1
|
Lin W, Liu S, Xiao X, Sun W, Lu X, Gao Y, He J, Zhu Z, Wu Q, Zhang X. Integrative Analysis of Metabolome and Transcriptome Provides Insights into the Mechanism of Flower Induction in Pineapple ( Ananas comosus (L.) Merr.) by Ethephon. Int J Mol Sci 2023; 24:17133. [PMID: 38138962 PMCID: PMC10742410 DOI: 10.3390/ijms242417133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Exogenous ethylene is commonly utilized to initiate flower induction in pineapple (Ananas comosus (L.) Merr.). However, the molecular mechanisms and metabolic changes involved are not well understood. In this study, we explored the genetic network and metabolic shifts in the 'Comte de Paris' pineapple variety during ethylene-induced flowering. This was achieved through an integrative analysis of metabolome and transcriptome profiles at vegetative shoot apexes (0 d after ethephon treatment named BL_0d), the stage of bract primordia (8 d after ethephon treatment named BL_8d), stage of flower primordia (18 d after ethephon treatment named BL_18d), and the stage of stopped floret differentiation (34 d after ethephon treatment named BL_34d). We isolated and identified 804 metabolites in the pineapple shoot apex and inflorescence, categorized into 24 classes. Notably, 29, 31, and 46 metabolites showed significant changes from BL_0d to BL_8d, BL_8d to BL_18d, and BL_18d to BL_34d, respectively. A marked decrease in indole was observed, suggesting its role as a characteristic metabolite during flower induction. Transcriptomic analysis revealed 956, 1768, and 4483 differentially expressed genes (DEGs) for BL_0d vs. BL_8d, BL_8d vs. BL_18d, and BL_18d vs. BL_34d, respectively. These DEGs were significantly enriched in carbohydrate metabolism and hormone signaling pathways, indicating their potential involvement in flower induction. Integrating metabolomic and transcriptomic data, we identified several candidate genes, such as Agamous-Like9 (AGL9), Ethylene Insensitive 3-like (ETIL3), Apetala2 (AP2), AP2-like ethylene-responsive transcription factor ANT (ANT), and Sucrose synthase 2 (SS2), that play potentially crucial roles in ethylene-induced flower induction in pineapple. We also established a regulatory network for pineapple flower induction, correlating metabolites and DEGs, based on the Arabidopsis thaliana pathway as a reference. Overall, our findings offer a deeper understanding of the metabolomic and molecular mechanisms driving pineapple flowering.
Collapse
Affiliation(s)
- Wenqiu Lin
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Shenghui Liu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Xiou Xiao
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
| | - Weisheng Sun
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
| | - Xinhua Lu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Yuyao Gao
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Junjun He
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
| | - Zhuying Zhu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
| | - Qingsong Wu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Xiumei Zhang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (W.L.)
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| |
Collapse
|
2
|
Berková V, Berka M, Kameniarová M, Kopecká R, Kuzmenko M, Shejbalová Š, Abramov D, Čičmanec P, Frejlichová L, Jan N, Brzobohatý B, Černý M. Salicylic Acid Treatment and Its Effect on Seed Yield and Seed Molecular Composition of Pisum sativum under Abiotic Stress. Int J Mol Sci 2023; 24:5454. [PMID: 36982529 PMCID: PMC10049190 DOI: 10.3390/ijms24065454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
The reproductive stage of plant development has the most critical impact on yield. Flowering is highly sensitive to abiotic stress, and increasing temperatures and drought harm crop yields. Salicylic acid is a phytohormone that regulates flowering and promotes stress resilience in plants. However, the exact molecular mechanisms and the level of protection are far from understood and seem to be species-specific. Here, the effect of salicylic acid was tested in a field experiment with Pisum sativum exposed to heat stress. Salicylic acid was administered at two different stages of flowering, and its effect on the yield and composition of the harvested seeds was followed. Plants treated with salicylic acid produced larger seed pods, and a significant increase in dry weight was found for the plants with a delayed application of salicylic acid. The analyses of the seed proteome, lipidome, and metabolome did not show any negative impact of salicylic treatment on seed composition. Identified processes that could be responsible for the observed improvement in seed yields included an increase in polyamine biosynthesis, accumulation of storage lipids and lysophosphatidylcholines, a higher abundance of components of chromatin regulation, calmodulin-like protein, and threonine synthase, and indicated a decrease in sensitivity to abscisic acid signaling.
Collapse
Affiliation(s)
- Veronika Berková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Marharyta Kuzmenko
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Šarlota Shejbalová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Dmytro Abramov
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Petr Čičmanec
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Lucie Frejlichová
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 69144 Lednice na Moravě, Czech Republic
| | - Novák Jan
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
3
|
Laanen P, Cuypers A, Saenen E, Horemans N. Flowering under enhanced ionising radiation conditions and its regulation through epigenetic mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:246-259. [PMID: 36731286 DOI: 10.1016/j.plaphy.2023.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
As sessile organisms, plants have to deal with unfavourable conditions by acclimating or adapting in order to survive. Regulation of flower induction is one such mechanism to ensure reproduction and species survival. Flowering is a tightly regulated process under the control of a network of genes, which can be affected by environmental cues and stress. The effects of ionising radiation (IR) on flowering, however, have been poorly studied. Understanding the effects of ionising radiation on flowering, including the timing, gene pathways, and epigenetics involved, is crucial in the continuing effort of environmental radiation protection. The review shows that plants alter their flowering pattern in response to IR, with various flowering related genes (eg. FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT), CONSTANS (CO), GIGANTEA (GI), APETALA1 (AP1), LEAFY (LFY)) and epigenetic processes (DNA methylation, and miRNA expression eg. miRNA169, miR156, miR172) being affected. Thereby, showing a hypothetical IR-induced flowering mechanism. Further research on the interaction between IR and flowering in plants is, however, needed to elucidate the mechanisms behind the stress-induced flowering response.
Collapse
Affiliation(s)
- Pol Laanen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Ann Cuypers
- Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Eline Saenen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium.
| | - Nele Horemans
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| |
Collapse
|
4
|
Shah K, Wang M, Li X, Shang W, Wang S, Han M, Ren X, Tian J, An N, Xing L. Transcriptome analysis reveals dual action of salicylic acid application in the induction of flowering in Malus domestica. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111433. [PMID: 36029897 DOI: 10.1016/j.plantsci.2022.111433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
In the apple tree, insufficient flower bud production is an intractable challenge, and very little information is available in this field due to the fact that research done in this sector is very rare owing to its extended life cycles and low rate of genetic transformation. Here we display novel changes and events in spur buds of Malus × domestica trees after they were exposed to salicylic acid (SA) treatment during the flower induction period. We found a significant increase in morphological indexes, followed by a wider and well-defined shoot apical meristem in SA-treated spur buds. Additionally, we observed increased oxidative stress markers and enzymatic antioxidants in control-treated buds during the flower induction period, while non-enzymatic antioxidants were recorded higher in SA-treated buds. Maximum flowering was observed in SA-treated trees in the next year. Furthermore, ultra-high-performance liquid chromatography (u-HPLC) analysis displays that SA treatment enhances SA and indole acetic acid (IAA), while having an antagonistic effect on gibberellin (GA). At different time points, transcriptome analysis was conducted to analyze the transcriptional response of CK and SA treated buds. Pathway enrichment was detected in differentially expressed genes (DEGs). Agamous (AGL) and SQUAMOSA-promoter binding protein-like (SPL) family related flowering genes display a positive signal for the increased flowering in SA-treated trees, which confirms our findings. As far as we know, there is no report available on the response of spur buds to SA treatment during the flower induction period. This data provides a new theoretical reference for the management of apple tree flowering and also provides an essential basis for future analysis of the regulation and control of flowering in M. domestica.
Collapse
Affiliation(s)
- Kamran Shah
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Mengxue Wang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Xiaolong Li
- Institute of Horticulture, Ningxia Academy of Agriculture and Forestry Sciences, PR China
| | - Wei Shang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Shujin Wang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Xiaolin Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Jianwen Tian
- Institute of Horticulture, Ningxia Academy of Agriculture and Forestry Sciences, PR China.
| | - Na An
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China.
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
5
|
Gutierrez-Larruscain D, Krüger M, Abeyawardana OAJ, Belz C, Dobrev PI, Vaňková R, Eliášová K, Vondráková Z, Juříček M, Štorchová H. The high concentrations of abscisic, jasmonic, and salicylic acids produced under long days do not accelerate flowering in Chenopodium ficifolium 459. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111279. [PMID: 35643618 DOI: 10.1016/j.plantsci.2022.111279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
The survival and adaptation of angiosperms depends on the proper timing of flowering. The weedy species Chenopodium ficifolium serves as a useful diploid model for comparing the transition to flowering with the important tetraploid crop Chenopodium quinoa due to the close phylogenetic relationship. The detailed transcriptomic and hormonomic study of the floral induction was performed in the short-day accession C. ficifolium 459. The plants grew more rapidly under long days but flowered later than under short days. The high levels of abscisic, jasmonic, and salicylic acids at long days were accompanied by the elevated expression of the genes responding to oxidative stress. The increased concentrations of stress-related phytohormones neither inhibited the plant growth nor accelerated flowering in C. ficifolium 459 at long photoperiods. Enhanced content of cytokinins and the stimulation of cytokinin and gibberellic acid signaling pathways under short days may indicate the possible participation of these phytohormones in floral initiation. The accumulation of auxin metabolites suggests the presence of a dynamic regulatory network in C. ficifolium 459.
Collapse
Affiliation(s)
- David Gutierrez-Larruscain
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Manuela Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Oushadee A J Abeyawardana
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Claudia Belz
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Petre I Dobrev
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Radomíra Vaňková
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Kateřina Eliášová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Zuzana Vondráková
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Miloslav Juříček
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Helena Štorchová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic.
| |
Collapse
|
6
|
Khan FS, Gan ZM, Li EQ, Ren MK, Hu CG, Zhang JZ. Transcriptomic and physiological analysis reveals interplay between salicylic acid and drought stress in citrus tree floral initiation. PLANTA 2021; 255:24. [PMID: 34928452 DOI: 10.1007/s00425-021-03801-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Salicylic acid (SA) and drought stress promote more flowering in sweet orange. The physiological response and molecular mechanism underlying stress-induced floral initiation were discovered by transcriptome profiling. Numerous flowering-regulated genes were identified, and ectopically expressed CsLIP2A promotes early flowering in Arabidopsis. Floral initiation is a critical developmental mechanism associated with external factors, and citrus flowering is mainly regulated by drought stress. However, little is known about the intricate regulatory network involved in stress-induced flowering in citrus. To understand the molecular mechanism of floral initiation in citrus, flower induction was performed on potted Citrus sinensis trees under the combined treatment of salicylic acid (SA) and drought (DR). Physiological analysis revealed that SA treatment significantly normalized the drastic effect of drought stress by increasing antioxidant enzyme activities (SOD, POD, and CAT), relative leaf water content, total chlorophyll, and proline contents and promoting more flowering than drought treatment. Analysis of transcriptome changes in leaves from different treatments showed that 1135, 2728 and 957 differentially expressed genes (DEGs) were revealed in response to DR, SD (SA + DR), and SA (SA + well water) treatments in comparison with the well watered plants, respectively. A total of 2415, 2318 and 1933 DEGs were expressed in DR, SD, and SA in comparison with water recovery, respectively. Some key flowering genes were more highly expressed in SA-treated drought plants than in DR-treated plants. GO enrichment revealed that SA treatment enhances the regulation and growth of meristem activity under drought conditions, but no such a pathway was found to be highly enriched in the control. Furthermore, we focused on various hormones, sugars, starch metabolism, and biosynthesis-related genes. The KEGG analysis demonstrated that DEGs enriched in starch sucrose metabolism and hormonal signal transduction pathways probably account for stress-induced floral initiation in citrus. In addition, a citrus LIPOYLTRANSFERSAE 2A homologous (LIP2A) gene was upregulated by SD treatment. Ectopic expression of CsLIP2A exhibited early flowering in transgenic Arabidopsis. Taken together, this study provides new insight that contributes to citrus tree floral initiation under the SA-drought scenario as well as an excellent reference for stress-induced floral initiation in woody trees.
Collapse
Affiliation(s)
- Faiza Shafique Khan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - En-Qing Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng-Ke Ren
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Fu L, Tan D, Sun X, Ding Z, Zhang J. Transcriptional analysis reveals potential genes and regulatory networks involved in salicylic acid-induced flowering in duckweed (Lemna gibba). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:512-522. [PMID: 32836197 DOI: 10.1016/j.plaphy.2020.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/01/2020] [Accepted: 08/01/2020] [Indexed: 05/27/2023]
Abstract
Duckweed is a simple aquatic floating plant having great potential in sewage treatment and bioenergy production. Duckweed rarely flowers in nature, which greatly limits its germplasm collection, conservation, and heterosis usage. Salicylic acid (SA) can efficiently induce flowering of duckweed (e.g., Lemna gibba); however, the related genes and regulatory networks remain unclear. In this work, we demonstrated that L. gibba flowering induced by SA was photoperiod-dependent, stress-involved, and abscisic acid (ABA)-disrupted. Totally 202, 78, and 413 differentially expressed (DE) genes were up-regulated, while 429, 72, and 307 were down-regulated at flower induction, flower initiation, and flowering stages, respectively. At the flower induction stage, the down-regulated genes were mainly involved in cell wall, auxin and ABA, light reaction, and abiotic stress, while the up-regulated genes were involved in development, brassinosteroid, major CHO metabolism, and redox. At the flower initiation stage, the down-regulated genes were enriched in light reaction and lipid metabolism, whereas the up-regulated genes were enriched in starch degradation and Ca2+ signaling. At the flowering stage, the down-regulated genes were significantly enriched in photosynthesis, gibberellic acid, starch synthesis, nitrogen metabolism, and redox, while the up-regulated genes were enriched in cell wall, jasmonic acid, secondary metabolism, and Ca2+ signaling. Besides, 46 transcription factors and 13 flowering-related DE genes were identified. Finally, a possible floral pathway, where LgTEM1, LgSVP, and LgFT1 might play critical roles in SA-induced flowering in L. gibba, was discussed. These findings provide a useful foundation for further investigation of genes and regulatory networks of SA-induced flowering in duckweed.
Collapse
Affiliation(s)
- Lili Fu
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China.
| | - Deguan Tan
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China.
| | - Xuepiao Sun
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China.
| | - Zehong Ding
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China.
| | - Jiaming Zhang
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China.
| |
Collapse
|
8
|
Liu M, Li W, Zhao G, Fan X, Long H, Fan Y, Shi M, Tan X, Zhang L. New Insights of Salicylic Acid Into Stamen Abortion of Female Flowers in Tung Tree ( Vernicia fordii). Front Genet 2019; 10:316. [PMID: 31024626 PMCID: PMC6460477 DOI: 10.3389/fgene.2019.00316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/21/2019] [Indexed: 12/03/2022] Open
Abstract
Tung tree (Vernicia fordii), an economically important woody oil plant, is a monoecious and diclinous species with male and female flowers on the same inflorescence. The extremely low proportion of female flowers leads to low fruit yield in tung orchards. The female flower normally develops along with stamen abortion; otherwise sterile ovules will be produced. However, little knowledge is known about the molecular basis of the female flower development in tung tree. In this study, integrated analyses of morphological and cytological observations, endogenous phytohormone assay and RNA-seq were conducted to understand the molecular mechanism of the female flower development in tung tree. Cytological observation suggested that the abortion of stamens in female flowers (SFFs) belongs to the type of programmed cell death (PCD), which was caused by tapetum degeneration at microspore mother cell stage. A total of 1,366 differentially expressed genes (DEGs) were identified in female flowers by RNA-seq analysis, of which 279 (20.42%) DEGs were significantly enriched in phenylpropanoid biosynthesis, phenylalanine metabolism, flavonoid biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction. Stage-specific transcript identification detected dynamically expressed genes of important transcription regulators in female flowers that may be involved in PCD and floral organ development. Gene expression patterns revealed that 17 anther and pollen development genes and 37 PCD-related genes might be involved in the abortion of SFF. Further analyses of phytohormone levels and co-expression networks suggested that salicylic acid (SA) accumulation could trigger PCD and inhibit the development of SFF in tung tree. This study provides new insights into the role of SA in regulating the abortion of SFF to develop normal female flowers.
Collapse
Affiliation(s)
- Meilan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Wenying Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Guang Zhao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Xiaoming Fan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Hongxu Long
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yanru Fan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Mingwang Shi
- Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
9
|
Xing L, Zhang D, Qi S, Chen X, An N, Li Y, Zhao C, Han M, Zhao J. Transcription profiles reveal the regulatory mechanisms of spur bud changes and flower induction in response to shoot bending in apple (Malus domestica Borkh.). PLANT MOLECULAR BIOLOGY 2019; 99:45-66. [PMID: 30519825 DOI: 10.1007/s11103-018-0801-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/25/2018] [Indexed: 05/27/2023]
Abstract
Shoot bending, as an effective agronomic measure, has been widely used to promote flowering in 'Fuji' apple trees. Here, we examined the transcriptional responses of genes in 'Fuji' apple buds at different flowering stages under a shoot-bending treatment using RNA sequencing. A complex genetic crosstalk-regulated network, involving abscisic acid-related genes, starch metabolism and circadian rhythm-related genes, as well as stress response-related genes, was up-regulated by shoot bending, in which were contrbuted to apple flower bud formation in response to shoot-bending conditions. Flower induction plays an important role in the apple tree life cycle, but young trees produce fewer and inferior flower buds. Shoot bending, as an effective agronomic measure, has been widely used to promote flowering in 'Fuji' apple trees. However, little is known about the gene expression network patterns and molecular regulatory mechanisms caused by shoot bending during the induced flowering. Here, we examined the transcriptional responses of genes in 'Fuji' apple buds at different flowering stages under a shoot-bending treatment using RNA sequencing. A steady up-regulation of carbon metabolism-related genes led to relatively high levels of sucrose in early induced flowering stages and starch accumulation during shoot bending. Additionally, global gene expression profiling determined that cytokinin, indole-3-acetic acid, gibberellin synthesis and signalling-related genes were significantly regulated by shoot bending, contributing to cell division and differentiation, bud growth and flower induction. A complex genetic crosstalk-regulated network, involving abscisic acid-related genes, starch metabolism- and circadian rhythm-related genes, as well as stress response-related genes, was up-regulated by shoot bending. Additionally, some transcription factor family genes that were involved in sugar, abscisic acid and stress response signalling were significantly induced by shoot bending. These important flowering genes, which were mainly involved in photoperiod, age and autonomous pathways, were up-regulated by shoot bending. Thus, a complex genetic network of regulatory mechanisms involved in sugar, hormone and stress response signalling pathways may mediate the induction of apple tree flowering in response to shoot-bending conditions.
Collapse
Affiliation(s)
- Libo Xing
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Siyan Qi
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xilong Chen
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Na An
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Youmei Li
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Mingyu Han
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Juan Zhao
- College of Mechaincal and Electronic Engineering, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Chen X, Qi S, Zhang D, Li Y, An N, Zhao C, Zhao J, Shah K, Han M, Xing L. Comparative RNA-sequencing-based transcriptome profiling of buds from profusely flowering 'Qinguan' and weakly flowering 'Nagafu no. 2' apple varieties reveals novel insights into the regulatory mechanisms underlying floral induction. BMC PLANT BIOLOGY 2018; 18:370. [PMID: 30577771 PMCID: PMC6303880 DOI: 10.1186/s12870-018-1555-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 11/21/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Floral induction is an important stage in the apple tree life cycle. In 'Nagafu No. 2', which was derived from a 'Fuji' bud sport, flower bud formation is associated with serious problems, such as fewer and inferior flower buds, a long juvenile phase, and an alternate bearing phenotype. Moreover, the molecular regulatory mechanisms underlying apple floral induction remain unknown. To characterize these mechanisms, we compared the RNA-sequencing-based transcriptome profiles of buds during floral induction in profusely flowering 'Qinguan' and weakly flowering 'Nagafu No. 2' apple varieties. RESULTS Genes differentially expressed between the buds of the two varieties were mainly related to carbohydrate, fatty acid, and lipid pathways. Additionally, the steady up-regulated expression of genes related to the fatty acid and lipid pathways and the down-regulated expression of starch synthesis-related genes in the carbon metabolic pathway of 'Qinguan' relative to 'Nagafu No. 2' were observed to contribute to the higher flowering rate of 'Qinguan'. Additionally, global gene expression profiling revealed that genes related to cytokinin, indole-3-acetic acid, and gibberellin synthesis, signalling, and responses (i.e., factors contributing to cell division and differentiation and bud growth) were significantly differentially expressed between the two varieties. The up-regulated expression of genes involved in abscisic acid and salicylic acid biosynthesis via shikimate pathways as well as jasmonic acid production through fatty acid pathways in 'Qinguan' buds were also revealed to contribute to the floral induction and relatively high flowering rate of this variety. The differential expression of transcription factor genes (i.e., SPL, bZIP, IDD, and MYB genes) involved in multiple biological processes was also observed to play key roles in floral induction. Finally, important flowering genes (i.e., FT, FD, and AFL) were significantly more highly expressed in 'Qinguan' buds than in 'Nagafu No. 2' buds during floral induction. CONCLUSIONS A complex genetic network of regulatory mechanisms involving carbohydrate, fatty acid, lipid, and hormone pathways may mediate the induction of apple tree flowering.
Collapse
Affiliation(s)
- Xilong Chen
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100 Shaanxi China
| | - Siyan Qi
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100 Shaanxi China
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100 Shaanxi China
| | - Youmei Li
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100 Shaanxi China
| | - Na An
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100 Shaanxi China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100 Shaanxi China
| | - Juan Zhao
- College of Mechanical and Electronic Engineering, Northwest Agriculture & Forestry University, Yangling, 712100 Shaanxi China
| | - Kamran Shah
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100 Shaanxi China
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100 Shaanxi China
| | - Libo Xing
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100 Shaanxi China
| |
Collapse
|
11
|
Takeno K. Stress-induced flowering: the third category of flowering response. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4925-34. [PMID: 27382113 DOI: 10.1093/jxb/erw272] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The switch from vegetative growth to reproductive growth, i.e. flowering, is the critical event in a plant's life. Flowering is regulated either autonomously or by environmental factors; photoperiodic flowering, which is regulated by the duration of the day and night periods, and vernalization, which is regulated by low temperature, have been well studied. Additionally, it has become clear that stress also regulates flowering. Diverse stress factors can induce or accelerate flowering, or inhibit or delay it, in a wide range of plant species. This article focuses on the positive regulation of flowering via stress, i.e. the induction or acceleration of flowering in response to stress that is known as stress-induced flowering - a new category of flowering response. This review aims to clarify the concept of stress-induced flowering and to summarize the full range of characteristics of stress-induced flowering from a predominately physiological perspective.
Collapse
Affiliation(s)
- Kiyotoshi Takeno
- Department of Biology, Faculty of Science, Niigata University, Ikarashi, Niigata 950-2181, Japan
| |
Collapse
|
12
|
Kazan K, Lyons R. The link between flowering time and stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:47-60. [PMID: 26428061 DOI: 10.1093/jxb/erv441] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Evolutionary success in plants is largely dependent on the successful transition from vegetative to reproductive growth. In the lifetime of a plant, flowering is not only an essential part of the reproductive process but also a critical developmental stage that can be vulnerable to environmental stresses. Exposure to stress during this period can cause substantial yield losses in seed-producing plants. However, it is becoming increasingly evident that altering flowering time is an evolutionary strategy adopted by plants to maximize the chances of reproduction under diverse stress conditions, ranging from pathogen infection to heat, salinity, and drought. Here, recent studies that have revealed new insights into how biotic and abiotic stress signals can be integrated into floral pathways are reviewed. A better understanding of how complex environmental variables affect plant phenology is important for future genetic manipulation of crops to increase productivity under the changing climate.
Collapse
Affiliation(s)
- Kemal Kazan
- CSIRO Agriculture, Queensland Bioscience Precinct, Brisbane, Queensland, Australia Queensland Alliance for Agriculture & Food Innovation (QAAFI), The University of Queensland, St Lucia, Brisbane, Queensland 4067, Australia
| | - Rebecca Lyons
- CSIRO Agriculture, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Wickland DP, Hanzawa Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 Gene Family: Functional Evolution and Molecular Mechanisms. MOLECULAR PLANT 2015; 8:983-97. [PMID: 25598141 DOI: 10.1016/j.molp.2015.01.007] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/19/2014] [Accepted: 01/09/2015] [Indexed: 05/18/2023]
Abstract
In plant development, the flowering transition and inflorescence architecture are modulated by two homologous proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). The florigen FT promotes the transition to reproductive development and flowering, while TFL1 represses this transition. Despite their importance to plant adaptation and crop improvement and their extensive study by the plant community, the molecular mechanisms controlling the opposing actions of FT and TFL1 have remained mysterious. Recent studies in multiple species have unveiled diverse roles of the FT/TFL1 gene family in developmental processes other than flowering regulation. In addition, the striking evolution of FT homologs into flowering repressors has occurred independently in several species during the evolution of flowering plants. These reports indicate that the FT/TFL1 gene family is a major target of evolution in nature. Here, we comprehensively survey the conserved and diverse functions of the FT/TFL1 gene family throughout the plant kingdom, summarize new findings regarding the unique evolution of FT in multiple species, and highlight recent work elucidating the molecular mechanisms of these proteins.
Collapse
Affiliation(s)
- Daniel P Wickland
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yoshie Hanzawa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
14
|
Koshio A, Hasegawa T, Okada R, Takeno K. Endogenous factors regulating poor-nutrition stress-induced flowering in pharbitis: The involvement of metabolic pathways regulated by aminooxyacetic acid. JOURNAL OF PLANT PHYSIOLOGY 2015; 173:82-88. [PMID: 25462081 DOI: 10.1016/j.jplph.2014.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/20/2014] [Accepted: 09/20/2014] [Indexed: 06/04/2023]
Abstract
The short-day plant pharbitis (also called Japanese morning glory), Ipomoea nil (formerly Pharbitis nil), was induced to flower by poor-nutrition stress. This stress-induced flowering was inhibited by aminooxyacetic acid (AOA), which is a known inhibitor of phenylalanine ammonia-lyase (PAL) and the synthesis of indole-3-acetic acid (IAA) and 1-aminocycropropane-1-carboxylic acid (ACC) and thus regulates endogenous levels of salicylic acid (SA), IAA and polyamine (PA). Stress treatment increased PAL activity in cotyledons, and AOA suppressed this increase. The observed PAL activity and flowering response correlate positively, indicating that AOA functions as a PAL inhibitor. The inhibition of stress-induced flowering by AOA was also overcome by IAA. An antiauxin, 4-chlorophenoxy isobutyric acid, inhibited stress-induced flowering. Both SA and IAA promoted flowering induced by stress. PA also promoted flowering, and the effective PA was found to be putrescine (Put). These results suggest that all of the pathways leading to the synthesis of SA, IAA and Put are responsive to the flowering inhibition by AOA and that these endogenous factors may be involved in the regulation of stress-induced flowering. However, as none of them induced flowering under non-stress conditions, they may function cooperatively to promote flowering.
Collapse
Affiliation(s)
- Aya Koshio
- Graduate School of Science and Technology, Niigata University, Ikarashi, Nishi-ku, Niigata, Niigata 950-2181, Japan
| | - Tomomi Hasegawa
- Department of Biology, Faculty of Science, Niigata University, Ikarashi, Nishi-ku, Niigata, Niigata 950-2181, Japan
| | - Rieko Okada
- Department of Biology, Faculty of Science, Niigata University, Ikarashi, Nishi-ku, Niigata, Niigata 950-2181, Japan
| | - Kiyotoshi Takeno
- Graduate School of Science and Technology, Niigata University, Ikarashi, Nishi-ku, Niigata, Niigata 950-2181, Japan; Department of Biology, Faculty of Science, Niigata University, Ikarashi, Nishi-ku, Niigata, Niigata 950-2181, Japan.
| |
Collapse
|
15
|
Wada KC, Mizuuchi K, Koshio A, Kaneko K, Mitsui T, Takeno K. Stress enhances the gene expression and enzyme activity of phenylalanine ammonia-lyase and the endogenous content of salicylic acid to induce flowering in pharbitis. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:895-902. [PMID: 24913046 DOI: 10.1016/j.jplph.2014.03.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 05/08/2023]
Abstract
The involvement of salicylic acid (SA) in the regulation of stress-induced flowering in the short-day plant pharbitis (also called Japanese morning glory) Ipomoea nil (formerly Pharbitis nil) was studied. Pharbitis cv. Violet was induced to flower when grown in 1/100-strength mineral nutrient solution under non-inductive long-day conditions. All fully expanded true leaves were removed from seedlings, leaving only the cotyledons, and flowering was induced under poor-nutrition stress conditions. This indicates that cotyledons can play a role in the regulation of poor-nutrition stress-induced flowering. The expression of the pharbitis homolog of PHENYLALANINE AMMONIA-LYASE, the enzyme activity of phenylalanine ammonia-lyase (PAL; E.C. 4.3.1.5) and the content of SA in the cotyledons were all up-regulated by the stress treatment. The Violet was also induced to flower by low-temperature stress, DNA demethylation and short-day treatment. Low-temperature stress enhanced PAL activity, whereas non-stress factors such as DNA demethylation and short-day treatment decreased the activity. The PAL enzyme activity was also examined in another cultivar, Tendan, obtaining similar results to Violet. The exogenously applied SA did not induce flowering under non-stress conditions but did promote flowering under weak stress conditions in both cultivars. These results suggest that stress-induced flowering in pharbitis is induced, at least partly, by SA, and the synthesis of SA is promoted by PAL.
Collapse
Affiliation(s)
- Kaede C Wada
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Niigata 950-2181, Japan; Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Ikarashi, Niigata, Niigata 950-2181, Japan.
| | - Kaori Mizuuchi
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Niigata 950-2181, Japan
| | - Aya Koshio
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Niigata 950-2181, Japan
| | - Kentaro Kaneko
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Ikarashi, Niigata, Niigata 950-2181, Japan
| | - Toshiaki Mitsui
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Niigata 950-2181, Japan; Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Ikarashi, Niigata, Niigata 950-2181, Japan
| | - Kiyotoshi Takeno
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Niigata 950-2181, Japan; Department of Biology, Faculty of Science, Niigata University, Ikarashi, Niigata, Niigata 950-2181, Japan
| |
Collapse
|
16
|
Yang Y, Ma C, Xu Y, Wei Q, Imtiaz M, Lan H, Gao S, Cheng L, Wang M, Fei Z, Hong B, Gao J. A Zinc Finger Protein Regulates Flowering Time and Abiotic Stress Tolerance in Chrysanthemum by Modulating Gibberellin Biosynthesis. THE PLANT CELL 2014; 26:2038-2054. [PMID: 24858937 PMCID: PMC4079367 DOI: 10.1105/tpc.114.124867] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/08/2014] [Accepted: 04/16/2014] [Indexed: 05/18/2023]
Abstract
Flowering time and an ability to tolerate abiotic stresses are important for plant growth and development. We characterized BBX24, a zinc finger transcription factor gene, from Chrysanthemum morifolium and found it to be associated with both flowering time and stress tolerance. Transgenic lines with suppressed expression of Cm-BBX24 (Cm-BBX24-RNAi) flowered earlier than wild-type plants and showed decreased tolerance to freezing and drought stresses. Global expression analysis revealed that genes associated with both photoperiod and gibberellin (GA) biosynthesis pathways were upregulated in Cm-BBX24-RNAi lines, relative to the wild type. By contrast, genes that were upregulated in overexpressing lines (Cm-BBX24-OX), but downregulated in Cm-BBX24-RNAi lines (both relative to the wild type), included genes related to compatible solutes and carbohydrate metabolism, both of which are associated with abiotic stress. Cm-BBX24 expression was also influenced by daylength and GA4/7 application. Under long days, changes in endogenous GA1, GA4, GA19, and GA20 levels occurred in young leaves of transgenic lines, relative to the wild type. Regulation of flowering involves the FLOWERING TIME gene, which integrates photoperiod and GA biosynthesis pathways. We postulate that Cm-BBX24 plays a dual role, modulating both flowering time and abiotic stress tolerance in chrysanthemum, at least in part by influencing GA biosynthesis.
Collapse
Affiliation(s)
- Yingjie Yang
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Chao Ma
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Yanjie Xu
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Qian Wei
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Muhammad Imtiaz
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Haibo Lan
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Shan Gao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853 U.S. Department of Agriculture Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Lina Cheng
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Meiyan Wang
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853 U.S. Department of Agriculture Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Bo Hong
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Junping Gao
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
17
|
|