1
|
Kelemen A, Garda T, Kónya Z, Erdődi F, Ujlaky-Nagy L, Juhász GP, Freytag C, M-Hamvas M, Máthé C. Treatments with Diquat Reveal the Relationship between Protein Phosphatases (PP2A) and Oxidative Stress during Mitosis in Arabidopsis thaliana Root Meristems. PLANTS (BASEL, SWITZERLAND) 2024; 13:1896. [PMID: 39065423 PMCID: PMC11279869 DOI: 10.3390/plants13141896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Reversible protein phosphorylation regulates various cellular mechanisms in eukaryotes by altering the conformation, activity, localization, and stability of substrate proteins. In Arabidopsis thaliana root meristems, histone post-translational modifications are crucial for proper cell division, and they are also involved in oxidative stress signaling. To investigate the link between reactive oxygen species (ROS) and mitosis, we treated various Arabidopsis genotypes, including wild-types and mutants showing dysfunctional PP2A, with the ROS-inducing herbicide diquat (DQ). Studying the c3c4 double catalytic subunit mutant and fass regulatory subunit mutants of PP2A provided insights into phosphorylation-dependent mitotic processes. DQ treatment reduced mitotic activity in all genotypes and caused early mitotic arrest in PP2A mutants, likely due to oxidative stress-induced damage to essential mitotic processes. DQ had a minimal effect on reversible histone H3 phosphorylation in wild-type plants but significantly decreased phospho-histone H3 levels in PP2A mutants. Following drug treatment, the phosphatase activity decreased only in the stronger phenotype mutant plants (fass-5 and c3c4). Our findings demonstrate that (i) the studied PP2A loss-of-function mutants are more sensitive to increased intracellular ROS and (ii) DQ has indirect altering effects of mitotic activities and histone H3 phosphorylation. All these findings underscore the importance of PP2A in stress responses.
Collapse
Affiliation(s)
- Adrienn Kelemen
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Tamás Garda
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (Z.K.); (F.E.)
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (Z.K.); (F.E.)
| | - László Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary;
| | - Gabriella Petra Juhász
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Csongor Freytag
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
- “One Health” Institute, Faculty of Health Science, University of Debrecen, Nagyerdei Blvd. 98, 4032 Debrecen, Hungary
| | - Márta M-Hamvas
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Csaba Máthé
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| |
Collapse
|
2
|
Máthé C, Bóka K, Kónya Z, Erdődi F, Vasas G, Freytag C, Garda T. Microcystin-LR, a cyanotoxin, modulates division of higher plant chloroplasts through protein phosphatase inhibition and affects cyanobacterial division. CHEMOSPHERE 2024; 358:142125. [PMID: 38670509 DOI: 10.1016/j.chemosphere.2024.142125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Microcystin-LR (MC-LR) is a harmful cyanotoxin that inhibits 1 and 2A serine-threonine protein phosphatases. This study examines the influence of MC-LR on chloroplast division and the underlying mechanisms and consequences in Arabidopsis. MC-LR increased the frequency of dividing chloroplasts in hypocotyls in a time range of 1-96 h. At short-term exposures to MC-LR, small-sized chloroplasts (longitudinal diameters ≤6 μm) were more sensitive to these stimulatory effects, while both small and large chloroplasts showed stimulations at long-term exposure. After 48 h, the cyanotoxin increased the frequency of small-sized chloroplasts, indicating the stimulation of division. MC-LR inhibited protein phosphatases in whole hypocotyls and isolated chloroplasts, while it did not induce oxidative stress. We show for the first time that total cellular phosphatases play important roles in chloroplast division and that particular chloroplast phosphatases may be involved in these processes. Interestingly, MC-LR has a protective effect on cyanobacterial division during methyl-viologen (MV) treatments in Synechococcus PCC6301. MC-LR production has harmful effects on ecosystems and it may have an ancient cell division regulatory role in stressed cyanobacterial cells, the evolutionary ancestors of chloroplasts. We propose that cytoplasmic (eukaryotic) factors also contribute to the relevant effects of MC-LR in plants.
Collapse
Affiliation(s)
- Csaba Máthé
- Plant Cell and Developmental Biology Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| | - Károly Bóka
- Department of Plant Anatomy, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, H-1117, Hungary
| | - Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - Gábor Vasas
- Plant and Algal Natural Product Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary; Balaton Limnological Research Institute- HUN-REN, Klebelsberg str. 3, H-8237, Tihany, Hungary
| | - Csongor Freytag
- Plant Cell and Developmental Biology Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary; One Health Institute, Faculty of Health Sciences, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | - Tamás Garda
- Plant Cell and Developmental Biology Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| |
Collapse
|
3
|
Ge K, Du X, Liu H, Meng R, Wu C, Zhang Z, Liang X, Yang J, Zhang H. The cytotoxicity of microcystin-LR: ultrastructural and functional damage of cells. Arch Toxicol 2024; 98:663-687. [PMID: 38252150 DOI: 10.1007/s00204-023-03676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Microcystin-LR (MC-LR) is a toxin produced by cyanobacteria, which is widely distributed in eutrophic water bodies and has multi-organ toxicity. Previous cytotoxicity studies have mostly elucidated the effects of MC-LR on intracellular-related factors, proteins, and DNA at the molecular level. However, there have been few studies on the adverse effects of MC-LR on cell ultrastructure and function. Therefore, research on the cytotoxicity of MC-LR in recent years was collected and summarized. It was found that MC-LR can induce a series of cytotoxic effects, including decreased cell viability, induced autophagy, apoptosis and necrosis, altered cell cycle, altered cell morphology, abnormal cell migration and invasion as well as leading to genetic damage. The above cytotoxic effects were related to the damage of various ultrastructure and functions such as cell membranes and mitochondria. Furthermore, MC-LR can disrupt cell ultrastructure and function by inducing oxidative stress and inhibiting protein phosphatase activity. In addition, the combined toxic effects of MC-LR and other environmental pollutants were investigated. This review explored the toxic targets of MC-LR at the subcellular level, which will provide new ideas for the prevention and treatment of multi-organ toxicity caused by MC-LR.
Collapse
Affiliation(s)
- Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haohao Liu
- Department of Public Health, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Microcystin-LR, a Cyanobacterial Toxin, Induces Changes in the Organization of Membrane Compartments in Arabidopsis. Microorganisms 2023; 11:microorganisms11030586. [PMID: 36985160 PMCID: PMC10051171 DOI: 10.3390/microorganisms11030586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
To evaluate the effects of the cyanobacterial toxin microcystin-LR (MCY-LR, a protein phosphatase inhibitor) and diquat (DQ, an oxidative stress inducer) on the organization of tonoplast, the effect of MCY-LR on plastid stromule formation and on mitochondria was investigated in wild-type Arabidopsis. Tonoplast was also studied in PP2A catalytic (c3c4) and regulatory subunit mutants (fass-5 and fass-15). These novel studies were performed by CLSM microscopy. MCY-LR is produced during cyanobacterial blooms. The organization of tonoplast of PP2A mutants of Arabidopsis is much more sensitive to MCY-LR and DQ treatments than that of wild type. In c3c4, fass-5 and fass-15, control and treated plants showed increased vacuole fragmentation that was the strongest when the fass-5 mutant was treated with MCY-LR. It is assumed that both PP2A/C and B” subunits play an important role in normal formation and function of the tonoplast. In wild-type plants, MCY-LR affects mitochondria. Under the influence of MCY-LR, small, round-shaped mitochondria appeared, while long/fused mitochondria were typical in control plants. Presumably, MCY-LR either inhibits the fusion of mitochondria or induces fission. Consequently, PP2A also plays an important role in the fusion of mitochondria. MCY-LR also increased the frequency of stromules appearing on chloroplasts after 1 h treatments. Along the stromules, signals can be transported between plastids and endoplasmic reticulum. It is probable that they promote a faster response to stress.
Collapse
|
5
|
Freytag C, Garda T, Kónya Z, M-Hamvas M, Tóth-Várady B, Juhász GP, Ujlaky-Nagy L, Kelemen A, Vasas G, Máthé C. B" and C subunits of PP2A regulate the levels of reactive oxygen species and superoxide dismutase activities in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:182-192. [PMID: 36640685 DOI: 10.1016/j.plaphy.2022.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The serine-threonine protein phosphatases PP2A regulate many cellular processes, however their role in oxidative stress responses and defence is less known. We show the involvement of its C (catalytic) and B" (a regulatory) subunits. The c3c4 (C subunit) and fass (B") subunit mutants and Col wt of Arabidopsis were used. Controls and treatments with the PP2A inhibitor microcystin-LR (MCY-LR) and reactive oxygen species (ROS) inducer diquat (DQ) were employed. ROS levels of primary roots were largely genotype dependent and both C and B" subunit mutants had increased sensitivity to MCY-LR and DQ indicating the involvement of these subunits in oxidative stress induction. Superoxide dismutases (SOD), mainly the Cu/Zn-SOD isoform, as key enzymes involved in ROS scavenging are also showing altered (mostly increased) activities in both c3c4 and fass mutants and have opposite relations to ROS induction. This indicates that the two types of subunits involved have partially different regulatory roles. In relation to this, control and MCY-LR/DQ treated B" subunit mutants were proven to have altered levels of phosphorylation of histone H2AX. γH2AX, the phosphorylated form indicates double stranded DNA damage during oxidative stress. Overall we point out the probable pivotal role of several PP2A subunits in the regulation of oxidative stress responses in plants and pave the way for future research to reveal the signaling pathways involved.
Collapse
Affiliation(s)
- Csongor Freytag
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Tamás Garda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Zoltán Kónya
- Department of Medical Chemisty, Faculty of Medicine, University of Debrecen, Hungary.
| | - Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Balázs Tóth-Várady
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Gabriella Petra Juhász
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - László Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary.
| | - Adrienn Kelemen
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Gábor Vasas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| |
Collapse
|
6
|
Ma X, Gu Y, Liang C. Adaptation of protein phosphatases in Oryza sativa and Cucumis sativus to microcystins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7018-7029. [PMID: 36018413 DOI: 10.1007/s11356-022-22691-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Microcystins (MCs) in irrigation water could inhibit crop growth and yield. Protein phosphatases (PPs) play an important role in regulating physiological mechanisms in plants to adapt abiotic stresses. To clarify the adaptation mechanism in plants to MCs stress, we compared PPs in rice and cucumber leaves by analyzing PPs total activity, protein phosphatase-2A (PP2A) activity and expression, as well as related growth and gas exchange parameters. After 7-day exposure of MCs (5 ~ 100 µg/L) and 7-day recovery without MCs, rice showed higher tolerance to MCs by analyzing dry weight and gas exchange parameters. Both crops may regulate PPs activity to adapt MCs stress by increasing the expression of genes encoding PPs. Among them, PP2A activity in two crops showed more sensitivity to MCs than total PPs activity. In addition, the higher expressions of PP2A catalytic and regulatory subunits and lower decrease PP2A activity were observed in rice leaves compared to cucumber. All results suggest that the expression levels of PP2A subunits could play a role in maintaining the activity of PP2A to regulating plant tolerance to MCs stress.
Collapse
Affiliation(s)
- Xudong Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yanfang Gu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chanjuan Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
7
|
Tsoumalakou E, Papadimitriou T, Berillis P, Kormas KA, Levizou E. Spray irrigation with microcystins-rich water affects plant performance from the microscopic to the functional level and food safety of spinach (Spinacia oleracea L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147948. [PMID: 34051502 DOI: 10.1016/j.scitotenv.2021.147948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Irrigation water coming from freshwater bodies that suffer toxic cyanobacterial blooms causes adverse effects on crop productivity and quality and raises concerns regarding food contamination and human exposure to toxins. The common agricultural practice of spray irrigation is an important exposure route to cyanotoxins, yet its impact on crops has received little attention. In the present study we attempted an integrated approach at the macro- and microscopic level to investigate whether spray or drip irrigation with microcystins (MCs)-rich water differently affect spinach performance. Growth and functional features, structural characteristics of stomata, and toxin bioaccumulation were determined. Additionally, the impact of irrigation method and water type on the abundance of leaf-attached microorganisms was assessed. Drip irrigation with MCs-rich water had detrimental effects on growth and photosynthetic characteristics of spinach, while spray irrigation ameliorated to various extents the observed impairments. The stomatal characteristics were differently affected by the irrigation method. Drip-irrigated spinach leaves showed significantly lower stomatal density in the abaxial epidermis and smaller stomatal size in the adaxial side compared to spray-irrigation treatment. Nevertheless, the latter deteriorated traits related to fresh produce quality and safety for human consumption; both the abundance of leaf-attached microorganisms and the MCs bioaccumulation in edible tissues well exceeded the corresponding values of drip-irrigated spinach with MC-rich water. The results highlight the significance of both the use of MCs-contaminated water in vegetable production and the irrigation method in shaping plant responses as well as health risk due to human and livestock exposure to MCs.
Collapse
Affiliation(s)
- E Tsoumalakou
- University of Thessaly, Department of Agriculture Crop Production and Rural Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - T Papadimitriou
- University of Thessaly, Department of Agriculture Ichthyology & Aquatic Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - P Berillis
- University of Thessaly, Department of Agriculture Ichthyology & Aquatic Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - K A Kormas
- University of Thessaly, Department of Agriculture Ichthyology & Aquatic Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - E Levizou
- University of Thessaly, Department of Agriculture Crop Production and Rural Environment, Fytokou, 38446 Nea Ionia, Volos, Greece.
| |
Collapse
|
8
|
Freytag C, Máthé C, Rigó G, Nodzyński T, Kónya Z, Erdődi F, Cséplő Á, Pózer E, Szabados L, Kelemen A, Vasas G, Garda T. Microcystin-LR, a cyanobacterial toxin affects root development by changing levels of PIN proteins and auxin response in Arabidopsis roots. CHEMOSPHERE 2021; 276:130183. [PMID: 34088085 DOI: 10.1016/j.chemosphere.2021.130183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Microcystin-LR (MCY-LR) is a heptapeptide toxin produced mainly by freshwater cyanobacteria. It strongly inhibits protein phosphatases PP2A and PP1. Functioning of the PIN family of auxin efflux carriers is crucial for plant ontogenesis and their functions depend on their reversible phosphorylation. We aimed to reveal the adverse effects of MCY-LR on PIN and auxin distribution in Arabidopsis roots and its consequences for root development. Relatively short-term (24 h) MCY-LR treatments decreased the levels of PIN1, PIN2 and PIN7, but not of PIN3 in tips of primary roots. In contrast, levels of PIN1 and PIN2 increased in emergent lateral roots and their levels depended on the type of PIN in lateral root primordia. DR5:GFP reporter activity showed that the cyanotoxin-induced decrease of auxin levels/responses in tips of main roots in parallel to PIN levels. Those alterations did not affect gravitropic response of roots. However, MCY-LR complemented the altered gravitropic response of crk5-1 mutants, defective in a protein kinase with essential role in the correct membrane localization of PIN2. For MCY-LR treated Col-0 plants, the number of lateral root primordia but not of emergent laterals increased and lateral root primordia showed early development. In conclusion, inhibition of protein phosphatase activities changed PIN and auxin levels, thus altered root development. Previous data on aquatic plants naturally co-occurring with the cyanotoxin showed similar alterations of root development. Thus, our results on the model plant Arabidopsis give a mechanistic explanation of MCY-LR phytotoxicity in aquatic ecosystems.
Collapse
Affiliation(s)
- Csongor Freytag
- University of Debrecen, Faculty of Science and Technology, Department of Botany, Egyetem Ter 1., H-4032, Debrecen, Hungary
| | - Csaba Máthé
- University of Debrecen, Faculty of Science and Technology, Department of Botany, Egyetem Ter 1., H-4032, Debrecen, Hungary
| | - Gábor Rigó
- Biological Research Centre, Institute of Plant Biology, Temesvári Krt 62, H-6726, Szeged, Hungary
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zoltán Kónya
- University of Debrecen, Faculty of Medicine, Department of Medical Chemistry, Egyetem Ter 1., H-4032, Debrecen, Hungary
| | - Ferenc Erdődi
- University of Debrecen, Faculty of Medicine, Department of Medical Chemistry, Egyetem Ter 1., H-4032, Debrecen, Hungary
| | - Ágnes Cséplő
- Biological Research Centre, Institute of Plant Biology, Temesvári Krt 62, H-6726, Szeged, Hungary
| | - Erik Pózer
- University of Debrecen, Faculty of Science and Technology, Department of Botany, Egyetem Ter 1., H-4032, Debrecen, Hungary
| | - László Szabados
- Biological Research Centre, Institute of Plant Biology, Temesvári Krt 62, H-6726, Szeged, Hungary
| | - Adrienn Kelemen
- University of Debrecen, Faculty of Science and Technology, Department of Botany, Egyetem Ter 1., H-4032, Debrecen, Hungary
| | - Gábor Vasas
- University of Debrecen, Faculty of Science and Technology, Department of Botany, Egyetem Ter 1., H-4032, Debrecen, Hungary
| | - Tamás Garda
- University of Debrecen, Faculty of Science and Technology, Department of Botany, Egyetem Ter 1., H-4032, Debrecen, Hungary.
| |
Collapse
|
9
|
Subcellular Alterations Induced by Cyanotoxins in Vascular Plants-A Review. PLANTS 2021; 10:plants10050984. [PMID: 34069255 PMCID: PMC8157112 DOI: 10.3390/plants10050984] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 01/26/2023]
Abstract
Phytotoxicity of cyanobacterial toxins has been confirmed at the subcellular level with consequences on whole plant physiological parameters and thus growth and productivity. Most of the data are available for two groups of these toxins: microcystins (MCs) and cylindrospermopsins (CYNs). Thus, in this review we present a timely survey of subcellular cyanotoxin effects with the main focus on these two cyanotoxins. We provide comparative insights into how peculiar plant cellular structures are affected. We review structural changes and their physiological consequences induced in the plastid system, peculiar plant cytoskeletal organization and chromatin structure, the plant cell wall, the vacuolar system, and in general, endomembrane structures. The cyanotoxins have characteristic dose-and plant genotype-dependent effects on all these structures. Alterations in chloroplast structure will influence the efficiency of photosynthesis and thus plant productivity. Changing of cell wall composition, disruption of the vacuolar membrane (tonoplast) and cytoskeleton, and alterations of chromatin structure (including DNA strand breaks) can ultimately lead to cell death. Finally, we present an integrated view of subcellular alterations. Knowledge on these changes will certainly contribute to a better understanding of cyanotoxin–plant interactions.
Collapse
|
10
|
Impacts of Microcystins on Morphological and Physiological Parameters of Agricultural Plants: A Review. PLANTS 2021; 10:plants10040639. [PMID: 33800599 PMCID: PMC8065763 DOI: 10.3390/plants10040639] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
Cyanobacteria are a group of photosynthetic prokaryotes that pose a great concern in the aquatic environments related to contamination and poisoning of wild life and humans. Some species of cyanobacteria produce potent toxins such as microcystins (MCs), which are extremely aggressive to several organisms, including animals and humans. In order to protect human health and prevent human exposure to this type of organisms and toxins, regulatory limits for MCs in drinking water have been established in most countries. In this regard, the World Health Organization (WHO) proposed 1 µg MCs/L as the highest acceptable concentration in drinking water. However, regulatory limits were not defined in waters used in other applications/activities, constituting a potential threat to the environment and to human health. Indeed, water contaminated with MCs or other cyanotoxins is recurrently used in agriculture and for crop and food production. Several deleterious effects of MCs including a decrease in growth, tissue necrosis, inhibition of photosynthesis and metabolic changes have been reported in plants leading to the impairment of crop productivity and economic loss. Studies have also revealed significant accumulation of MCs in edible tissues and plant organs, which raise concerns related to food safety. This work aims to systematize and analyze the information generated by previous scientific studies, namely on the phytotoxicity and the impact of MCs especially on growth, photosynthesis and productivity of agricultural plants. Morphological and physiological parameters of agronomic interest are overviewed in detail in this work, with the aim to evaluate the putative impact of MCs under field conditions. Finally, concentration-dependent effects are highlighted, as these can assist in future guidelines for irrigation waters and establish regulatory limits for MCs.
Collapse
|
11
|
Pappas D, Gkelis S, Panteris E. The effects of microcystin-LR in Oryza sativa root cells: F-actin as a new target of cyanobacterial toxicity. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:839-849. [PMID: 32268449 DOI: 10.1111/plb.13120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/26/2020] [Indexed: 05/26/2023]
Abstract
Microcystins are toxins produced by cyanobacteria, notorious for negatively affecting a wide range of living organisms, among which several plant species. Although microtubules are a well-established target of microcystin toxicity, its effect on filamentous actin (F-actin) in plant cells has not yet been studied. Τhe effects of microcystin-LR (MC-LR) and an extract of a microcystin-producing freshwater cyanobacterial strain (Microcystis flos-aquae TAU-MAC 1510) on the cytoskeleton (F-actin and microtubules) of Oryza sativa (rice) root cells were studied with light, confocal, and transmission electron microscopy. Considering the role of F-actin in endomembrane system distribution, the endoplasmic reticulum and the Golgi apparatus in extract-treated cells were also examined. F-actin in both MC-LR- and extract-treated meristematic and differentiating root cells exhibited time-dependent alterations, ranging from disorientation and bundling to the formation of ring-like structures, eventually resulting in a collapse of the F-actin network after longer treatments. Disorganization and eventual depolymerization of microtubules, as well as abnormal chromatin condensation were observed following treatment with the extract, effects which could be attributed to microcystins and other bioactive compounds. Moreover, cell cycle progression was inhibited in extract-treated roots, specifically affecting the mitotic events. As a consequence of F-actin network disorganization, endoplasmic reticulum elements appeared stacked and diminished, while Golgi dictyosomes appeared aggregated. These results support that F-actin is a prominent target of MC-LR, both in pure form and as an extract ingredient. Endomembrane system alterations can also be attributed to the effects of cyanobacterial bioactive compounds (including microcystins) on the F-actin cytoskeleton.
Collapse
Affiliation(s)
- D Pappas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - S Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - E Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Gu Y, Liang C. Responses of antioxidative enzymes and gene expression in Oryza sativa L and Cucumis sativus L seedlings to microcystins stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110351. [PMID: 32109583 DOI: 10.1016/j.ecoenv.2020.110351] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Microcystins (MCs) have become an important global environmental issue, causing oxidative stress, which is an important toxic mechanism for MCs in plants. However, the regulating mechanism of antioxidative enzymes in plants in adapting to MCs stress remains unclear. We studied the dynamic effects of MCs at different concentrations (5, 10, 50 and 100 μg/L) in rice and cucumber seedlings on relative growth rate (RGR), and reactive oxygen species and malondialdehyde (MDA) content, and antioxidative enzyme activities, during a stress period (MCs exposed for 1, 3, 5 and 7 d) and recovery period (7 d). During the stress period, MCs at 5 μg/L inhibited RGR in cucumber and promoted RGR in rice. The contents of superoxide anion (O2·-), hydrogen peroxide (H2O2) and MDA increased and RGR declined in both crops with time and intensity of MCs stress. For cucumber, all these parameters responded earlier to MCs stress, and O2·-, MDA and RGR were more responsive to MCs stress than in rice. Moreover, catalase (CAT) and peroxidase (POD), and the relative expressions of CAT genes increased in both crops at 5-100 μg/L MCs, whereas relative expression of POD genes increased only in cucumber. Diversely, superoxide dismutase (SOD) response to MCs in cucumber leaves was later than for rice. MCs at 100 μg/L decreased the relative expression of SOD genes in cucumber but did not change SOD activity. During the recovery period, all the above indicators in both crops were higher than the control and lower than in the stress period. Conversely, RGR was lower than in the control and higher than in the stress period, except for cucumber which was lower, and MDA content higher than the stress period at 100 μg/L MCs. Overall, these results indicated that cucumber was more sensitive to MCs than rice, and SOD, CAT and POD play an important role in plant response to MCs stress.
Collapse
Affiliation(s)
- Yanfang Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chanjuan Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
13
|
Máthé C, Garda T, Freytag C, M-Hamvas M. The Role of Serine-Threonine Protein Phosphatase PP2A in Plant Oxidative Stress Signaling-Facts and Hypotheses. Int J Mol Sci 2019; 20:ijms20123028. [PMID: 31234298 PMCID: PMC6628354 DOI: 10.3390/ijms20123028] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Abiotic and biotic factors induce oxidative stress involving the production and scavenging of reactive oxygen species (ROS). This review is a survey of well-known and possible roles of serine-threonine protein phosphatases in plant oxidative stress signaling, with special emphasis on PP2A. ROS mediated signaling involves three interrelated pathways: (i) perception of extracellular ROS triggers signal transduction pathways, leading to DNA damage and/or the production of antioxidants; (ii) external signals induce intracellular ROS generation that triggers the relevant signaling pathways and (iii) external signals mediate protein phosphorylation dependent signaling pathway(s), leading to the expression of ROS producing enzymes like NADPH oxidases. All pathways involve inactivation of serine-threonine protein phosphatases. The metal dependent phosphatase PP2C has a negative regulatory function during ABA mediated ROS signaling. PP2A is the most abundant protein phosphatase in eukaryotic cells. Inhibitors of PP2A exert a ROS inducing activity as well and we suggest that there is a direct relationship between these two effects of drugs. We present current findings and hypotheses regarding PP2A-ROS signaling connections related to all three ROS signaling pathways and anticipate future research directions for this field. These mechanisms have implications in the understanding of stress tolerance of vascular plants, having applications regarding crop improvement.
Collapse
Affiliation(s)
- Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| | - Tamás Garda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| | - Csongor Freytag
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| | - Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| |
Collapse
|
14
|
Garda T, Kónya Z, Freytag C, Erdődi F, Gonda S, Vasas G, Szücs B, M-Hamvas M, Kiss-Szikszai A, Vámosi G, Máthé C. Allyl-Isothiocyanate and Microcystin-LR Reveal the Protein Phosphatase Mediated Regulation of Metaphase-Anaphase Transition in Vicia faba. FRONTIERS IN PLANT SCIENCE 2018; 9:1823. [PMID: 30619398 PMCID: PMC6300510 DOI: 10.3389/fpls.2018.01823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Horseradish allyl isothiocyanate (AITC, a volatile oil) and cyanobacterial microcystin-LR (MCY-LR, a cyclic heptapeptide) affect eukaryotic cell cycle. MCY-LR inhibits protein phosphatases PP1 and PP2A. We aimed to reveal the mechanisms of their cellular effects in a model eukaryote, Vicia faba. We have shown for the first time that AITC had minor effects on PP1 and PP2A activities in vitro, but it inhibited significantly PP1 in vivo. The combination of 10 μM AITC with 10 μM MCY-LR induced metaphase arrest after short-term (12 h) treatments. 10 μM AITC, 0.2-10 μM MCY-LR and their combinations induced histone H3 hyperphosphorylation, associated with the regulation of metaphase-anaphase transition. This hyperphosphorylation event occurred at any treatment which led to the inhibition of PP1 activity. 10 μM AITC + 10 μM MCY-LR increased the frequency of metaphase spindle anomalies, associated with metaphase arrest. We provide new insights into the mechanisms of metaphase-anaphase transition. Metaphase arrest is induced at the concomitant hyperphosphorylation of histone H3, alteration of metaphase spindle assembly and strong inhibition of PP1 + PP2A activity. Near-complete blocking of metaphase-anaphase transition by rapid protein phosphatase inhibition is shown here for the first time in plants, confirming a crucial role of serine-threonine phosphatases in this checkpoint of cell cycle regulation. Tissue-dependent differences in PP1 and PP2A activities induced by AITC and MCY-LR suggest that mainly regulatory subunits are affected. AITC is a potential tool for the study of protein phosphatase function and regulation. We raise the possibility that one of the biochemical events occurring during AITC release upon wounding is the modulation of protein phosphatase dependent signal transduction pathways during the plant defense response.
Collapse
Affiliation(s)
- Tamás Garda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csongor Freytag
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Gonda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gábor Vasas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Boglárka Szücs
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Attila Kiss-Szikszai
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
15
|
Xu Y, Wang X, Jiang S, Men C, Xu D, Guo Y, Wu J. Microcystin-LR regulates circadian clock and antioxidant gene expression in cultured rat cardiomyocytes. Cell Mol Biol Lett 2018; 23:50. [PMID: 30337942 PMCID: PMC6180438 DOI: 10.1186/s11658-018-0115-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022] Open
Abstract
Background Microcystins are waterborne environmental toxins that induce oxidative stress and cause injuries in the heart. On the other hand, many physiological processes, including antioxidant defense, are under precise control by the mammalian circadian clock. Results In the present study, we evaluated the effect of microcystin-LR (MC-LR) on the rhythmic expression patterns of circadian and antioxidant genes in rat cardiomyocytes using the serum shock technique. We found that a non-toxic dose (10 μm) of MC-LR decreased the amplitudes of rhythmic patterns of clock genes, while it increased the expression levels of antioxidant genes. Conclusions Our results indicate an influence of MC-LR on the circadian clock system and clock-controlled antioxidant genes, which will shed some light on the explanation of heart toxicity induced by MC-LR from the viewpoint of chronobiology.
Collapse
Affiliation(s)
- Yonghua Xu
- 1Department of General Surgery, The Fourth Affiliated Hospital of Nantong University, Yancheng, 224006 China
| | - Xiangmin Wang
- 2Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029 China
| | - Surong Jiang
- 2Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029 China
| | - Chen Men
- 2Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029 China
| | - Di Xu
- 2Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029 China
| | - Yan Guo
- 2Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029 China
| | - Jun Wu
- 2Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029 China
| |
Collapse
|
16
|
M-Hamvas M, Ajtay K, Beyer D, Jámbrik K, Vasas G, Surányi G, Máthé C. Cylindrospermopsin induces biochemical changes leading to programmed cell death in plants. Apoptosis 2018; 22:254-264. [PMID: 27787653 DOI: 10.1007/s10495-016-1322-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the present study we provide cytological and biochemical evidence that the cyanotoxin cylindrospermopsin (CYN) induces programmed cell death (PCD) symptoms in two model vascular plants: the dicot white mustard (Sinapis alba) and the monocot common reed (Phragmites australis). Cytological data include chromatin fragmentation and the increase of the ratio of TUNEL-positive cells in roots, the latter being detected in both model systems studied. The strongest biochemical evidence is the elevation of the activity of several single-stranded DNA preferring nucleases-among them enzymes active at both acidic and alkaline conditions and are probably directly related to DNA breaks occurring at the initial stages of plant PCD: 80 kDa nucleases and a 26 kDa nuclease, both having dual (single- and double-stranded nucleic acid) specificity. Moreover, the total protease activity and in particular, a 53-56 kDa alkaline protease activity increases. This protease could be inhibited by PMSF, thus regarded as serine protease. Serine proteases are detected in all organs of Brassicaceae (Arabidopsis) having importance in differentiation of specialized plant tissue through PCD, in protein degradation/processing during early germination and defense mechanisms induced by a variety of biotic and abiotic stresses. However, knowledge of the physiological roles of these proteases and nucleases in PCD still needs further research. It is concluded that CYN treatment induces chromatin fragmentation and PCD in plant cells by activating specific nucleases and proteases. CYN is proposed to be a suitable molecule to study the mechanism of plant apoptosis.
Collapse
Affiliation(s)
- Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Kitti Ajtay
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Dániel Beyer
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Katalin Jámbrik
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Gábor Vasas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Gyula Surányi
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary.
| |
Collapse
|
17
|
Machado J, Campos A, Vasconcelos V, Freitas M. Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health. ENVIRONMENTAL RESEARCH 2017; 153:191-204. [PMID: 27702441 DOI: 10.1016/j.envres.2016.09.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Toxic cyanobacterial blooms are recognized as an emerging environmental threat worldwide. Although microcystin-LR is the most frequently documented cyanotoxin, studies on cylindrospermopsin have been increasing due to the invasive nature of cylindrospermopsin-producing cyanobacteria. The number of studies regarding the effects of cyanotoxins on agricultural plants has increased in recent years, and it has been suggested that the presence of microcystin-LR and cylindrospermopsin in irrigation water may cause toxic effects in edible plants. The uptake of these cyanotoxins by agricultural plants has been shown to induce morphological and physiological changes that lead to a potential loss of productivity. There is also evidence that edible terrestrial plants can bioaccumulate cyanotoxins in their tissues in a concentration dependent-manner. Moreover, the number of consecutive cycles of watering and planting in addition to the potential persistence of microcystin-LR and cylindrospermopsin in the environment are likely to result in groundwater contamination. The use of cyanotoxin-contaminated water for agricultural purposes may therefore represent a threat to both food security and food safety. However, the deleterious effects of cyanotoxins on agricultural plants and public health seem to be dependent on the concentrations studied, which in most cases are non-environmentally relevant. Interestingly, at ecologically relevant concentrations, the productivity and nutritional quality of some agricultural plants seem not to be impaired and may even be enhanced. However, studies assessing if the potential tolerance of agricultural plants to these concentrations can result in cyanotoxin and allergen accumulation in the edible tissues are lacking. This review combines the most current information available regarding this topic with a realistic assessment of the impact of cyanobacterial toxins on agricultural plants, groundwater quality and public health.
Collapse
Affiliation(s)
- J Machado
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal
| | - A Campos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal
| | - V Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal
| | - M Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal; Polytechnic Institute of Porto, Department of Environmental Health, School of Allied Health Technologies, CISA/Research Center in Environment and Health, Rua de Valente Perfeito, 322, P 440-330 Gaia, Portugal.
| |
Collapse
|