) is an underutilized but nutritionally rich climate resilient food crop that is generally cultivated on marginal lands. Soil salinization is a major abiotic stress that leads to a reduction in growth and yield by affecting various physiological and metabolic processes in plants. The existence of genotypic variation for salt tolerance in finger millet indicates the possibility of crop improvement via plant breeding. The overall objective of the study was to identify metabolic changes associated with improved salt tolerance in finger millet. Understanding tolerance mechanisms plays a pivotal role in the development of elite cultivars. Based on the consensus of several phenotypic data at the germination and seedling stages, we further evaluated two accessions (IE 518 and IE 405) with morphophysiological parameters and metabolomics to dissect the salinity tolerance mechanisms in finger millet. Significant phenotypic separation of IE 518 and IE 405 for salt tolerance was reflected through differences in several physiological processes such as maximum quantum yield of photosystem II (FV/FM), net photosynthesis rate (Pn), shoot Na+ ion accumulation, and oxidative stresses (electrolyte leakage and malondialdehyde content). However, both accessions showed retention of K+ ions, which underscores the role of ion homeostasis in finger millet. Pathway enrichment analysis with the uniquely salt regulated metabolites identified key metabolic pathways such as stress signaling, biotin metabolism, energy metabolism, amino acid biosynthesis, and sugar metabolism in IE 518. An enhanced accumulation of reducing sugars (mannose and melibiose) and amino acids (L-Proline and GABA) in IE 518 under salinity suggests maintaining osmotic balance as a key tolerance mechanism in finger millet.
Collapse
Affiliation(s)
- Saptarshi Mondal
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, USA, 30223
| | - David Jespersen
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, USA, 30223; Department of Crop and Soil Sciences, University of Georgia, Griffin, USA, 30223.
| |
Collapse
|
3
|
Hualpa-Ramirez E, Carrasco-Lozano EC, Madrid-Espinoza J, Tejos R, Ruiz-Lara S, Stange C, Norambuena L. Stress salinity in plants: New strategies to cope with in the foreseeable scenario. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108507. [PMID: 38467083 DOI: 10.1016/j.plaphy.2024.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
The excess of salts in soils causes stress in most plants, except for some halophytes that can tolerate higher levels of salinity. The excess of Na+ generates an ionic imbalance, reducing the K+ content and altering cellular metabolism, thus impacting in plant growth and development. Additionally, salinity in soil induces water stress due to osmotic effects and increments the production of reactive oxygen species (ROS) that affect the cellular structure, damaging membranes and proteins, and altering the electrochemical potential of H+, which directly affects nutrient absorption by membrane transporters. However, plants possess mechanisms to overcome the toxicity of the sodium ions, such as internalization into the vacuole or exclusion from the cell, synthesis of enzymes or protective compounds against ROS, and the synthesis of metabolites that help to regulate the osmotic potential of plants. Physiologic and molecular mechanisms of salinity tolerance in plants will be addressed in this review. Furthermore, a revision of strategies taken by researchers to confer salt stress tolerance on agriculturally important species are discussed. These strategies include conventional breeding and genetic engineering as transgenesis and genome editing by CRISPR/Cas9.
Collapse
Affiliation(s)
- Efrain Hualpa-Ramirez
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | | | | - Ricardo Tejos
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Simón Ruiz-Lara
- Instituto de Ciencias Biológicas. Universidad de Talca, Talca, Chile
| | - Claudia Stange
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Lorena Norambuena
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Simpson CJC, Singh P, Sogbohossou DEO, Eric Schranz M, Hibberd JM. A rapid method to quantify vein density in C 4 plants using starch staining. PLANT, CELL & ENVIRONMENT 2023; 46:2928-2938. [PMID: 37350263 PMCID: PMC10947256 DOI: 10.1111/pce.14656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
C4 photosynthesis has evolved multiple times in the angiosperms and typically involves alterations to the biochemistry, cell biology and development of leaves. One common modification found in C4 plants compared with the ancestral C3 state is an increase in vein density such that the leaf contains a larger proportion of bundle sheath cells. Recent findings indicate that there may be significant intraspecific variation in traits such as vein density in C4 plants but to use such natural variation for trait-mapping, rapid phenotyping would be required. Here we report a high-throughput method to quantify vein density that leverages the bundle sheath-specific accumulation of starch found in C4 species. Starch staining allowed high-contrast images to be acquired permitting image analysis with MATLAB- and Python-based programmes. The method works for dicotyledons and monocotolydons. We applied this method to Gynandropsis gynandra where significant variation in vein density was detected between natural accessions, and Zea mays where no variation was apparent in the genotypically diverse lines assessed. We anticipate this approach will be useful to map genes controlling vein density in C4 species demonstrating natural variation for this trait.
Collapse
Affiliation(s)
| | - Pallavi Singh
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | | | - M. Eric Schranz
- Biosystematics GroupWageningen UniversityWageningenThe Netherlands
| | | |
Collapse
|
5
|
Sarkar B, Das A, Pal S, Kundu A, Hasanuzzaman M, Fujita M, Adak MK. Regulation of NADP-Malic Enzyme Activity in Maize ( Zea mays L.) under Salinity with Reference to Light and Darkness. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091836. [PMID: 37176895 PMCID: PMC10181391 DOI: 10.3390/plants12091836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
We revealed the functional characterization of C4-NADP-malic enzyme (NADP-ME), extracted and partially purified from maize (Zea mays L. cv. Kaveri 50). The leaf discs were previously activated under 1000-1200 µE m-2 s-1, incubated in bicarbonate (2.0 mM) solution, and subjected to salt stress (100 mM NaCl). Initially, salt stress was evident from the accumulations of proline, chlorophyll content, carbohydrate profile, and Hill activity influencing the C4 enzyme. Primarily, in illuminated tissues, the activity of the enzyme recorded a reduced trend through salinity irrespective of light and darkness compared to the control. On illumination, the kinetic parameters such as Vmax of the enzyme increased by 1.36-fold compared to in the dark under salinity whereas Km was decreased by 20% under the same condition. The extent of light induction was proportionate to limiting (0.01 mM) and saturated (4.0 mM) malate concentrations for enzyme activity. Moreover, the catalytic properties of the enzyme were also tested on concomitant responses to activator (citrate and succinate) and inhibitor (oxalate and pyruvate) residues. The sensitivity to light and dark effects was also tested for reducing agents such as dithiothreitol, suggesting the effect of the changes in redox on the regulatory properties of the enzyme. The ratio of enzyme activity under light and darkness in the presence or absence of a reducing agent was concomitantly increased with varying malate concentrations. At the molecular level, protein polymorphism of the enzyme represented minor variations in band intensities, however, not in numbers through salinity subjected to light and darkness. Therefore, salinity-induced changes in the decarboxylation reaction, evident by NADP-ME activity, may be based on the redox property of regulatory sites and sensitivity to light and darkness.
Collapse
Affiliation(s)
- Bipul Sarkar
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Abir Das
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sayan Pal
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Ankita Kundu
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Kita-Gun, Kagawa, Miki-cho 761-0795, Japan
| | - Malay Kumar Adak
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| |
Collapse
|
6
|
Cacefo V, Ribas AF, Vieira LGE. Proline metabolism as a mechanism for the energy dissipation in VaP5CSF129A transgenic tobacco plants under water deficit. JOURNAL OF PLANT PHYSIOLOGY 2023; 283:153964. [PMID: 36917876 DOI: 10.1016/j.jplph.2023.153964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
In plants, proline accumulation in cells is a common response to alleviate the stress caused by water deficits. It has been shown that foliar proline spraying, as well as its overaccumulation in transgenic plants can increase drought tolerance, as proline metabolism plays important roles in cell redox balance and on energy dissipation pathways. The aim of this work was to evaluate the role of exogenous proline application or its endogenous overproduction as a potential mechanism for energy dissipation. For this, wild-type and VaP5CSF129A transgenic tobacco plants were sprayed with proline (10 mM) and submitted to water deficit. Changes in plant physiology and biochemistry were evaluated. Transcriptional changes in the relative expression of genes involved in proline synthesis and catabolism, NAD (P)-dependent malate dehydrogenase (NAD(P)-MDH), alternative oxidase (AOX), and VaP5CSF129A transgene were measured. Exogenous proline reduced the negative effects of water deficit on photosynthetic activity in both genotypes; with the transgenic plants even less affected. Water deficit caused an increase in the relative expression of proline biosynthesis genes. On the other hand, the expression of catabolism genes decreased, primarily in transgenic plants. Exogenous proline reduced activity of the NADP-MDH enzyme and decreased expression of the AOX and NADP-MDH genes, mainly in transgenic plants under water stress. Finally, our results suggest that proline metabolism could act as a complementary/compensatory mechanism for the energy dissipation pathways in plants under water deficit.
Collapse
Affiliation(s)
- Viviane Cacefo
- Universidade do Oeste Paulista (UNOESTE), Pós Graduação em Produção Vegetal. Rodovia Raposo Tavares, Km 572, CEP 19067-175, Presidente Prudente, SP, Brazil; Universidade do Oeste Paulista (UNOESTE), Centro de Estudos em Ecofisiologia Vegetal do Oeste Paulista (CEVOP), Rodovia Raposo Tavares, Km 572, CEP 19067-175, Presidente Prudente, SP, Brazil.
| | - Alessandra Ferreira Ribas
- Universidade do Oeste Paulista (UNOESTE), Pós Graduação em Produção Vegetal. Rodovia Raposo Tavares, Km 572, CEP 19067-175, Presidente Prudente, SP, Brazil; Universidade Federal do Paraná (UFPR), Departamento de Fitotecnia e Fitossanidade, Rua dos Funcionários, 1540, Cabral, CEP 80035-050, Brazil.
| | - Luiz Gonzaga Esteves Vieira
- Universidade do Oeste Paulista (UNOESTE), Pós Graduação em Produção Vegetal. Rodovia Raposo Tavares, Km 572, CEP 19067-175, Presidente Prudente, SP, Brazil.
| |
Collapse
|
7
|
Chauhan PK, Upadhyay SK, Tripathi M, Singh R, Krishna D, Singh SK, Dwivedi P. Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and CRISPR/Cas9. Biotechnol Genet Eng Rev 2022:1-37. [PMID: 36254096 DOI: 10.1080/02648725.2022.2131958] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/19/2022] [Indexed: 01/09/2023]
Abstract
Soil salinity is a worldwide concern that decreases plant growth performance in agricultural fields and contributes to food scarcity. Salt stressors have adverse impacts on the plant's ionic, osmotic, and oxidative balance, as well as numerous physiological functions. Plants have a variety of coping strategies to deal with salt stress, including osmosensing, osmoregulation, ion-homeostasis, increased antioxidant synthesis, and so on. Not only does salt stress cause oxidative stress but also many types of stress do as well, thus plants have an effective antioxidant system to battle the negative effects of excessive reactive oxygen species produced as a result of stress. Rising salinity in the agricultural field affects crop productivity and plant development considerably; nevertheless, plants have a well-known copying mechanism that shields them from salt stress by facilitated production of secondary metabolites, antioxidants, ionhomeostasis, ABAbiosynthesis, and so on. To address this problem, various environment-friendly solutions such as salt-tolerant plant growth-promoting rhizobacteria, eco-friendly additives, and foliar applications of osmoprotectants/antioxidants are urgently needed. CRISPR/Cas9, a new genetic scissor, has recently been discovered to be an efficient approach for reducing salt stress in plants growing in saline soil. Understanding the processes underlying these physiological and biochemical responses to salt stress might lead to more effective crop yield control measures in the future. In order to address this information, the current review discusses recent advances in plant stress mechanisms against salinity stress-mediated antioxidant systems, as well as the development of appropriate long-term strategies for plant growth mediated by CRISPR/Cas9 techniques under salinity stress.
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. RamManohar Lohia Avadh University, Ayodhya, India
| | - Rajesh Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Deeksha Krishna
- College of agriculture, Fisheries and Forestry, Fiji National University, Fiji
| | - Sushil K Singh
- Department of Agri-Business, V.B.S. Purvanchal University, Jaunpur, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Shaebani Monazam A, Norouzian MA, Behgar M, Borzouei A, Karimzadeh H. Evaluating the role of gamma irradiation to ameliorate salt stress in corn. Int J Radiat Biol 2022; 99:523-533. [PMID: 35980744 DOI: 10.1080/09553002.2022.2110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
PURPOSE Salt stress is a significant issue in corn cultivation leading to corn yield reduction, especially in the arid and semi-arid regions. Nuclear technologies, along with other standard methods, can be used as an efficient method for mitigating salt stress effects on plants. MATERIALS AND METHODS In this research, gamma irradiation (GI) was studied on seeds in the salt stress amelioration of corn in laboratory and field conditions. A total of five doses of gamma rays (25, 50, 100, 150 and 200 Gy) were applied to corn seeds (SC.703) at the laboratory under saline and control conditions. The best gamma-ray treatment (25 Gy) was selected for studying corn under salt stress in the field condition. RESULTS The length of the radicle, seminal roots and shoot, dry weight of radicle, and seminal roots were affected by salt stress (p <.001). However, GI affected only the radicle and seminal root length (p < .001). The radicle length was decreased as much as 3, 11, 17, 25, and 27% in 25, 50, 100, 150 and 200 Gy of GI, respectively. In addition, the seminal root length was decreased in all GI treatments except 25 Gy (p < .05). Plants derived from seeds exposed to GI (25 Gy) had a higher chlorophyll content of 1, 17, and 29% at V3 (third leaf stage), R1 (silk stage, p < .001), and R4 (dough stage, p < .001), respectively. In GI treatment, the soluble carbohydrate content was significantly higher (p < .001) at all three measurement stages and the soluble protein was significantly higher (p < .001) only at the R4 stage. Moreover, proline content was higher in GI (25 Gy) at V3 (58%, p < .05) and R1 (98%, p < .001) treatment stages. CONCLUSION Since plants from gamma-irradiated seeds had a greater plant weight and their economic traits (cob and grain weight) were higher compared to control plants under salt stress conditions, it can be concluded that a low dose of GI may ameliorate the effect of salt stress on the corn plants.
Collapse
Affiliation(s)
| | | | - Mehdi Behgar
- Agricultural Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Azam Borzouei
- Agricultural Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Hedayat Karimzadeh
- Agricultural Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| |
Collapse
|
9
|
Takao K, Shirakura H, Hatakeyama Y, Ueno O. Salt stress induces Kranz anatomy and expression of C 4 photosynthetic enzymes in the amphibious sedge Eleocharis vivipara. PHOTOSYNTHESIS RESEARCH 2022; 153:93-102. [PMID: 35352232 DOI: 10.1007/s11120-022-00913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Eleocharis vivipara Link is a unique amphibious leafless plant of the Cyperaceae. The terrestrial form develops culms with Kranz anatomy and C4-like traits, while the submerged form does culms with non-Kranz anatomy and C3 traits. The submerged form develops new culms with C4-like mode when exposed to air or exogenous abscisic acid. In this study, we investigated whether salt stress (0.05-0.3 M NaCl) has a similar effect. When the submerged form was grown for one month in solutions of 0.1 M NaCl and more, culm growth was strongly suppressed. However, these plants slowly developed new culms that had Kranz anatomy with chloroplast-abundant Kranz bundle sheath cells. Although the culms of the submerged form had only few stomata, culms grown in the NaCl solution had many stomata. The NaCl-grown culms also accumulated large amounts of C4 photosynthetic enzymes (phosphoenolpyruvate carboxylase and pyruvate Pi dikinase), and the cellular localization patterns of these enzymes and ribulose 1,5-bisphosphate carboxylase/oxygenase were similar to those in terrestrial culms. Accumulation of C4 enzymes increased in mature culms of the submerged form (with non-Kranz anatomy) when exposed to 0.2 M NaCl solution for one week. These results suggest that salt stress induces development of Kranz anatomy and expression of C4 photosynthetic enzymes in the submerged C3 form of E. vivipara, whereas the anatomical and biochemical traits of C4 photosynthesis appear to be regulated independently.
Collapse
Affiliation(s)
- Kazuya Takao
- Graduate School of Bioresources and Environmental Sciences, Kyushu University, Motooka, Fukuoka, 819-0395, Japan
| | - Hiroko Shirakura
- School of Agriculture, Kyushu University, Motooka, Fukuoka, 819-0395, Japan
| | - Yuto Hatakeyama
- Graduate School of Bioresources and Environmental Sciences, Kyushu University, Motooka, Fukuoka, 819-0395, Japan
| | - Osamu Ueno
- Faculty of Agriculture, Kyushu University, Motooka, Fukuoka, 819-0395, Japan.
| |
Collapse
|
10
|
Song X, Li H, Song J, Chen W, Shi L. Biochar/vermicompost promotes Hybrid Pennisetum plant growth and soil enzyme activity in saline soils. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:96-110. [PMID: 35576892 DOI: 10.1016/j.plaphy.2022.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity has become a major threat to land degradation worldwide. The application of organic amendments is a promising alternative to restore salt-degraded soils and alleviate the deleterious effects of soil salt ions on crop growth and productivity. The aim of present study was to explore the potential impact of biochar and vermicompost, applied individually or in combination, on soil enzyme activity and the growth, yield and quality of Hybrid Pennisetum plants suffered moderate salt stress (5.0 g kg-1 NaCl in the soil). Our results showed that biochar and/or vermicompost promoted Na+ exclusion and K+ accumulation, relieved stomatal limitation, increased leaf pigment contents, enhanced electron transport efficiency and net photosynthesis, improved root activity, and minimized the oxidative damage in Hybrid Pennisetum caused by soil salinity stress. In addition, soil enzymes were also activated by biochar and vermicompost. These amendments increased the biomass and crude protein content, and decreased the acid detergent fiber and neutral detergent fiber contents in salt-stressed Hybrid Pennisetum. Biochar and vermicompost addition increased the biomass and quality of Hybrid Pennisetum due to the direct effects related to plant growth parameters and the indirect effects via soil enzyme activity. Finally, among the different treatments, the use of vermicompost showed better results than biochar alone or the biochar-compost combination did, suggesting that the addition of vermicompost to the soil is an effective and valuable method for reclamation of salt-affected soils.
Collapse
Affiliation(s)
- Xiliang Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Haibin Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Jiaxuan Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Weifeng Chen
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Lianhui Shi
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
11
|
Simpson CJC, Reeves G, Tripathi A, Singh P, Hibberd JM. Using breeding and quantitative genetics to understand the C4 pathway. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3072-3084. [PMID: 34747993 PMCID: PMC9126733 DOI: 10.1093/jxb/erab486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/03/2021] [Indexed: 05/09/2023]
Abstract
Reducing photorespiration in C3 crops could significantly increase rates of photosynthesis and yield. One method to achieve this would be to integrate C4 photosynthesis into C3 species. This objective is challenging as it involves engineering incompletely understood traits into C3 leaves, including complex changes to their biochemistry, cell biology, and anatomy. Quantitative genetics and selective breeding offer underexplored routes to identify regulators of these processes. We first review examples of natural intraspecific variation in C4 photosynthesis as well as the potential for hybridization between C3 and C4 species. We then discuss how quantitative genetic approaches including artificial selection and genome-wide association could be used to better understand the C4 syndrome and in so doing guide the engineering of the C4 pathway into C3 crops.
Collapse
Affiliation(s)
- Conor J C Simpson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Gregory Reeves
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Anoop Tripathi
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Pallavi Singh
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Correspondence:
| |
Collapse
|
12
|
Huqe MAS, Haque MS, Sagar A, Uddin MN, Hossain MA, Hossain AKMZ, Rahman MM, Wang X, Al-Ashkar I, Ueda A, EL Sabagh A. Characterization of Maize Hybrids ( Zea mays L.) for Detecting Salt Tolerance Based on Morpho-Physiological Characteristics, Ion Accumulation and Genetic Variability at Early Vegetative Stage. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112549. [PMID: 34834912 PMCID: PMC8623748 DOI: 10.3390/plants10112549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 05/22/2023]
Abstract
Increasing soil salinity due to global warming severely restricts crop growth and yield. To select and recommend salt-tolerant cultivars, extensive genotypic screening and examination of plants' morpho-physiological responses to salt stress are required. In this study, 18 prescreened maize hybrid cultivars were examined at the early growth stage under a hydroponic system using multivariate analysis to demonstrate the genotypic and phenotypic variations of the selected cultivars under salt stress. The seedlings of all maize cultivars were evaluated with two salt levels: control (without NaCl) and salt stress (12 dS m-1 simulated with NaCl) for 28 d. A total of 18 morpho-physiological and ion accumulation traits were dissected using multivariate analysis, and salt tolerance index (STI) values of the examined traits were evaluated for grouping of cultivars into salt-tolerant and -sensitive groups. Salt stress significantly declined all measured traits except root-shoot ratio (RSR), while the cultivars responded differently. The cultivars were grouped into three clusters and the cultivars in Cluster-1 such as Prabhat, UniGreen NK41, Bisco 51, UniGreen UB100, Bharati 981 and Star Beej 7Star exhibited salt tolerance to a greater extent, accounting for higher STI in comparison to other cultivars grouped in Cluster-2 and Cluster-3. The high heritability (h2bs, >60%) and genetic advance (GAM, >20%) were recorded in 13 measured traits, indicating considerable genetic variations present in these traits. Therefore, using multivariate analysis based on the measured traits, six hybrid maize cultivars were selected as salt-tolerant and some traits such as Total Fresh Weight (TFW), Total Dry Weight (TDW), Total Na+, Total K+ contents and K+-Na+ Ratio could be effectively used for the selection criteria evaluating salt-tolerant maize genotypes at the early seedling stage.
Collapse
Affiliation(s)
- Md Al Samsul Huqe
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - Md Sabibul Haque
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
- Correspondence: (M.S.H.); (X.W.); (A.E.S.)
| | - Ashaduzzaman Sagar
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - Md Nesar Uddin
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - Md Alamgir Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - AKM Zakir Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - Md Mustafizur Rahman
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - Xiukang Wang
- Department of Biology, College of Life Sciences, Yan’an University, Yan’an 716000, China
- Correspondence: (M.S.H.); (X.W.); (A.E.S.)
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Akihiro Ueda
- Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan;
| | - Ayman EL Sabagh
- Agronomy Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence: (M.S.H.); (X.W.); (A.E.S.)
| |
Collapse
|
13
|
Hameed A, Ahmed MZ, Hussain T, Aziz I, Ahmad N, Gul B, Nielsen BL. Effects of Salinity Stress on Chloroplast Structure and Function. Cells 2021; 10:2023. [PMID: 34440792 PMCID: PMC8395010 DOI: 10.3390/cells10082023] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Salinity is a growing problem affecting soils and agriculture in many parts of the world. The presence of salt in plant cells disrupts many basic metabolic processes, contributing to severe negative effects on plant development and growth. This review focuses on the effects of salinity on chloroplasts, including the structures and function of these organelles. Chloroplasts house various important biochemical reactions, including photosynthesis, most of which are considered essential for plant survival. Salinity can affect these reactions in a number of ways, for example, by changing the chloroplast size, number, lamellar organization, lipid and starch accumulation, and interfering with cross-membrane transportation. Research has shown that maintenance of the normal chloroplast physiology is necessary for the survival of the entire plant. Many plant species have evolved different mechanisms to withstand the harmful effects of salt-induced toxicity on their chloroplasts and its machinery. The differences depend on the plant species and growth stage and can be quite different between salt-sensitive (glycophyte) and salt-tolerant (halophyte) plants. Salt stress tolerance is a complex trait, and many aspects of salt tolerance in plants are not entirely clear yet. In this review, we discuss the different mechanisms of salt stress tolerance in plants with a special focus on chloroplast structure and its functions, including the underlying differences between glycophytes and halophytes.
Collapse
Affiliation(s)
- Abdul Hameed
- Dr. M. Ajmal Khan Institute for Sustainable Halophyte Utilization, University of Karachi, Sindh 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (I.A.); (B.G.)
| | - Muhammad Zaheer Ahmed
- Dr. M. Ajmal Khan Institute for Sustainable Halophyte Utilization, University of Karachi, Sindh 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (I.A.); (B.G.)
| | - Tabassum Hussain
- Dr. M. Ajmal Khan Institute for Sustainable Halophyte Utilization, University of Karachi, Sindh 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (I.A.); (B.G.)
| | - Irfan Aziz
- Dr. M. Ajmal Khan Institute for Sustainable Halophyte Utilization, University of Karachi, Sindh 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (I.A.); (B.G.)
| | - Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad 44000, Pakistan;
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Science (PIEAS), Islamabad 44000, Pakistan
| | - Bilquees Gul
- Dr. M. Ajmal Khan Institute for Sustainable Halophyte Utilization, University of Karachi, Sindh 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (I.A.); (B.G.)
| | - Brent L. Nielsen
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
14
|
Stefanov MA, Rashkov GD, Yotsova EK, Borisova PB, Dobrikova AG, Apostolova EL. Different Sensitivity Levels of the Photosynthetic Apparatus in Zea mays L. and Sorghum bicolor L. under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071469. [PMID: 34371672 PMCID: PMC8309219 DOI: 10.3390/plants10071469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 05/17/2023]
Abstract
The impacts of different NaCl concentrations (0-250 mM) on the photosynthesis of new hybrid lines of maize (Zea mays L. Kerala) and sorghum (Sorghum bicolor L. Shamal) were investigated. Salt-induced changes in the functions of photosynthetic apparatus were assessed using chlorophyll a fluorescence (PAM and OJIP test) and P700 photooxidation. Greater differences between the studied species in response to salinization were observed at 150 mM and 200 mM NaCl. The data revealed the stronger influence of maize in comparison to sorghum on the amount of closed PSII centers (1-qp) and their efficiency (Φexc), as well as on the effective quantum yield of the photochemical energy conversion of PSII (ΦPSII). Changes in the effective antenna size of PSII (ABS/RC), the electron flux per active reaction center (REo/RC) and the electron transport flux further QA (ETo/RC) were also registered. These changes in primary PSII photochemistry influenced the electron transport rate (ETR) and photosynthetic rate (parameter RFd), with the impacts being stronger in maize than sorghum. Moreover, the lowering of the electron transport rate from QA to the PSI end electron acceptors (REo/RC) and the probability of their reduction (φRo) altered the PSI photochemical activity, which influenced photooxidation of P700 and its decay kinetics. The pigment content and stress markers of oxidative damage were also determined. The data revealed a better salt tolerance of sorghum than maize, associated with the structural alterations in the photosynthetic membranes and the stimulation of the cyclic electron flow around PSI at higher NaCl concentrations. The relationships between the decreased pigment content, increased levels of stress markers and different inhibition levels of the function of both photosystems are discussed.
Collapse
|
15
|
Ullah A, Bano A, Khan N. Climate Change and Salinity Effects on Crops and Chemical Communication Between Plants and Plant Growth-Promoting Microorganisms Under Stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.618092] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
During the last two decades the world has experienced an abrupt change in climate. Both natural and artificial factors are climate change drivers, although the effect of natural factors are lesser than the anthropogenic drivers. These factors have changed the pattern of precipitation resulting in a rise in sea levels, changes in evapotranspiration, occurrence of flood overwintering of pathogens, increased resistance of pests and parasites, and reduced productivity of plants. Although excess CO2 promotes growth of C3 plants, high temperatures reduce the yield of important agricultural crops due to high evapotranspiration. These two factors have an impact on soil salinization and agriculture production, leading to the issue of water and food security. Farmers have adopted different strategies to cope with agriculture production in saline and saline sodic soil. Recently the inoculation of halotolerant plant growth promoting rhizobacteria (PGPR) in saline fields is an environmentally friendly and sustainable approach to overcome salinity and promote crop growth and yield in saline and saline sodic soil. These halotolerant bacteria synthesize certain metabolites which help crops in adopting a saline condition and promote their growth without any negative effects. There is a complex interkingdom signaling between host and microbes for mutual interaction, which is also influenced by environmental factors. For mutual survival, nature induces a strong positive relationship between host and microbes in the rhizosphere. Commercialization of such PGPR in the form of biofertilizers, biostimulants, and biopower are needed to build climate resilience in agriculture. The production of phytohormones, particularly auxins, have been demonstrated by PGPR, even the pathogenic bacteria and fungi which also modulate the endogenous level of auxins in plants, subsequently enhancing plant resistance to various stresses. The present review focuses on plant-microbe communication and elaborates on their role in plant tolerance under changing climatic conditions.
Collapse
|
16
|
Wang J, Gao H, Guo Z, Meng Y, Yang M, Li X, Yang Q. Adaptation responses in C 4 photosynthesis of sweet maize (Zea mays L.) exposed to nicosulfuron. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112096. [PMID: 33647854 DOI: 10.1016/j.ecoenv.2021.112096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Nicosulfuron is an ingredient in photosynthesis-inhibiting herbicides and has been widely used in corn post-emergence weed control. In the current study, a pair of sister lines, HK301 (nicosulfuron-tolerence, NT) and HK320 (nicosulfuron-sensitive, NS), was used to study the effect of nicosulfuron in sweet maize seedlings on C4 photosynthetic enzymes and non-enzymatic substances, expression levels of key enzymes, and chloroplast structure. Nicosulfuron was sprayed at the four-leaf stage, and water was sprayed as a control. After nicosulfuron treatment, phosphoenolpyruvate carboxylase (PEPC), NADP-malic dehydrogenase (NADP-MDH), NADP-malic enzyme (NADP-ME), pyruvate orthophosphate dikinase (PPDK), and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activities of NT were significantly higher than those of NS. Compared to NT, malate, oxaloacetic acid, and pyruvic acid significantly decreased as exposure time increased in NS. Compared to NS, nicosulfuron treatment significantly increased the expression levels of PEPC, NADP-MDH, NADP-ME, PPDK, and Rubisco genes in NT. Under nicosulfuron treatment, chloroplast ultrastructure of NS, compared to that of NT, nicosulfuron induced swelling of the chloroplast volume and reduced starch granules in NS. In general, our results indicate that in different resistant sweet maize, C4 photosynthetic enzymes activity and key genes expression play a critical role in enhancing the adaptability of plants to nicosulfuron stress at a photosynthetic physiological level.
Collapse
Affiliation(s)
- Jian Wang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao 066000, Hebei Province, China.
| | - Hui Gao
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao 066000, Hebei Province, China
| | - Zhenqing Guo
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao 066000, Hebei Province, China
| | - Yanyu Meng
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao 066000, Hebei Province, China
| | - Min Yang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao 066000, Hebei Province, China
| | - Xiangling Li
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao 066000, Hebei Province, China
| | - Qing Yang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao 066000, Hebei Province, China.
| |
Collapse
|
17
|
Chiconato DA, de Santana Costa MG, Balbuena TS, Munns R, Dos Santos DMM. Proteomic analysis of young sugarcane plants with contrasting salt tolerance. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:588-596. [PMID: 33581744 DOI: 10.1071/fp20314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/19/2021] [Indexed: 05/20/2023]
Abstract
Soil salinity affects sugarcane (Saccharum officinale L.) production in arid and semiarid climates, severely reducing productivity. This study aimed to identify differentially regulated proteins in two cultivars that differ markedly in tolerance of saline soil. Plants were grown for 30 days and then subjected to treatments of 0 and 160 mM NaCl for 15 days. The tolerant cultivar showed a 3-fold upregulation of lipid metabolising enzymes, GDSL-motif lipases, which are associated with defence to abiotic stress, and which were not upregulated in the sensitive cultivar. Lipoxygenase was 2-fold upregulated in the tolerant cultivar but not in the sensitive cultivar, as were Type III chlorophyll a/b binding proteins. Other differences were that in the sensitive cultivar, the key enzyme of C4 photosynthesis, phosphoenolpyruvate carboxylase was downregulated, along with other chloroplast enzymes. Na+ concentrations had not reached toxic concentrations in either cultivar by this time of exposure to salt, so these changes would be in response to the osmotic effect of the soil salinity, and likely be in common with plants undergoing drought stress.
Collapse
Affiliation(s)
- Denise A Chiconato
- Department of Biologia Aplicada à Agropecuária, Universidade Estadual Paulista 'Julio de Mesquita Filho', 14884-900 Jaboticabal, SP, Brasil; and CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Marília G de Santana Costa
- Department of Tecnologia, Universidade Estadual Paulista 'Julio de Mesquita Filho', 14884-900 Jaboticabal, SP, Brasil
| | - Tiago S Balbuena
- Department of Tecnologia, Universidade Estadual Paulista 'Julio de Mesquita Filho', 14884-900 Jaboticabal, SP, Brasil
| | - Rana Munns
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia; and School of Agriculture and Environment, and ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA 6009, Australia; and Corresponding author.
| | - Durvalina M M Dos Santos
- Department of Biologia Aplicada à Agropecuária, Universidade Estadual Paulista 'Julio de Mesquita Filho', 14884-900 Jaboticabal, SP, Brasil
| |
Collapse
|
18
|
Sun Q, Yamada T, Han Y, Takano T. Influence of salt stress on C 4 photosynthesis in Miscanthus sinensis Anderss. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:44-56. [PMID: 33030790 DOI: 10.1111/plb.13192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Miscanthus sinensis Anderss. is a good candidate for C4 bioenergy crop development for marginal lands. As one of the characteristics of marginal lands, salinization is a major limitation to agricultural production. The present work aimed to investigate the possible factors involved in the tolerance of M. sinensis C4 photosynthesis to salinity stress. Seedlings of two accessions (salt-tolerant 'JM0119' and salt-sensitive 'JM0099') were subjected to 0 mm NaCl (control) or 250 mm NaCl (salt stress treatment) for 2 weeks. The chlorophyll content, parameters of photosynthesis and chlorophyll a fluorescence, activity of C4 enzymes and expression of C4 genes were measured. The results showed that photosynthesis rate, transpiration rate, chlorophyll content, PSII operating efficiency, coefficient of photochemical quenching, activity of phosphoenolpyruvate carboxylase (PEPC) and pyruvate, orthophosphate dikinase (PPDK) and gene expression of PEPC and PPDK under salinity were higher after long-term salinity exposure in 'JM0119' than in 'JM0099', while activity of NADP-malate dehydrogenase (NADP-MDH) and NADP-malic enzyme (NADP-ME), together with expression of NADP-MDH and NADP-ME, were much higher in 'JM0099' than in 'JM0119'. In conclusion, the increased photosynthetic capacity under long-term salt stress in the salt-tolerant relative to the salt-sensitive M. sinensis accession was mainly associated with non-stomatal factors, such as reduced chlorophyll loss, higher PSII operating efficiency, enhanced activity of PEPC and PPDK and relatively lower activity of NADP-ME.
Collapse
Affiliation(s)
- Q Sun
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Tokyo, Japan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - T Yamada
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Y Han
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - T Takano
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Yadav RK, Chatrath A, Tripathi K, Gerard M, Ahmad A, Mishra V, Abraham G. Salinity tolerance mechanism in the aquatic nitrogen fixing pteridophyte Azolla: a review. Symbiosis 2020. [DOI: 10.1007/s13199-020-00736-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Zhang J, Li S, Cai Q, Wang Z, Cao J, Yu T, Xie T. Exogenous diethyl aminoethyl hexanoate ameliorates low temperature stress by improving nitrogen metabolism in maize seedlings. PLoS One 2020; 15:e0232294. [PMID: 32353025 PMCID: PMC7192554 DOI: 10.1371/journal.pone.0232294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/11/2020] [Indexed: 01/24/2023] Open
Abstract
Spring maize sowing occurs during a period of low temperature (LT) in Northeast
China, and the LT suppresses nitrogen (N) metabolism and photosynthesis, further
reducing dry matter accumulation. Diethyl aminoethyl hexanoate (DA-6) improves N
metabolism; hence, we studied the effects of DA-6 on maize seedlings under LT
conditions. The shoot and root fresh weight and dry weight decreased by
17.70%~20.82% in the LT treatment, and decreased by 5.81%~13.57% in the LT +
DA-6 treatment on the 7th day, respectively. Exogenous DA-6
suppressed the increases in ammonium (NH4+) content and
glutamate dehydrogenase (GDH) activity, and suppressed the decreases in nitrate
(NO3–) and nitrite (NO2–)
contents, and activities of nitrate reductase (NR), nitrite reductase (NiR),
glutamine synthetase (GS), glutamate synthase (GOGAT) and transaminase
activities. NiR activity was most affected by DA-6 under LT conditions.
Additionally, exogenous DA-6 suppressed the net photosynthetic rate (Pn)
decrease, and the suppressed the increases of superoxide anion radical
(O2·−) generation rate and hydrogen peroxide
(H2O2) content. Taken together, our results suggest
that exogenous DA-6 mitigated the repressive effects of LT on N metabolism by
improving photosynthesis and modulating oxygen metabolism, and subsequently
enhanced the LT tolerance of maize seedlings.
Collapse
Affiliation(s)
- Jianguo Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, P.R.
China
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences,
Harbin, P.R. China
| | - Shujun Li
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences,
Harbin, P.R. China
| | - Quan Cai
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences,
Harbin, P.R. China
| | - Zhenhua Wang
- College of Agriculture, Northeast Agricultural University, Harbin, P.R.
China
- * E-mail:
| | - Jingsheng Cao
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences,
Harbin, P.R. China
| | - Tao Yu
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences,
Harbin, P.R. China
| | - Tenglong Xie
- College of Agriculture, Northeast Agricultural University, Harbin, P.R.
China
| |
Collapse
|
21
|
Feng L, Raza MA, Chen Y, Khalid MHB, Meraj TA, Ahsan F, Fan Y, Du J, Wu X, Song C, Liu C, Bawa G, Zhang Z, Yuan S, Yang F, Yang W. Narrow-wide row planting pattern improves the light environment and seed yields of intercrop species in relay intercropping system. PLoS One 2019; 14:e0212885. [PMID: 30807607 PMCID: PMC6391028 DOI: 10.1371/journal.pone.0212885] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/11/2019] [Indexed: 11/18/2022] Open
Abstract
Different planting patterns affect the light interception of intercrops under intercropping conditions. Here we revealed that narrow-wide-row relay-intercropping improves the light interception across maize leaves in wide rows (60cm) and narrow rows (40cm), accelerated the biomass production of intercrop-species and compensated the slight maize yield loss by considerably increasing the soybean yield. In a two-year experiment, maize was planted with soybean in different planting patterns (1M1S, 50:50cm and 2M2S, 40:60cm) of relay-intercropping, both planting patterns were compared with sole cropping of maize (M) and soybean (S). As compared to M and 1M1S, 2M2S increased the total light interception of maize leaves in wide rows (WR) by 27% and 23%, 20% and 10%, 16% and 9% which in turn significantly enhanced the photosynthetic rate of WR maize leaves by 7% and 5%, 12% and 9%, and 19% and 4%, at tasseling, grain-filling and maturity stage of maize, respectively. Similarly, the light transmittance at soybean canopy increased by 218%, 160% and 172% at V2, V5 and R1 stage in 2M2S compared with 1M1S. The improved light environment at soybean canopy in 2M2S considerably enhanced the mean biomass accumulation, and allocation to stem and leaves of soybean by 168%, and 131% and 207%, respectively, while it decreased the mean biomass accumulation, and distribution to stem, leaves and seed of maize by 4%, and 4%, 6% and 5%, respectively than 1M1S. Compared to 1M1S, 2M2S also increased the CR values of soybean (by 157%) but decreased the CR values of maize (by 61%). Overall, under 2M2S, relay-cropped maize and soybean produced 94% and 69% of the sole cropping yield, and the 2M2S achieved LER of 1.7 with net income of 1387.7 US $ ha-1 in 2016 and 1434.4 US $ ha-1 in 2017. Our findings implied that selection of optimum planting pattern (2M2S) may increase the light interception and influence the light distribution between maize and soybean rows under relay-intercropping conditions which will significantly increase the intercrops productivity. Therefore, more attention should be paid to the light environment when considering the sustainability of maize-soybean relay-intercropping via appropriate planting pattern selection.
Collapse
Affiliation(s)
- Lingyang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Yuankai Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Muhammad Hayder Bin Khalid
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Tehseen Ahmad Meraj
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Faiza Ahsan
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuanfang Fan
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Xiaoling Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Chun Song
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Chuanyan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - George Bawa
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Zhongwei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| |
Collapse
|
22
|
Xie T, Gu W, Meng Y, Li J, Li L, Wang Y, Qu D, Wei S. Exogenous DCPTA Ameliorates Simulated Drought Conditions by Improving the Growth and Photosynthetic Capacity of Maize Seedlings. Sci Rep 2017; 7:12684. [PMID: 28978944 PMCID: PMC5627246 DOI: 10.1038/s41598-017-12977-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/13/2017] [Indexed: 11/09/2022] Open
Abstract
Previous reports have indicated that 2-(3,4-dichlorophenoxy)triethylamine (DCPTA) can promote the growth and photosynthetic capacity of plants. However, only a small number of these studies have focused on crops, and few reports have focused on whether DCPTA affects stress tolerance. In this study, maize (Zea mays L.) seedlings were pretreated with or without DCPTA and then exposed to drought stress in a controlled growth room for 7 days, and the growth and photosynthesis indexes of the seedlings were investigated. The DCPTA treatment partly counteracted the observed decreases in biomass, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), effective photochemical efficiency of photosystem II (ΦPSII), maximum photochemical efficiency of PSII (Fv/Fm), non-photochemical quenching (NPQ), and photosynthetic pigment content and increased the minimal fluorescence (Fo) induced by drought stress. The DCPTA treatment also alleviated the damage induced by drought stress in the photosynthetic apparatus. In addition, DCPTA pretreatment simultaneously increased the root size (e.g., the length, surface area, and volume) and root hydraulic conductivity, which promoted the maintenance of higher relative leaf water contents (RLWCs) under stress conditions. These results indicate that exogenous DCPTA ameliorates simulated drought conditions by improving the growth and photosynthetic capacity of maize seedlings.
Collapse
Affiliation(s)
- Tenglong Xie
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Wanrong Gu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, P.R. China. .,The Observation Experiment Station of the Ministry of Agriculture for Crop Cultivation Science in Northeast Area, Harbin, 150030, P.R. China.
| | - Yao Meng
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150030, P.R. China
| | - Jing Li
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, P.R. China.,The Observation Experiment Station of the Ministry of Agriculture for Crop Cultivation Science in Northeast Area, Harbin, 150030, P.R. China
| | - Lijie Li
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Yongchao Wang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Danyang Qu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Shi Wei
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, P.R. China.,The Observation Experiment Station of the Ministry of Agriculture for Crop Cultivation Science in Northeast Area, Harbin, 150030, P.R. China
| |
Collapse
|
23
|
Wang Y, Gu W, Meng Y, Xie T, Li L, Li J, Wei S. γ-Aminobutyric Acid Imparts Partial Protection from Salt Stress Injury to Maize Seedlings by Improving Photosynthesis and Upregulating Osmoprotectants and Antioxidants. Sci Rep 2017; 7:43609. [PMID: 28272438 PMCID: PMC5341084 DOI: 10.1038/srep43609] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 01/30/2017] [Indexed: 11/09/2022] Open
Abstract
γ-Aminobutyric acid (GABA) has high physiological activity in plant stress physiology. This study showed that the application of exogenous GABA by root drenching to moderately (MS, 150 mM salt concentration) and severely salt-stressed (SS, 300 mM salt concentration) plants significantly increased endogenous GABA concentration and improved maize seedling growth but decreased glutamate decarboxylase (GAD) activity compared with non-treated ones. Exogenous GABA alleviated damage to membranes, increased in proline and soluble sugar content in leaves, and reduced water loss. After the application of GABA, maize seedling leaves suffered less oxidative damage in terms of superoxide anion (O2·-) and malondialdehyde (MDA) content. GABA-treated MS and SS maize seedlings showed increased enzymatic antioxidant activity compared with that of untreated controls, and GABA-treated MS maize seedlings had a greater increase in enzymatic antioxidant activity than SS maize seedlings. Salt stress severely damaged cell function and inhibited photosynthesis, especially in SS maize seedlings. Exogenous GABA application could reduce the accumulation of harmful substances, help maintain cell morphology, and improve the function of cells during salt stress. These effects could reduce the damage to the photosynthetic system from salt stress and improve photosynthesis and chlorophyll fluorescence parameters. GABA enhanced the salt tolerance of maize seedlings.
Collapse
Affiliation(s)
- Yongchao Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Wanrong Gu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, P.R. China.,The Observation Experiment Station of Ministry of Agriculture for Crop Cultivation Science in Northeast Area, Harbin 150030, P.R. China
| | - Yao Meng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, P.R. China.,Heilongjiang Academy of Land Reclamation Sciences, Harbin 100030, P.R. China
| | - Tenglong Xie
- College of Agriculture, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Lijie Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jing Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, P.R. China.,The Observation Experiment Station of Ministry of Agriculture for Crop Cultivation Science in Northeast Area, Harbin 150030, P.R. China
| | - Shi Wei
- College of Agriculture, Northeast Agricultural University, Harbin 150030, P.R. China.,The Observation Experiment Station of Ministry of Agriculture for Crop Cultivation Science in Northeast Area, Harbin 150030, P.R. China
| |
Collapse
|
24
|
Guo R, Shi L, Yan C, Zhong X, Gu F, Liu Q, Xia X, Li H. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC PLANT BIOLOGY 2017; 17:41. [PMID: 28187710 PMCID: PMC5301417 DOI: 10.1186/s12870-017-0994-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/31/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO3, Na2SO4, and Na2CO3. RESULTS We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. CONCLUSIONS These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.
Collapse
Affiliation(s)
- Rui Guo
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS) / Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, 100081 People’s Republic of China
| | - LianXuan Shi
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024 China
| | - Changrong Yan
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS) / Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, 100081 People’s Republic of China
| | - Xiuli Zhong
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS) / Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, 100081 People’s Republic of China
| | - FengXue Gu
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS) / Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, 100081 People’s Republic of China
| | - Qi Liu
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS) / Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, 100081 People’s Republic of China
| | - Xu Xia
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS) / Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, 100081 People’s Republic of China
| | - Haoru Li
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS) / Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, 100081 People’s Republic of China
| |
Collapse
|
25
|
Chandrasekaran M, Kim K, Krishnamoorthy R, Walitang D, Sundaram S, Joe MM, Selvakumar G, Hu S, Oh SH, Sa T. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress - A Meta-Analysis. Front Microbiol 2016; 7:1246. [PMID: 27563299 PMCID: PMC4981042 DOI: 10.3389/fmicb.2016.01246] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/27/2016] [Indexed: 01/07/2023] Open
Abstract
A wide range of C3 and C4 plant species could acclimatize and grow under the impact of salinity stress. Symbiotic relationship between plant roots and arbuscular mycorrhizal fungi (AMF) are widespread and are well known to ameliorate the influence of salinity stress on agro-ecosystem. In the present study, we sought to understand the phenomenon of variability on AMF symbiotic relationship on saline stress amelioration in C3 and C4 plants. Thus, the objective was to compare varied mycorrhizal symbiotic relationship between C3 and C4 plants in saline conditions. To accomplish the above mentioned objective, we conducted a random effects models meta-analysis across 60 published studies. An effect size was calculated as the difference in mycorrhizal responses between the AMF inoculated plants and its corresponding control under saline conditions. Responses were compared between (i) identity of AMF species and AMF inoculation, (ii) identity of host plants (C3 vs. C4) and plant functional groups, (iii) soil texture and level of salinity and (iv) experimental condition (greenhouse vs. field). Results indicate that both C3 and C4 plants under saline condition responded positively to AMF inoculation, thereby overcoming the predicted effects of symbiotic efficiency. Although C3 and C4 plants showed positive effects under low (EC < 4 ds/m) and high (>8 ds/m) saline conditions, C3 plants showed significant effects for mycorrhizal inoculation over C4 plants. Among the plant types, C4 annual and perennial plants, C4 herbs and C4 dicot had a significant effect over other counterparts. Between single and mixed AMF inoculants, single inoculants Rhizophagus irregularis had a positive effect on C3 plants whereas Funneliformis mosseae had a positive effect on C4 plants than other species. In all of the observed studies, mycorrhizal inoculation showed positive effects on shoot, root and total biomass, and in nitrogen, phosphorous and potassium (K) uptake. However, it showed negative effects in sodium (Na) uptake in both C3 and C4 plants. This influence, owing to mycorrhizal inoculation, was significantly higher in K uptake in C4 plants. For our analysis, we concluded that AMF-inoculated C4 plants showed more competitive K+ ions uptake than C3 plants. Therefore, maintenance of high cytosolic K+/Na+ ratio is a key feature of plant salt tolerance. Studies on the detailed mechanism for the selective transport of K in C3 and C4 mycorrhizal plants under salt stress is lacking, and this needs to be explored.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, South Korea
| | - Kiyoon Kim
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, South Korea
| | - Ramasamy Krishnamoorthy
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, South Korea
| | - Denver Walitang
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, South Korea
| | - Subbiah Sundaram
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, South Korea
| | - Manoharan M Joe
- Department of Environmental and Biological Chemistry, Chungbuk National UniversityCheongju, South Korea; Department of Microbiology, School of Life Sciences, Vels UniversityChennai, India
| | - Gopal Selvakumar
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, South Korea
| | - Shuijin Hu
- Department of Plant Pathology, North Carolina State University, Raleigh NC, USA
| | - Sang-Hyon Oh
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro NC, USA
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, South Korea
| |
Collapse
|
26
|
Cao J, Wang L, Lan H. Validation of reference genes for quantitative RT-PCR normalization in Suaeda aralocaspica, an annual halophyte with heteromorphism and C4 pathway without Kranz anatomy. PeerJ 2016; 4:e1697. [PMID: 26893974 PMCID: PMC4756755 DOI: 10.7717/peerj.1697] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/26/2016] [Indexed: 01/08/2023] Open
Abstract
Reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful analytical technique for the measurement of gene expression, which depends on the stability of the reference gene used for data normalization. Suaeda aralocaspica, an annual halophyte with heteromorphic seeds and possessing C4 photosynthesis pathway without Kranz anatomy, is an ideal plant species to identify stress tolerance-related genes and compare relative expression at transcriptional level. So far, no molecular information is available for this species. In the present study, six traditionally used reference genes were selected and their expression stability in two types of seeds of S. aralocaspica under different experimental conditions was evaluated. Three analytical programs, geNorm, NormFinder and BestKeeper, were used to assess and rank the stability of reference gene expression. Results revealed that although some reference genes may display different transcriptional profiles between the two types of seeds, β-TUB and GAPDH appeared to be the most suitable references under different developmental stages and tissues. GAPDH was the appropriate reference gene under different germination time points and salt stress conditions, and ACTIN was suitable for various abiotic stress treatments for the two types of seeds. For all the sample pools, β-TUB served as the most stable reference gene, whereas 18S rRNA and 28S rRNA performed poorly and presented as the least stable genes in our study. UBQ seemed to be unsuitable as internal control under different salt treatments. In addition, the expression of a photosynthesis-related gene (PPDK) of C4 pathway and a salt tolerance-related gene (SAT) of S. aralocaspica were used to validate the best performance reference genes. This is the first systematic comparison of reference gene selection for qRT-PCR work in S. aralocaspica and these data will facilitate further studies on gene expression in this species and other euhalophytes.
Collapse
Affiliation(s)
- Jing Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University , Urumqi , China
| | - Lu Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University , Urumqi , China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University , Urumqi , China
| |
Collapse
|
27
|
Joaquín-Ramos A, Huerta-Ocampo JÁ, Barrera-Pacheco A, De León-Rodríguez A, Baginsky S, Barba de la Rosa AP. Comparative proteomic analysis of amaranth mesophyll and bundle sheath chloroplasts and their adaptation to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1423-1435. [PMID: 25046763 DOI: 10.1016/j.jplph.2014.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
The effect of salt stress was analyzed in chloroplasts of Amaranthus cruentus var. Amaranteca, a plant NAD-malic enzyme (NAD-ME) type. Morphology of chloroplasts from bundle sheath (BSC) and mesophyll (MC) was observed by transmission electron microscopy (TEM). BSC and MC from control plants showed similar morphology, however under stress, changes in BSC were observed. The presence of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) was confirmed by immunohistochemical staining in both types of chloroplasts. Proteomic profiles of thylakoid protein complexes from BSC and MC, and their changes induced by salt stress were analyzed by blue-native polyacrylamide gel electrophoresis followed by SDS-PAGE (2-D BN/SDS-PAGE). Differentially accumulated protein spots were analyzed by LC-MS/MS. Although A. cruentus photosynthetic tissue showed the Kranz anatomy, the thylakoid proteins showed some differences at photosystem structure level. Our results suggest that A. cruentus var. Amaranteca could be better classified as a C3-C4 photosynthetic plant.
Collapse
Affiliation(s)
- Ahuitzolt Joaquín-Ramos
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, Mexico
| | - José Á Huerta-Ocampo
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, Mexico
| | - Alberto Barrera-Pacheco
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, Mexico
| | - Antonio De León-Rodríguez
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, Mexico
| | - Sacha Baginsky
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biochemie, Abteilung Pflanzenbiochemie, Weinbergweg 22 (Biozentrum), 06120 Halle (Saale), Germany
| | - Ana P Barba de la Rosa
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, Mexico.
| |
Collapse
|
28
|
Sharwood RE, Sonawane BV, Ghannoum O. Photosynthetic flexibility in maize exposed to salinity and shade. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3715-24. [PMID: 24692650 PMCID: PMC4085963 DOI: 10.1093/jxb/eru130] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
C4 photosynthesis involves a close collaboration of the C3 and C4 metabolic cycles across the mesophyll and bundle-sheath cells. This study investigated the coordination of C4 photosynthesis in maize plants subjected to two salinity (50 and 100mM NaCl) treatments and one shade (20% of full sunlight) treatment. Photosynthetic efficiency was probed by combining leaf gas-exchange measurements with carbon isotope discrimination and assaying the key carboxylases [ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC)] and decarboxylases [nicotinamide adenine dinucleotide phosphate malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PEP-CK)] operating in maize leaves. Generally, salinity inhibited plant growth and photosynthesis to a lesser extent than shade. Salinity reduced photosynthesis primarily by reducing stomatal conductance and secondarily by equally reducing Rubisco and PEPC activities; the decarboxylases were inhibited more than the carboxylases. Salinity increased photosynthetic carbon isotope discrimination (Δp) and reduced leaf dry-matter carbon isotope composition ((13)δ) due to changes in p i/p a (intercellular to ambient CO2 partial pressure), while CO2 leakiness out of the bundle sheath (ϕ) was similar to that in control plants. Acclimation to shade was underpinned by a greater downregulation of PEPC relative to Rubisco activity, and a lesser inhibition of NADP-ME (primary decarboxylase) relative to PEP-CK (secondary decarboxylase). Shade reduced Δp and ɸ without significantly affecting leaf (13)δ or p i/p a relative to control plants. Accordingly, shade perturbed the balance between the C3 and C4 cycles during photosynthesis in maize, and demonstrated the flexible partitioning of C4 acid decarboxylation activity between NADP-ME and PEP-CK in response to the environment. This study highlights the need to improve our understanding of the links between leaf (13)δ and photosynthetic Δp, and the role of the secondary decarboxylase PEP-CK in NADP-ME plants such as maize.
Collapse
Affiliation(s)
- Robert E Sharwood
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, Locked bag 1797, Penrith NSW 2751, Australia
| | - Balasaheb V Sonawane
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, Locked bag 1797, Penrith NSW 2751, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, Locked bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
29
|
Omoto E, Nagao H, Taniguchi M, Miyake H. Localization of reactive oxygen species and change of antioxidant capacities in mesophyll and bundle sheath chloroplasts of maize under salinity. PHYSIOLOGIA PLANTARUM 2013; 149:1-12. [PMID: 23231594 DOI: 10.1111/ppl.12017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/16/2012] [Accepted: 11/28/2012] [Indexed: 05/23/2023]
Abstract
In maize, the structure of bundle sheath cell (BSC) chloroplasts is less subject to salinity stress than that of mesophyll cell (MC) chloroplasts. To elucidate the difference in sensitivity to salinity, antioxidant capacities and localization of reactive oxygen species were investigated in both chloroplasts. Transmission electron microscopic observation showed that O2 (-) localization was found in both chloroplasts under salinity, but the accumulation was much greater in MC chloroplasts. H2 O2 localization was observed only in MC chloroplasts of salt-treated plants. In isolated chloroplasts, the activities of superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11) and dehydroascorbate reductase (DHAR, EC 1.8.5.1) were increased by salinity. While the enhancement of SOD activity was similar in both chloroplasts, the increase of APX and DHAR activities were more pronounced in BSC chloroplasts than in MC chloroplasts. Monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) and glutathione reductase (GR, EC 1.6.4.2) were undetectable in BSC chloroplasts, while they increased in MC chloroplasts under salinity. Although ascorbate content increased by salinity only in BSC chloroplasts, glutathione content increased significantly in both chloroplasts, and was higher in MC chloroplasts than in BSC chloroplasts. The content of thiobarbituric acid-reactive substances, which is an indicator of lipid peroxidation, was significantly increased by salinity in both chloroplasts. These results suggested O2 (-) -scavenging capacity was comparable between both chloroplasts, whereas H2 O2 -scavenging capacity was lower in MC chloroplasts than in BSC chloroplasts. Moreover, the increased lipid peroxidation under salinity was associated with the structural alteration in MC chloroplasts, while it had less impact on the structure of BSC chloroplasts.
Collapse
Affiliation(s)
- Eiji Omoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | | | | | | |
Collapse
|