1
|
Musse M, Hajjar G, Radovcic A, Ali N, Challois S, Quellec S, Leconte P, Carillo A, Langrume C, Bousset-Vaslin L, Billiot B, Jamois F, Joly G, Deleu C, Leport L. Growth kinetics, spatialization and quality of potato tubers monitored in situ by MRI - long-term effects of water stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14322. [PMID: 38818614 DOI: 10.1111/ppl.14322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
Understanding the potato tuber development and effects of drought at key stages of sensitivity on yield is crucial, particularly when considering the increasing incidence of drought due to climate change. So far, few studies addressed the time course of tuber growth in soil, mainly due to difficulties in accessing underground plant organs in a non-destructive manner. This study aims to understand the tuber growth and quality and the complex long-term effects of realistic water stress on potato tuber yield. MRI was used to monitor the growth kinetics and spatialization of individual tubers in situ and the evolution of internal defects throughout the development period. The intermittent drought applied to plants reduced tuber yield by reducing tuber growth and increasing the number of aborted tubers. The reduction in the size of tubers depended on the vertical position of the tubers in the soil, indicating water exchanges between tubers and the mother plant during leaf dehydration events. The final size of tubers was linked with the growth rate at specific developmental periods. For plants experiencing stress, this corresponded to the days following rewatering, suggesting tuber growth plasticity. All internal defects occurred in large tubers and within a short time span immediately following a period of rapid growth of perimedullary tissues, probably due to high nutrient requirements. To conclude, the non-destructive 3D imaging by MRI allowed us to quantify and better understand the kinetics and spatialization of tuber growth and the appearance of internal defects under different soil water conditions.
Collapse
Affiliation(s)
- Maja Musse
- UR OPAALE, INRAE, CS 64427, Rennes, France
| | | | - Aël Radovcic
- UMR IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Domaine de la Motte, Le Rheu, France
| | - Nusrat Ali
- Centre Mondial de l'Innovation Roullier - Timac Agro International, France
| | | | | | - Patrick Leconte
- UMR IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Domaine de la Motte, Le Rheu, France
| | - Aurélien Carillo
- UMR IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Domaine de la Motte, Le Rheu, France
| | - Christophe Langrume
- UMR IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Domaine de la Motte, Le Rheu, France
| | - Lydia Bousset-Vaslin
- UMR IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Domaine de la Motte, Le Rheu, France
| | - Bastien Billiot
- Centre Mondial de l'Innovation Roullier - Timac Agro International, France
| | - Frank Jamois
- Centre Mondial de l'Innovation Roullier - Timac Agro International, France
| | | | - Carole Deleu
- UMR IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Domaine de la Motte, Le Rheu, France
| | - Laurent Leport
- UMR IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Domaine de la Motte, Le Rheu, France
| |
Collapse
|
2
|
Zhao H, Zuo Z, Yang L, Zhang L, Lv T, Yu D, Wang Z. Similarities and differences in the physiological adaptation to water salinity between two life forms of aquatic plants in alpine and arid wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168449. [PMID: 37952678 DOI: 10.1016/j.scitotenv.2023.168449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Aquatic plants play a crucial role in freshwater ecosystems as primary producers, but their survival is threatened by salinization. Understanding the physiological responses of aquatic plants to increasing water salinity is important for predicting their adaptive strategies under future climate change scenarios. In this study, we measured 15 physiological traits of 49 aquatic plant species along a large environmental gradient in alpine and arid regions of western China to explore their physiological adaptations and compare the similarities and differences in adaptive strategies between emergent and submerged life forms. We found that water salinity and low temperature were key factors affecting aquatic plants in these regions. Aquatic plants adapted to saline habitats by accumulating proline and sulfur (S) concentrations, and to cold habitats by increasing ascorbate peroxidase activity. Plant trait network analysis revealed that S was the hub trait in emergent plants, while proline was the hub trait in submerged plants, indicating that emergent plants balanced osmoregulation and reactive oxygen metabolism through S-containing compounds, while submerged plants prioritized the regulation of osmotic balance through proline.
Collapse
Affiliation(s)
- Haocun Zhao
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Zhenjun Zuo
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Lei Yang
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Liangjian Zhang
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Tian Lv
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Dan Yu
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Zhong Wang
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China; Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, 850000 Lhasa, China.
| |
Collapse
|
3
|
Polechońska L, Rozman U, Sokołowska K, Kalčíková G. The bioadhesion and effects of microplastics and natural particles on growth, cell viability, physiology, and elemental content of an aquatic macrophyte Elodea canadensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166023. [PMID: 37541516 DOI: 10.1016/j.scitotenv.2023.166023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Microplastics in the aquatic environment can interact with aquatic plants, but the consequences of these interactions are poorly understood. Therefore, the aim of this study was to investigate the effects of microplastics commonly found in the environment, namely polyethylene (PE) fragments, polyacrylonitrile (PAN) fibres, tire wear (TW) particles under a relevant environmental concentration (5000 particles/L) on the growth, cell viability, physiology, and elemental content of the aquatic macrophyte Elodea canadensis. The effects of microplastics were compared to those of natural wood particles. The results showed that all types of microplastics adhered to plant tissues, but the effect on leaves (leaf damage area) was greatest at PE > PAN > TW, while the effect of natural particles was comparable to that of the control. None of the microplastics studied affected plant growth, lipid, carbohydrate, or protein content. Electron transport system activity was significantly higher in plants exposed to PAN fibres and PE fragments, but also when exposed to natural particles, while chlorophyll a content was negatively affected only by PE fragments and TW particles. Elemental analysis of plant tissue showed that in some cases PAN fibres and TW particles caused increased metal content. The results of this study indicated that aquatic macrophytes may respond differently to exposure to microplastics than to natural particles, likely through the combined effects of mechanical damage and chemical stress.
Collapse
Affiliation(s)
- Ludmiła Polechońska
- Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, ul. Kanonia 6/8, 50-328 Wrocław, Poland.
| | - Ula Rozman
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, SI-1000 Ljubljana, Slovenia
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, University of Wrocław, ul. Kanonia 6/8, Wrocław 50-328, Poland
| | - Gabriela Kalčíková
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Transcriptomics Insights into Phosphorus Stress Response of Myriophyllum aquaticum. Int J Mol Sci 2023; 24:ijms24054874. [PMID: 36902302 PMCID: PMC10003231 DOI: 10.3390/ijms24054874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Through excellent absorption and transformation, the macrophyte Myriophyllum (M.) aquaticum can considerably remove phosphorus from wastewater. The results of changes in growth rate, chlorophyll content, and roots number and length showed that M. aquaticum could cope better with high phosphorus stress compared with low phosphorus stress. Transcriptome and differentially expressed genes (DEGs) analyses revealed that, when exposed to phosphorus stresses at various concentrations, the roots were more active than the leaves, with more DEGs regulated. M. aquaticum also showed different gene expression and pathway regulatory patterns when exposed to low phosphorus and high phosphorus stresses. M. aquaticum's capacity to cope with phosphorus stress was maybe due to its improved ability to regulate metabolic pathways such as photosynthesis, oxidative stress reduction, phosphorus metabolism, signal transduction, secondary metabolites biosynthesis, and energy metabolism. In general, M. aquaticum has a complex and interconnected regulatory network that deals efficiently with phosphorus stress to varying degrees. This is the first time that the mechanisms of M. aquaticum in sustaining phosphorus stress have been fully examined at the transcriptome level using high-throughput sequencing analysis, which may indicate the direction of follow-up research and have some guiding value for its future applications.
Collapse
|
5
|
Moreira MH, They NH, Rodrigues LR, Alvarenga-Lucius L, Pita-Barbosa A. Salty freshwater macrophytes: the effects of salinization in freshwaters upon non-halophyte aquatic plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159608. [PMID: 36280080 DOI: 10.1016/j.scitotenv.2022.159608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Salinization is a threat that affects aquatic ecosystems worldwide. As primary producers, freshwater macrophytes are of paramount importance in these ecosystems, however, information regarding the potential impacts of salinization upon these organisms is still scarce. In this review we provide a comprehensive and updated discussion of how freshwater macrophytes deal with salinity increase in freshwaters. We reviewed the salinity tolerance of widespread non-halophyte macrophytes through an overview of salinity tolerance mechanisms, their tolerance classification, and salinity effects at different levels of organization: from individuals to ecosystems. Thus, we demonstrated that widespread macrophytes that inhabit freshwaters display efficient salinity tolerance to salinity levels between 5 and 10 g L-1, and only a few species display tolerance to salinities higher than 10 g L-1. Widespread macrophytes demonstrated salinity tolerance of approximately 5 g L-1. Widespread macrophytes demonstrated salinity tolerance of approximately 5 g L-1. Emergent, floating and submerged species showed no significant difference in salinity tolerance. Salinity stress symptoms in freshwater macrophytes are somewhat similar to those of terrestrial plants and can show up even at slight salinity increases. Salinities higher than 1 g L-1 can negatively affect both physiology and diversity of non-halophyte macrophytes and cause long-term - and not well understood - changes in freshwater ecosystems. Salinization of freshwater ecosystems, among others threats, in combination with climate change, raise concerns about the future ecological status of freshwater ecosystems and the services they can provide.
Collapse
Affiliation(s)
- Mauricio Hoffmann Moreira
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Ng Haig They
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96203-900, Brazil; Departamento Interdisciplinar, Centro de Estudos Limnológicos, Costeiros e Marinhos, Campus Litoral Norte, Universidade Federal do Rio Grande do Sul, Imbé, RS 95625-000, Brazil
| | - Lúcia Ribeiro Rodrigues
- Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande Do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Luna Alvarenga-Lucius
- Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Universität Rostock, A.-Einstein-Str. 3, Rostock D-18059, Germany
| | - Alice Pita-Barbosa
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil; Departamento Interdisciplinar, Centro de Estudos Limnológicos, Costeiros e Marinhos, Campus Litoral Norte, Universidade Federal do Rio Grande do Sul, Imbé, RS 95625-000, Brazil.
| |
Collapse
|
6
|
Martemyanov VI, Tikhonenkov DV. Assessment of the tolerance range of salinity for invasive waterweed Elodea canadensis Michaux by parameters of water-salt homeostasis. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Characterization of the Water Shortage Effects on Potato Tuber Tissues during Growth Using MRI Relaxometry and Biochemical Parameters. PLANTS 2022; 11:plants11151918. [PMID: 35893622 PMCID: PMC9330452 DOI: 10.3390/plants11151918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022]
Abstract
The potato is one of the most cultivated crops worldwide, providing an important source of food. The quality of potato tubers relates to their size and dry matter composition and to the absence of physiological defects. It depends on the spatial and temporal coordination of growth and metabolic processes in the major tuber tissues: the cortex, flesh and pith. In the present study, variations in the biochemical traits of each of these tissues were investigated during tuber growth under optimal and water-deficit conditions. MRI relaxometry was used as a non-invasive and quantitative method to access information on cellular water status. The presence of slight but significant variations in organic compound contents quantified in the cortex and flesh revealed a tissue-dependent metabolic pattern. The T2 and relative I0 of the bi-exponential relaxation signal allowed a distinction to be made between the pith and the cortex, whereas the flesh could be differentiated from these tissues only through its relative I0. T2 values did not vary significantly during tuber development, in accordance with the typical growth pattern of tubers, but were shown to be sensitive to water stress. The interpretation of the multi-exponential transverse relaxation times is discussed and could be further developed via microscopic analysis.
Collapse
|
8
|
An Insight into Abiotic Stress and Influx Tolerance Mechanisms in Plants to Cope in Saline Environments. BIOLOGY 2022; 11:biology11040597. [PMID: 35453796 PMCID: PMC9028878 DOI: 10.3390/biology11040597] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
Simple Summary This review focuses on plant growth and development harmed by abiotic stress, primarily salt stress. Salt stress raises the intracellular osmotic pressure, leading to hazardous sodium buildup. Plants react to salt stress signals by regulating ion homeostasis, activating the osmotic stress pathway, modulating plant hormone signaling, and altering cytoskeleton dynamics and cell wall composition. Understanding the processes underlying these physiological and biochemical responses to salt stress could lead to more effective agricultural crop yield measures. In this review, researchers outline recent advances in plant salt stress control. The study of plant salt tolerance processes is essential, both theoretically and practically, to improve agricultural output, produce novel salt-tolerant cultivars, and make full use of saline soil. Based on past research, this paper discusses the adverse effects of salt stress on plants, including photosynthesis suppression, ion homeostasis disturbance, and membrane peroxidation. The authors have also covered the physiological mechanisms of salt tolerance, such as the scavenging of reactive oxygen species and osmotic adjustment. This study further identifies specific salt stress-responsive mechanisms linked to physiological systems. Based on previous studies, this article reviews the current methodologies and techniques for improving plant salt tolerance. Overall, it is hoped that the above-mentioned points will impart helpful background information for future agricultural and crop plant production. Abstract Salinity is significant abiotic stress that affects the majority of agricultural, irrigated, and cultivated land. It is an issue of global importance, causing many socio-economic problems. Salt stress mainly occurs due to two factors: (1) soil type and (2) irrigation water. It is a major environmental constraint, limiting crop growth, plant productivity, and agricultural yield. Soil salinity is a major problem that considerably distorts ecological habitats in arid and semi-arid regions. Excess salts in the soil affect plant nutrient uptake and osmotic balance, leading to osmotic and ionic stress. Plant adaptation or tolerance to salinity stress involves complex physiological traits, metabolic pathways, the production of enzymes, compatible solutes, metabolites, and molecular or genetic networks. Different plant species have different salt overly sensitive pathways and high-affinity K+ channel transporters that maintain ion homeostasis. However, little progress has been made in developing salt-tolerant crop varieties using different breeding approaches. This review highlights the interlinking of plant morpho-physiological, molecular, biochemical, and genetic approaches to produce salt-tolerant plant species. Most of the research emphasizes the significance of plant growth-promoting rhizobacteria in protecting plants from biotic and abiotic stressors. Plant growth, survival, and yield can be stabilized by utilizing this knowledge using different breeding and agronomical techniques. This information marks existing research areas and future gaps that require more attention to reveal new salt tolerance determinants in plants—in the future, creating genetically modified plants could help increase crop growth and the toleration of saline environments.
Collapse
|
9
|
Du J, Li Q, Zhao R, Yang J, Zhou S, Chen C, Zhang M, Zhao D, An S. Effect of influent salinity on the selection of macrophyte species in floating constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111947. [PMID: 33434794 DOI: 10.1016/j.jenvman.2021.111947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Pilot-scale floating constructed wetlands (FCWs) under varying influent salinities were implemented, and the effects of influent salinity on pollutant removal efficiency (RE) and macrophyte species selection were identified. The results suggest that a salinity increase generally decreased pollutant REs, while some macrophytes, such as Iris pseudacorus, could effectively resist this decrease. The average coefficients of variation between macrophyte species in REs of chemical oxygen demand, ammonium nitrogen, nitrate nitrogen and total phosphorus increased from 28.6% at low salinity to 91.3% at high salinity, which suggests the greater importance of macrophyte selection under high salinity. With an increase in salinity, the rhizosphere bacterial community showed convergent evolution or convergence followed by slight divergent evolution between macrophyte species, while the importance of macrophyte parameter selection in characterizing pollutant REs decreased. Therefore, influent salinity is a key factor to consider in macrophyte selection and application, especially in FCWs without soil.
Collapse
Affiliation(s)
- Juan Du
- School of Life Science, Nanjing University, Nanjing, 210093, PR China
| | - Qiming Li
- School of Life Science, Nanjing University, Nanjing, 210093, PR China
| | - Ran Zhao
- School of Life Science, Nanjing University, Nanjing, 210093, PR China
| | - Jiqiang Yang
- School of Life Science, Nanjing University, Nanjing, 210093, PR China
| | - Shenyan Zhou
- School of Life Science, Nanjing University, Nanjing, 210093, PR China
| | - Chen Chen
- School of Life Science, Nanjing University, Nanjing, 210093, PR China
| | - Miao Zhang
- School of Life Science, Nanjing University, Nanjing, 210093, PR China
| | - Dehua Zhao
- School of Life Science, Nanjing University, Nanjing, 210093, PR China.
| | - Shuqing An
- School of Life Science, Nanjing University, Nanjing, 210093, PR China
| |
Collapse
|
10
|
N'Guyen GQ, Raulo R, Marchi M, Agustí-Brisach C, Iacomi B, Pelletier S, Renou JP, Bataillé-Simoneau N, Campion C, Bastide F, Hamon B, Mouchès C, Porcheron B, Lemoine R, Kwasiborski A, Simoneau P, Guillemette T. Responses to Hydric Stress in the Seed-Borne Necrotrophic Fungus Alternaria brassicicola. Front Microbiol 2019; 10:1969. [PMID: 31543870 PMCID: PMC6730492 DOI: 10.3389/fmicb.2019.01969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Alternaria brassicicola is a necrotrophic fungus causing black spot disease and is an economically important seed-borne pathogen of cultivated brassicas. Seed transmission is a crucial component of its parasitic cycle as it promotes long-term survival and dispersal. Recent studies, conducted with the Arabidopsis thaliana/A. brassicicola pathosystem, showed that the level of susceptibility of the fungus to water stress strongly influenced its seed transmission ability. In this study, we gained further insights into the mechanisms involved in the seed infection process by analyzing the transcriptomic and metabolomic responses of germinated spores of A. brassicicola exposed to water stress. Then, the repertoire of putative hydrophilins, a group of proteins that are assumed to be involved in cellular dehydration tolerance, was established in A. brassicicola based on the expression data and additional structural and biochemical criteria. Phenotyping of single deletion mutants deficient for fungal hydrophilin-like proteins showed that they were affected in their transmission to A. thaliana seeds, although their aggressiveness on host vegetative tissues remained intact.
Collapse
Affiliation(s)
- Guillaume Quang N'Guyen
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Roxane Raulo
- Université de Lille, INRA, ISA, Université d'Artois, Université du Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, Lille, France
| | - Muriel Marchi
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | | | - Beatrice Iacomi
- Department of Plant Sciences, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Sandra Pelletier
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Jean-Pierre Renou
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Nelly Bataillé-Simoneau
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Claire Campion
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Franck Bastide
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Bruno Hamon
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Chloé Mouchès
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Benoit Porcheron
- Equipe "Sucres & Echanges Végétaux-Environnement," UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Remi Lemoine
- Equipe "Sucres & Echanges Végétaux-Environnement," UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Anthony Kwasiborski
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Philippe Simoneau
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Thomas Guillemette
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| |
Collapse
|
11
|
Graham LA, Aman A, Campbell DD, Augley J, Graham D, McBride MW, Fraser NJ, Ferreri NR, Dominiczak AF, Padmanabhan S. Salt stress in the renal tubules is linked to TAL-specific expression of uromodulin and an upregulation of heat shock genes. Physiol Genomics 2018; 50:964-972. [PMID: 30216136 PMCID: PMC6293113 DOI: 10.1152/physiolgenomics.00057.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022] Open
Abstract
Previously, our comprehensive cardiovascular characterization study validated Uromodulin as a blood pressure gene. Uromodulin is a glycoprotein exclusively synthesized at the thick ascending limb of the loop of Henle and is encoded by the Umod gene. Umod-/- mice have significantly lower blood pressure than Umod+/+ mice, are resistant to salt-induced changes in blood pressure, and show a leftward shift in pressure-natriuresis curves reflecting changes of sodium reabsorption. Salt stress triggers transcription factors and genes that alter renal sodium reabsorption. To date there are no studies on renal transcriptome responses to salt stress. Here we aimed use RNA-Seq to delineate salt stress pathways in tubules isolated from Umod+/+ mice (a model of sodium retention) and Umod-/- mice (a model of sodium depletion) ± 300 mosmol sodium chloride ( n = 3 per group). In response to salt stress, the tubules of Umod+/+ mice displayed an upregulation of heat shock transcripts. The greatest changes occurred in the expression of: Hspa1a (Log2 fold change 4.35, P = 2.48 e-12) and Hspa1b (Log2 fold change 4.05, P = 2.48 e-12). This response was absent in tubules of Umod-/- mice. Interestingly, seven of the genes discordantly expressed in the Umod-/- tubules were electrolyte transporters. Our results are the first to show that salt stress in renal tubules alters the transcriptome, increasing the expression of heat shock genes. This direction of effect in Umod+/+ tubules suggest the difference is due to the presence of Umod facilitating greater sodium entry into the tubule cell reflecting a specific response to salt stress.
Collapse
Affiliation(s)
- Lesley A Graham
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Alisha Aman
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Desmond D Campbell
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Julian Augley
- Wolfson Wohl Cancer Research Centre, Glasgow Polyomics, University of Glasgow, Bearsden, United Kingdom
| | - Delyth Graham
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Martin W McBride
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Niall J Fraser
- University of Dundee, Ninewells Hospital , Dundee , United Kingdom
| | - Nicholas R Ferreri
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Anna F Dominiczak
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Sandosh Padmanabhan
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| |
Collapse
|
12
|
Dranguet P, Cosio C, Le Faucheur S, Beauvais-Flück R, Freiburghaus A, Worms IAM, Petit B, Civic N, Docquier M, Slaveykova VI. Transcriptomic approach for assessment of the impact on microalga and macrophyte of in-situ exposure in river sites contaminated by chlor-alkali plant effluents. WATER RESEARCH 2017; 121:86-94. [PMID: 28521238 DOI: 10.1016/j.watres.2017.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Water quality degradation is a worldwide problem, but risk evaluation of chronic pollution in-situ is still a challenge. The present study aimed to evaluate the potential of transcriptomic analyses in representative aquatic primary producers to assess the impact of environmental pollution in-situ: the microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii were exposed 2 h in the Babeni Reservoir of the Olt River impacted by chlor-alkali plant effluent release resulting in increased concentrations of Hg and NaCl in receiving water. The response at the transcriptomic level was strong, resulting in up to 5485, and 8700 dysregulated genes (DG) for the microalga and for the macrophyte exposed in the most contaminated site, respectively. Transcriptomic response was congruent with the concentrations of Hg and NaCl in the water of the impacted reservoir. Genes involved in development, energy metabolism, lipid metabolism, nutrition, and RedOx homeostasis were dysregulated during in-situ exposure of both organisms. In addition, genes involved in the cell motility of C. reinhardtii and development of the cell wall of E. nuttallii were affected. DG were in line with adverse outcome pathways and transcriptomic studies reported after exposure to high concentrations of Hg and NaCl under controlled conditions in the laboratory. Transcriptomic response provided a sensitive measurement of the exposure as well as hints on the tolerance mechanisms of environmental pollution, and is thus promising as an early-warning tool to assess water quality degradation.
Collapse
Affiliation(s)
- Perrine Dranguet
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Claudia Cosio
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland.
| | - Séverine Le Faucheur
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Rebecca Beauvais-Flück
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Aline Freiburghaus
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Isabelle A M Worms
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Brice Petit
- iGE3 Genomics Platform, University of Geneva Medical School - CMU, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Natacha Civic
- iGE3 Genomics Platform, University of Geneva Medical School - CMU, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Mylène Docquier
- iGE3 Genomics Platform, University of Geneva Medical School - CMU, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environment Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl-Vogt, 1211 Geneva 4, Switzerland.
| |
Collapse
|
13
|
Graham LA, Dominiczak AF, Ferreri NR. Role of renal transporters and novel regulatory interactions in the TAL that control blood pressure. Physiol Genomics 2017; 49:261-276. [PMID: 28389525 PMCID: PMC5451551 DOI: 10.1152/physiolgenomics.00017.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022] Open
Abstract
Hypertension (HTN), a major public health issue is currently the leading factor in the global burden of disease, where associated complications account for 9.4 million deaths worldwide every year. Excessive dietary salt intake is among the environmental factors that contribute to HTN, known as salt sensitivity. The heterogeneity of salt sensitivity and the multiple mechanisms that link high salt intake to increases in blood pressure are of upmost importance for therapeutic application. A continual increase in the kidney's reabsorption of sodium (Na+) relies on sequential actions at various segments along the nephron. When the distal segments of the nephron fail to regulate Na+, the effects on Na+ homeostasis are unfavorable. We propose that the specific nephron region where increased active uptake occurs as a result of variations in Na+ reabsorption is at the thick ascending limb of the loop of Henle (TAL). The purpose of this review is to urge the consideration of the TAL as contributing to the pathophysiology of salt-sensitive HTN. Further research in this area will enable development of a therapeutic application for targeted treatment.
Collapse
Affiliation(s)
- Lesley A Graham
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow Cardiovascular and Medical Sciences, Glasgow, United Kingdom; and
| | - Anna F Dominiczak
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow Cardiovascular and Medical Sciences, Glasgow, United Kingdom; and
| | - Nicholas R Ferreri
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
14
|
Zhang L, Hu X, Miao X, Chen X, Nan S, Fu H. Genome-Scale Transcriptome Analysis of the Desert Shrub Artemisia sphaerocephala. PLoS One 2016; 11:e0154300. [PMID: 27115614 PMCID: PMC4846011 DOI: 10.1371/journal.pone.0154300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/12/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Artemisia sphaerocephala, a semi-shrub belonging to the Artemisia genus of the Compositae family, is an important pioneer plant that inhabits moving and semi-stable sand dunes in the deserts and steppes of northwest and north-central China. It is very resilient in extreme environments. Additionally, its seeds have excellent nutritional value, and the abundant lipids and polysaccharides in the seeds make this plant a potential valuable source of bio-energy. However, partly due to the scarcity of genetic information, the genetic mechanisms controlling the traits and environmental adaptation capacity of A. sphaerocephala are unknown. RESULTS Here, we present the first in-depth transcriptomic analysis of A. sphaerocephala. To maximize the representation of conditional transcripts, mRNA was obtained from 17 samples, including living tissues of desert-growing A. sphaerocephala, seeds germinated in the laboratory, and calli subjected to no stress (control) and high and low temperature, high and low osmotic, and salt stresses. De novo transcriptome assembly performed using an Illumina HiSeq 2500 platform resulted in the generation of 68,373 unigenes. We analyzed the key genes involved in the unsaturated fatty acid synthesis pathway and identified 26 A. sphaerocephala fad2 genes, which is the largest fad2 gene family reported to date. Furthermore, a set of genes responsible for resistance to extreme temperatures, salt, drought and a combination of stresses was identified. CONCLUSION The present work provides abundant genomic information for functional dissection of the important traits of A. sphaerocephala and contributes to the current understanding of molecular adaptive mechanisms of A. sphaerocephala in the desert environment. Identification of the key genes in the unsaturated fatty acid synthesis pathway could increase understanding of the biological regulatory mechanisms of fatty acid composition traits in plants and facilitate genetic manipulation of the fatty acid composition of oil crops.
Collapse
Affiliation(s)
- Lijing Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaowei Hu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiumei Miao
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaolong Chen
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Shuzhen Nan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hua Fu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|