1
|
Aslam A, Zhang R, Waseem M, Huang Z, Masroor A, Kiran M, Ahmed T, Tayyab M, Nawaz R, Azam M, Babur MN, Muhammad S, Razzaq MK, Ahmad Z, Shi Q, Tahir A, Khan I. Decoding the expression patterns and characterisation of calmodulin and calmodulin-like gene families in watermelon ( Citrullus lanatus) under abiotic stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP25023. [PMID: 40403145 DOI: 10.1071/fp25023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/07/2025] [Indexed: 05/24/2025]
Abstract
Calmodulin (CaM) and calmodulin-like (CML) gene families are important in combating stress conditions in plants. A total of 36 CaMs/CMLs were identified and found to be randomly dispersed over the 11 chromosomes of Citrullus lanatus (watermelon). Domain analysis verified the presence of characteristic four EF-hand domains in ClCaM proteins and 2-4 EF-hand domains in ClCML proteins. Most of the ClCML genes were intron-less, but all the ClCaM had introns. In the promoter region, 11% of the cis -regulatory elements were identified belonging to abiotic stress. Collinearity analysis suggested that the ClCaM/ClCML gene family expanded due to segmental duplications. Synteny analysis of 36 ClCaM/CML exhibited 31 pairs of collinearity with Arabidopsis thaliana . Twelve miRNAs were predicted to target one ClCaM and eleven ClCML genes. Analysis by real time quantitative PCR indicated all genes expressed under abiotic treatments. Among the analysed genes, ClCML1 is the most highly expressed gene, especially under cold stress, suggesting its strong involvement in stress response mechanisms. ClCML5 and ClCML27 showed consistent upregulation under salt and drought stresses, highlighting their potential roles in the salt and drought tolerance mechanism. These findings will facilitate the subsequent experiments in exploring the calcium signalling channel under stress situations and pave the way for further exploration of molecular mechanisms involved in defenses against cold, drought, and salt stress.
Collapse
Affiliation(s)
- Ali Aslam
- Faculty of Agriculture and Veterinary Sciences, Superior University, Lahore, Pakistan
| | - Ruimin Zhang
- College of Horticulture Science and Engineering Shandong Agricultural University, Taian, Shandong 271018, China
| | - Muhammad Waseem
- College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Zhang Huang
- College of Horticulture Science and Engineering Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ashir Masroor
- Sub-Campus Burewala-Vehari, University of Agriculture, Faisalabad 38000, Pakistan
| | - Munazza Kiran
- Department of Botany, Division of Science & Technology, University of Education, Lahore 54500, Pakistan
| | - Temoor Ahmed
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan; and Advanced Research Centre, Department of Plant Biotechnology, Korea Universtiy, Seoul 02481, South Korea
| | - Muhammad Tayyab
- Institute of Biotechnology and Genetic Engineering the University of Agriculture Peshawar, KPK, Pakistan
| | - Rabia Nawaz
- Department of Biological Sciences, Superior University, Lahore, Pakistan
| | - Muhammad Azam
- University of Agriculture Faisalabad, Institute of Horticultural Sciences, Faisalabad, Pakistan
| | | | - Sher Muhammad
- Faculty of Agriculture and Veterinary Sciences, Superior University, Lahore, Pakistan
| | | | - Zainab Ahmad
- Department of Biological Sciences, Superior University, Lahore, Pakistan
| | - Qinghua Shi
- College of Horticulture Science and Engineering Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ammara Tahir
- Faculty of Agriculture and Veterinary Sciences, Superior University, Lahore, Pakistan
| | - Idrees Khan
- Department of Eastern Medicine, Superior University, Lahore, Pakistan
| |
Collapse
|
2
|
Xu T, Wei H, Yang P, Zhou X, Ma D, Luo C, Chen Y, Zhang J. Genome-wide identification of CML gene family in Salix matsudana and functional verification of SmCML56 in tolerance to salts tress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109600. [PMID: 39922020 DOI: 10.1016/j.plaphy.2025.109600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Calmodulin-like protein (CML) mediates Ca2+ signaling in response to abiotic stress. It has been shown that manipulating this signaling can improve crop stress resistance. However, the CML family in Willow has not been comprehensively and deeply studied. In this study, 157 SmCML genes were identified on the whole genome of Salix matsudana using bioinformatics method. Phylogenetic analysis showed that CML homologs between S. matsudana and Arabidopsis thaliana shared close relationships. The identified SmCML genes were distributed on 41 chromosomes. Analysis of cis-acting elements indicated that SmCMLs play an important role in plant hormone signal transduction and environmental stress response. SmCML56 gene was successfully cloned from S. matsudana and overexpressed in A. thaliana was constructed by flower dip method, and overexpressed in willow was constructed by Agrobacterium rhizogenes K599 mediated genetic transformation of willow hairy roots. Phenotypic, physiological and biochemical analysis confirmed that overexpression of SmCML56 significantly increased the tolerance of plants to salt. At the same time, VIGS experiment showed that the tolerance of silenced plants to salt stress decreased. The results of this study increased the understanding and characterization of SmCML genes in willow and will be a rich resource for further studies to investigate SmCML protein function in various developmental processes of willow. It provided a reference for related calmodulin-like studies in other perennial species.
Collapse
Affiliation(s)
- Tiantian Xu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Peijian Yang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Xiaoxi Zhou
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Duojin Ma
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Chunying Luo
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| |
Collapse
|
3
|
Wu Y, Zhang B, Yao X, Yang L, Zhuang M, Lv H, Wang Y, Ji J, Hou X, Zhang Y. Genome-Wide Characterization of CaM/ CML Gene Family in Cabbage ( Brassica oleracea var. capitata): Expression Profiling and Functional Implications During Hyaloperonospora parasitica Infection. Int J Mol Sci 2025; 26:3208. [PMID: 40244053 PMCID: PMC11989192 DOI: 10.3390/ijms26073208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/15/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Calmodulin (CaM) and calmodulin-like proteins (CMLs) are crucial for calcium signal transduction in plants. Although CaM/CML genes have been extensively studied in various plant species, research on these genes in Brassica oleracea is still limited. In this study, 14 BoCaM and 75 BoCML genes were identified in the B. oleracea genome through a genome-wide search. Phylogenetic analysis categorized these genes, along with their homologs in Arabidopsis and rice, into six distinct groups. All BoCaM/BoCML genes were unevenly distributed across the nine chromosomes of B. oleracea, with 52 of them lacking introns. Collinearity analysis revealed that CaM/CML genes in Arabidopsis are present in multiple copies in the B. oleracea genome. Moreover, the majority of BoCaM/BoCML genes exhibited distinct expression patterns across the different tissues, indicating their role in the growth and development of B. oleracea. A clustering heatmap of BoCaM/BoCML gene expression showed distinct patterns before and four days after Hyaloperonospora parasitica infection, dividing the genes into five groups based on their expression patterns. Notably, BoCML46-2 is significantly downregulated in both susceptible and resistant materials, suggesting that it plays an important role in responding to H. parasitica infection. This study conducted a comprehensive survey of the BoCaM/BoCML gene family in B. oleracea. It could serve as a theoretical foundation for further functional identification and utilization of family members and their role in the interaction between B. oleracea and H. parasitica.
Collapse
Affiliation(s)
- Yuankang Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (X.Y.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China;
| | - Xuehui Yao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (X.Y.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Limei Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (X.Y.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Mu Zhuang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (X.Y.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Honghao Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (X.Y.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Yong Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (X.Y.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Jialei Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (X.Y.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Xilin Hou
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (X.Y.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| |
Collapse
|
4
|
Li D, Wang H, Luo F, Li M, Wu Z, Liu M, Wang Z, Zang Z, Jiang L. A Maize Calmodulin-like 3 Gene Positively Regulates Drought Tolerance in Maize and Arabidopsis. Int J Mol Sci 2025; 26:1329. [PMID: 39941097 PMCID: PMC11818628 DOI: 10.3390/ijms26031329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Drought stress is one of the important abiotic stresses that affects maize production. As an important Ca2+ sensor, calmodulin-like proteins (CMLs) play key roles in plant growth, development, and stress response, but there are a limited number of studies regarding CMLs in response to drought stress. In this study, a Calmodulin-like gene, namely ZmCML3, was isolated from maize (Zea mays L.). The coding sequence (CDS) of ZmCML3 was 474 bp and a protein of 158 aa which contains three EF-hand motifs. ZmCML3 was localized within the nucleus and plasma membrane. The expression of ZmCML3 was induced by polyethylene glycol (PEG) 6000, NaCl, methyl jasmonate (MeJA), and abscisic acid (ABA). Overexpression of ZmCML3 resulted in enhanced drought tolerance in maize through increasing proline (Pro) content and the activity of peroxide (POD) and superoxide dismutase (SOD). Meanwhile, ZmCML3 also positively regulated the expression of drought stress-responsive genes in maize under drought stress treatment. Taken together, ZmCML3 acts as a positive regulator in maize response to drought stress. These results will provide theoretical basis for breeding drought tolerance maize variety.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhenyuan Zang
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China; (D.L.); (H.W.); (F.L.); (M.L.); (Z.W.); (M.L.); (Z.W.)
| | - Liangyu Jiang
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China; (D.L.); (H.W.); (F.L.); (M.L.); (Z.W.); (M.L.); (Z.W.)
| |
Collapse
|
5
|
Zhang L, Yang H, Zheng M, Zhou G, Yang Y, Liu S. Physiological and transcriptomic analyses reveal the regulatory mechanisms of Anoectochilus roxburghii in response to high-temperature stress. BMC PLANT BIOLOGY 2024; 24:584. [PMID: 38898387 PMCID: PMC11188188 DOI: 10.1186/s12870-024-05088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND High temperatures significantly affect the growth, development, and yield of plants. Anoectochilus roxburghii prefers a cool and humid environment, intolerant of high temperatures. It is necessary to enhance the heat tolerance of A. roxburghii and breed heat-tolerant varieties. Therefore, we studied the physiological indexes and transcriptome of A. roxburghii under different times of high-temperature stress treatments. RESULTS Under high-temperature stress, proline (Pro), H2O2 content increased, then decreased, then increased again, catalase (CAT) activity increased continuously, peroxidase (POD) activity decreased rapidly, then increased, then decreased again, superoxide dismutase (SOD) activity, malondialdehyde (MDA), and soluble sugars (SS) content all decreased, then increased, and chlorophyll and soluble proteins (SP) content increased, then decreased. Transcriptomic investigation indicated that a total of 2740 DEGs were identified and numerous DEGs were notably enriched for "Plant-pathogen interaction" and "Plant hormone signal transduction". We identified a total of 32 genes in these two pathways that may be the key genes for resistance to high-temperature stress in A. roxburghii. CONCLUSIONS To sum up, the results of this study provide a reference for the molecular regulation of A. roxburghii's tolerance to high temperatures, which is useful for further cultivation of high-temperature-tolerant A. roxburghii varieties.
Collapse
Affiliation(s)
- Linghui Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, 510642, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Heyue Yang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, 510642, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Mengxia Zheng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, 510642, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Guo Zhou
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, 510642, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuesheng Yang
- Southern Medicine Research Institute of Yunfu, Yunfu, China.
| | - Siwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Heny Fok School of Biology and Agriculture, ShaoGuan University, Shaoguan, 512005, China.
| |
Collapse
|
6
|
Wang W, Liu Y, Kang Y, Liu W, Li S, Wang Z, Xia X, Chen X, Qian L, Xiong X, Liu Z, Guan C, He X. Genome-wide characterization of LEA gene family reveals a positive role of BnaA.LEA6.a in freezing tolerance in rapeseed (Brassica napus L.). BMC PLANT BIOLOGY 2024; 24:433. [PMID: 38773359 PMCID: PMC11106994 DOI: 10.1186/s12870-024-05111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Freezing stress is one of the major abiotic stresses that causes extensive damage to plants. LEA (Late embryogenesis abundant) proteins play a crucial role in plant growth, development, and abiotic stress. However, there is limited research on the function of LEA genes in low-temperature stress in Brassica napus (rapeseed). RESULTS Total 306 potential LEA genes were identified in B. rapa (79), B. oleracea (79) and B. napus (148) and divided into eight subgroups. LEA genes of the same subgroup had similar gene structures and predicted subcellular locations. Cis-regulatory elements analysis showed that the promoters of BnaLEA genes rich in cis-regulatory elements related to various abiotic stresses. Additionally, RNA-seq and real-time PCR results indicated that the majority of BnaLEA family members were highly expressed in senescent tissues of rapeseed, especially during late stages of seed maturation, and most BnaLEA genes can be induced by salt and osmotic stress. Interestingly, the BnaA.LEA6.a and BnaC.LEA6.a genes were highly expressed across different vegetative and reproductive organs during different development stages, and showed strong responses to salt, osmotic, and cold stress, particularly freezing stress. Further analysis showed that overexpression of BnaA.LEA6.a increased the freezing tolerance in rapeseed, as evidenced by lower relative electrical leakage and higher survival rates compared to the wild-type (WT) under freezing treatment. CONCLUSION This study is of great significance for understanding the functions of BnaLEA genes in freezing tolerance in rapeseed and offers an ideal candidate gene (BnaA.LEA6.a) for molecular breeding of freezing-tolerant rapeseed cultivars.
Collapse
Affiliation(s)
- Weiping Wang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yan Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yu Kang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Wei Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Shun Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zhonghua Wang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xiaoyan Xia
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xiaoyu Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Lunwen Qian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xinghua Xiong
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zhongsong Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Chunyun Guan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xin He
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
7
|
Yang D, Chen T, Wu Y, Tang H, Yu J, Dai X, Zheng Y, Wan X, Yang Y, Tan X. Genome-wide analysis of the peanut CaM/CML gene family reveals that the AhCML69 gene is associated with resistance to Ralstonia solanacearum. BMC Genomics 2024; 25:200. [PMID: 38378471 PMCID: PMC10880322 DOI: 10.1186/s12864-024-10108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Calmodulins (CaMs)/CaM-like proteins (CMLs) are crucial Ca2+-binding sensors that can decode and transduce Ca2+ signals during plant development and in response to various stimuli. The CaM/CML gene family has been characterized in many plant species, but this family has not yet been characterized and analyzed in peanut, especially for its functions in response to Ralstonia solanacearum. In this study, we performed a genome-wide analysis to analyze the CaM/CML genes and their functions in resistance to R. solanacearum. RESULTS Here, 67, 72, and 214 CaM/CML genes were identified from Arachis duranensis, Arachis ipaensis, and Arachis hypogaea, respectively. The genes were divided into nine subgroups (Groups I-IX) with relatively conserved exon‒intron structures and motif compositions. Gene duplication, which included whole-genome duplication, tandem repeats, scattered repeats, and unconnected repeats, produced approximately 81 pairs of homologous genes in the AhCaM/CML gene family. Allopolyploidization was the main reason for the greater number of AhCaM/CML members. The nonsynonymous (Ka) versus synonymous (Ks) substitution rates (less than 1.0) suggested that all homologous pairs underwent intensive purifying selection pressure during evolution. AhCML69 was constitutively expressed in different tissues of peanut plants and was involved in the response to R. solanacearum infection. The AhCML69 protein was localized in the cytoplasm and nucleus. Transient overexpression of AhCML69 in tobacco leaves increased resistance to R. solanacearum infection and induced the expression of defense-related genes, suggesting that AhCML69 is a positive regulator of disease resistance. CONCLUSIONS This study provides the first comprehensive analysis of the AhCaM/CML gene family and potential genetic resources for the molecular design and breeding of peanut bacterial wilt resistance.
Collapse
Affiliation(s)
- Dong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Ting Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Yushuang Wu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Huiquan Tang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Junyi Yu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Xiaoqiu Dai
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Yixiong Zheng
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Yong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
| | - Xiaodan Tan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
| |
Collapse
|
8
|
Bai X, Han Y, Han L. Transcriptional alterations of peanut root during interaction with growth-promoting Tsukamurella tyrosinosolvens strain P9. PLoS One 2024; 19:e0298303. [PMID: 38358983 PMCID: PMC10868839 DOI: 10.1371/journal.pone.0298303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
The plant growth-promoting rhizobacterium Tsukamurella tyrosinosolvens P9 can improve peanut growth. In this study, a co-culture system of strain P9 and peanut was established to analyze the transcriptome of peanut roots interacting with P9 for 24 and 72 h. During the early stage of co-culturing, genes related to mitogen-activated protein kinase (MAPK) and Ca2+ signal transduction, ethylene synthesis, and cell wall pectin degradation were induced, and the up-regulation of phenylpropanoid derivative, flavonoid, and isoflavone synthesis enhanced the defense response of peanut. The enhanced expression of genes associated with photosynthesis and carbon fixation, circadian rhythm regulation, indoleacetic acid (IAA) synthesis, and cytokinin decomposition promoted root growth and development. At the late stage of co-culturing, ethylene synthesis was reduced, whereas Ca2+ signal transduction, isoquinoline alkaloid synthesis, and ascorbate and aldarate metabolism were up-regulated, thereby maintaining root ROS homeostasis. Sugar decomposition and oxidative phosphorylation and nitrogen and fatty acid metabolism were induced, and peanut growth was significantly promoted. Finally, the gene expression of seedlings inoculated with strain P9 exhibited temporal differences. The results of our study, which explored transcriptional alterations of peanut root during interacting with P9, provide a basis for elucidating the growth-promoting mechanism of this bacterial strain in peanut.
Collapse
Affiliation(s)
- Xue Bai
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Yujie Han
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Lizhen Han
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
9
|
Fu N, Wang L, Han X, Yang Q, Zhang Y, Tong Z, Zhang J. Genome-Wide Identification and Expression Analysis of Calmodulin and Calmodulin-like Genes, Revealing CaM3 and CML13 Participating in Drought Stress in Phoebe bournei. Int J Mol Sci 2023; 25:545. [PMID: 38203715 PMCID: PMC10778748 DOI: 10.3390/ijms25010545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Calmodulin (CaM) and calmodulin-like (CML) proteins are major Ca2+ sensors involved in the regulation of plant development and stress responses by converting Ca2+ signals into appropriate cellular responses. However, characterization and expression analyses of CaM/CML genes in the precious species, Phoebe bournei, remain limited. In this study, five PbCaM and sixty PbCML genes were identified that only had EF-hand motifs with no other functional domains. The phylogenetic tree was clustered into 11 subgroups, including a unique clade of PbCaMs. The PbCaMs were intron-rich with four EF-hand motifs, whereas PbCMLs had two to four EF-hands and were mostly intronless. PbCaMs/CMLs were unevenly distributed across the 12 chromosomes of P. bournei and underwent purifying selection. Fragment duplication was the main driving force for the evolution of the PbCaM/CML gene family. Cis-acting element analysis indicated that PbCaMs/CMLs might be related to hormones, growth and development, and stress response. Expression analysis showed that PbCaMs were generally highly expressed in five different tissues and under drought stress, whereas PbCMLs showed specific expression patterns. The expression levels of 11 candidate PbCaMs/CMLs were responsive to ABA and MeJA, suggesting that these genes might act through multiple signaling pathways. The overexpression of PbCaM3/CML13 genes significantly increased the tolerance of yeast cells to drought stress. The identification and characterization of the CaM/CML gene family in P. bournei laid the foundation for future functional studies of these genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (N.F.); (L.W.); (X.H.); (Q.Y.); (Y.Z.)
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (N.F.); (L.W.); (X.H.); (Q.Y.); (Y.Z.)
| |
Collapse
|
10
|
Alavilli H, Yolcu S, Skorupa M, Aciksoz SB, Asif M. Salt and drought stress-mitigating approaches in sugar beet (Beta vulgaris L.) to improve its performance and yield. PLANTA 2023; 258:30. [PMID: 37358618 DOI: 10.1007/s00425-023-04189-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
MAIN CONCLUSION Although sugar beet is a salt- and drought-tolerant crop, high salinity, and water deprivation significantly reduce its yield and growth. Several reports have demonstrated stress tolerance enhancement through stress-mitigating strategies including the exogenous application of osmolytes or metabolites, nanoparticles, seed treatments, breeding salt/drought-tolerant varieties. These approaches would assist in achieving sustainable yields despite global climatic changes. Sugar beet (Beta vulgaris L.) is an economically vital crop for ~ 30% of world sugar production. They also provide essential raw materials for bioethanol, animal fodder, pulp, pectin, and functional food-related industries. Due to fewer irrigation water requirements and shorter regeneration time than sugarcane, beet cultivation is spreading to subtropical climates from temperate climates. However, beet varieties from different geographical locations display different stress tolerance levels. Although sugar beet can endure moderate exposure to various abiotic stresses, including high salinity and drought, prolonged exposure to salt and drought stress causes a significant decrease in crop yield and production. Hence, plant biologists and agronomists have devised several strategies to mitigate the stress-induced damage to sugar beet cultivation. Recently, several studies substantiated that the exogenous application of osmolytes or metabolite substances can help plants overcome injuries induced by salt or drought stress. Furthermore, these compounds likely elicit different physio-biochemical impacts, including improving nutrient/ionic homeostasis, photosynthetic efficiency, strengthening defense response, and water status improvement under various abiotic stress conditions. In the current review, we compiled different stress-mitigating agricultural strategies, prospects, and future experiments that can secure sustainable yields for sugar beets despite high saline or drought conditions.
Collapse
Affiliation(s)
- Hemasundar Alavilli
- Department of Biotechnology, GITAM (Deemed to be) University, Visakhapatnam, 530045, India
| | - Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey.
| | - Monika Skorupa
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Seher Bahar Aciksoz
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Muhammad Asif
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| |
Collapse
|
11
|
Xue N, Sun M, Gai Z, Bai M, Sun J, Sai S, Zhang L. Genome-Wide Identification and Expression Analysis of Calmodulin (CaM) and Calmodulin-Like (CML) Genes in the Brown Algae Saccharina japonica. PLANTS (BASEL, SWITZERLAND) 2023; 12:1934. [PMID: 37653850 PMCID: PMC10222329 DOI: 10.3390/plants12101934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 09/02/2023]
Abstract
Calmodulins (CaMs) and Calmodulin-like proteins (CMLs) are vital in plant growth, development, and stress responses. However, CaMs and CMLs have not been fully identified and characterized in brown algae, which has been evolving independently of the well-studied green plant lineage. In this study, whole-genome searches revealed one SjCaM and eight SjCMLs in Saccharina japonica, and one EsCaM and eleven EsCMLs in Ectocarpus sp. SjCaM and EsCaM encoded identical protein products and shared 88.59-89.93% amino acid identities with Arabidopsis thaliana AtCaMs, thereby indicating that brown algae CaMs retained a similar Ca2+ sensors function as in plants. The phylogenetic and gene structure analysis results showed that there was significant divergence in the gene sequences among brown algae CMLs. Furthermore, evolutionary analysis indicated that the function of brown alga CMLs was relatively conserved, which may be related to the fact that brown algae do not need to face complex environments like terrestrial plants. Regulatory elements prediction and the expression analysis revealed the probable functioning of SjCaM/CML genes in gametophyte development and the stress response in S. japonica. In addition, the SjCaM/SjCMLs interacting proteins and chemicals were preliminarily predicted, suggesting that SjCaM/SjCMLs might play putative roles in Ca2+/CaM-mediated growth and development processes and stimulus responses. Therefore, these results will facilitate our understanding of the evolution of brown algae CaMs/CMLs and the functional identification of SjCaM/SjCMLs.
Collapse
Affiliation(s)
- Nianchao Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Minghui Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Zihan Gai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Meihan Bai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Juan Sun
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Shandong Technology Innovation Center of Algae and Sea Cucumber, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai 264003, China
| | - Shan Sai
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Shandong Technology Innovation Center of Algae and Sea Cucumber, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai 264003, China
| | - Linan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
12
|
Zhou B, Gao X, Zhao F. Integration of mRNA and miRNA Analysis Reveals the Post-Transcriptional Regulation of Salt Stress Response in Hemerocallis fulva. Int J Mol Sci 2023; 24:ijms24087290. [PMID: 37108448 PMCID: PMC10139057 DOI: 10.3390/ijms24087290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
MicroRNAs (miRNAs) belong to non-coding small RNAs which have been shown to take a regulatory function at the posttranscriptional level in plant growth development and response to abiotic stress. Hemerocallis fulva is an herbaceous perennial plant with fleshy roots, wide distribution, and strong adaptability. However, salt stress is one of the most serious abiotic stresses to limit the growth and production of Hemerocallis fulva. To identify the miRNAs and their targets involved in the salt stress resistance, the salt-tolerant H. fulva with and without NaCl treatment were used as materials, and the expression differences of miRNAs-mRNAs related to salt-tolerance were explored and the cleavage sites between miRNAs and targets were also identified by using degradome sequencing technology. In this study, twenty and three significantly differential expression miRNAs (p-value < 0.05) were identified in the roots and leaves of H. fulva separately. Additionally, 12,691 and 1538 differentially expressed genes (DEGs) were also obtained, respectively, in roots and leaves. Moreover, 222 target genes of 61 family miRNAs were validated by degradome sequencing. Among the DE miRNAs, 29 pairs of miRNA targets displayed negatively correlated expression profiles. The qRT-PCR results also showed that the trends of miRNA and DEG expression were consistent with those of RNA-seq. A gene ontology (GO) enrichment analysis of these targets revealed that the calcium ion pathway, oxidative defense response, microtubule cytoskeleton organization, and DNA binding transcription factor responded to NaCl stress. Five miRNAs, miR156, miR160, miR393, miR166, and miR396, and several hub genes, squamosa promoter-binding-like protein (SPL), auxin response factor 12 (ARF), transport inhibitor response 1-like protein (TIR1), calmodulin-like proteins (CML), and growth-regulating factor 4 (GRF4), might play central roles in the regulation of NaCl-responsive genes. These results indicate that non-coding small RNAs and their target genes that are related to phytohormone signaling, Ca2+ signaling, and oxidative defense signaling pathways are involved in H. fulva's response to NaCl stress.
Collapse
Affiliation(s)
- Bo Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Fei Zhao
- Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
13
|
Yang M, Chen J, Liu T, Xiang L, Zhou BF. Genome-Wide Identification and Expression Analysis of Calmodulin-Like Gene Family in Paspalums vaginatium Revealed Their Role in Response to Salt and Cold Stress. Curr Issues Mol Biol 2023; 45:1693-1711. [PMID: 36826054 PMCID: PMC9954852 DOI: 10.3390/cimb45020109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The calmodulin-like (CML) family is an important calcium (Ca2+) sensor in plants and plays a pivotal role in the response to abiotic and biotic stresses. As one of the most salt-tolerant grass species, Paspalums vaginatum is resistant to multiple abiotic stresses, such as salt, cold, and drought. However, investigations of PvCML proteins in P. vaginatum have been limited. Based on the recently published P. vaginatum genome, we identified forty-nine PvCMLs and performed a comprehensive bioinformatics analysis of PvCMLs. The main results showed that the PvCMLs were unevenly distributed on all chromosomes and that the expansion of PvCMLs was shaped by tandem and segmental duplications. In addition, cis-acting element analysis, expression profiles, and qRT-PCR analysis revealed that PvCMLs were involved in the response to salt and cold stress. Most interestingly, we found evidence of a tandem gene cluster that independently evolved in P. vaginatum and may participate in cold resistance. In summary, our work provides important insight into how grass species are resistant to abiotic stresses such as salt and cold and could be the basis of further gene function research on CMLs in P. vaginatum.
Collapse
Affiliation(s)
- Meizhen Yang
- Guangdong Engineering Research Center for Grassland Science, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingjin Chen
- Guangdong Engineering Research Center for Grassland Science, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Tingting Liu
- Guangdong Engineering Research Center for Grassland Science, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Leilei Xiang
- Guangdong Engineering Research Center for Grassland Science, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Correspondence: ; Tel.: +86-17665141041
| |
Collapse
|
14
|
Ahmad A, Li W, Zhang H, Wang H, Wang P, Jiao Y, Zhao C, Yang G, Hong D. Linkage and association mapping of ovule number per ovary (ON) in oilseed rape ( Brassica napus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:11. [PMID: 37313129 PMCID: PMC10248604 DOI: 10.1007/s11032-023-01355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/11/2023] [Indexed: 06/15/2023]
Abstract
Ovule number (ON) produced during flower development determines the maximum number of seeds per silique and thereby affects crop productivity; however, the genetic basis of ON remains poorly understood in oilseed rape (Brassica napus). In this study, we genetically dissected the ON variations in a double haploid (DH) population and in natural population (NP) by linkage mapping and genome-wide association analysis. Phenotypic analysis showed that ON displayed normal distribution in both populations with the broad-sense heritability of 0.861 (DH population) and 0.930 (natural population). Linkage mapping identified 5 QTLs related to ON, including qON-A03, qON-A07, qON-A07-2, qON-A10, and qON-C06. Genome-wide association studies (GWAS) revealed 214, 48, and 40 significant single-nucleotide polymorphisms (SNPs) by individually using the single-locus model GLM and the multiple-locus model MrMLM and FASTMrMLM. The phenotypic variation explained (PVE) by these QTLs and SNPs ranged from 2.00-17.40% to 5.03-7.33%, respectively. Integration of the results from both strategies identified four consensus genomic regions associated with ON from the chromosomes A03, A07, and A10. Our results preliminarily resolved the genetic basis of ON and provides useful molecular markers for plant yield improvement in B. napus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01355-7.
Collapse
Affiliation(s)
- Ali Ahmad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Wenhui Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Yushun Jiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Chenqi Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
15
|
Wang H, Feng M, Zhong X, Yu Q, Que Y, Xu L, Guo J. Identification of Saccharum CaM gene family and function characterization of ScCaM1 during cold and oxidant exposure in Pichia pastoris. Genes Genomics 2023; 45:103-122. [PMID: 35608775 DOI: 10.1007/s13258-022-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Calmodulin (CaM) plays an essential role in binding calcium ions and mediating the interpretation of Ca2+ signals in plants under various stresses. However, the evolutionary relationship of CaM family proteins in Saccharum has not been elucidated. OBJECTIVE To deduce and explore the evolution and function of Saccharum CaM family. METHODS A total of 104 typical CaMs were obtained from Saccharum spontaneum and other 18 plant species. The molecular characteristics and evolution of those CaM proteins were analyzed. A typical CaM gene, ScCaM1, was subsequently cloned from sugarcane (Saccharum spp. hybrid). Its expression patterns in different tissues and under various abiotic stresses were assessed by quantitative real-time PCR. Then the green fluorescent protein was used to determine the subcellular localization of ScCaM1. Finally, the function of ScCaM1 was evaluated via heterologous yeast expression systems. RESULTS Three typical CaM members (SsCaM1, SsCaM2, and SsCaM3) were identified from the S. spontaneum genome database. CaMs were originated from the two last common ancestors before the origin of angiosperms. The number of CaM family members did not correlate to the genome size but correlated with allopolyploidization events. The ScCaM1 was more highly expressed in buds and roots than in other tissues. The expression patterns of ScCaM1 suggested that it was involved in responses to various abiotic stresses in sugarcane via different hormonal signaling pathways. Noteworthily, its expression levels appeared relatively stable during the cold exposure in the cold-tolerant variety but significantly suppressed in the cold-susceptible variety. Moreover, the recombinant yeast (Pichia pastoris) overexpressing ScCaM1 grew better than the wild-type yeast strain under cold and oxidative stresses. It was revealed that the ScCaM1 played a positive role in reactive oxygen species scavenging and conferred enhanced cold and oxidative stress tolerance to cells. CONCLUSION This study provided comprehensive information on the CaM gene family in Saccharum and would facilitate further investigation of their functional characterization.
Collapse
Affiliation(s)
- Hengbo Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meichang Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoqiang Zhong
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing Yu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
16
|
Cai K, Kuang L, Yue W, Xie S, Xia X, Zhang G, Wang J. Calmodulin and calmodulin-like gene family in barley: Identification, characterization and expression analyses. FRONTIERS IN PLANT SCIENCE 2022; 13:964888. [PMID: 36061813 PMCID: PMC9439640 DOI: 10.3389/fpls.2022.964888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/29/2022] [Indexed: 05/11/2023]
Abstract
Calmodulin (CaM) and calmodulin-like (CML) proteins are Ca2+ relays and play diverse and multiple roles in plant growth, development and stress responses. However, CaM/CML gene family has not been identified in barley (Hordeum vulgare). In the present study, 5 HvCaMs and 80 HvCMLs were identified through a genome-wide analysis. All HvCaM proteins possessed 4 EF-hand motifs, whereas HvCMLs contained 1 to 4 EF-hand motifs. HvCaM2, HvCaM3 and HvCaM5 coded the same polypeptide although they differed in nucleotide sequence, which was identical to the polypeptides coded by OsCaM1-1, OsCaM1-2 and OsCaM1-3. HvCaMs/CMLs were unevenly distributed over barley 7 chromosomes, and could be phylogenetically classified into 8 groups. HvCaMs/CMLs differed in gene structure, cis-acting elements and tissue expression patterns. Segmental and tandem duplication were observed among HvCaMs/CMLs during evolution. HvCML16, HvCML18, HvCML50 and HvCML78 were dispensable genes and the others were core genes in barley pan-genome. In addition, 14 HvCaM/CML genes were selected to examine their responses to salt, osmotic and low potassium stresses by qRT-PCR, and their expression were stress-and time-dependent. These results facilitate our understanding and further functional identification of HvCaMs/CMLs.
Collapse
Affiliation(s)
- Kangfeng Cai
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
| | - Liuhui Kuang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Wenhao Yue
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
| | - Shanggeng Xie
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Xue Xia
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoping Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Junmei Wang
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
- *Correspondence: Junmei Wang,
| |
Collapse
|
17
|
Ahmad M, Waraich EA, Skalicky M, Hussain S, Zulfiqar U, Anjum MZ, Habib ur Rahman M, Brestic M, Ratnasekera D, Lamilla-Tamayo L, Al-Ashkar I, EL Sabagh A. Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Under a Changing Climate: An Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:767150. [PMID: 34975951 PMCID: PMC8714756 DOI: 10.3389/fpls.2021.767150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 05/16/2023]
Abstract
Temperature is one of the decisive environmental factors that is projected to increase by 1. 5°C over the next two decades due to climate change that may affect various agronomic characteristics, such as biomass production, phenology and physiology, and yield-contributing traits in oilseed crops. Oilseed crops such as soybean, sunflower, canola, peanut, cottonseed, coconut, palm oil, sesame, safflower, olive etc., are widely grown. Specific importance is the vulnerability of oil synthesis in these crops against the rise in climatic temperature, threatening the stability of yield and quality. The natural defense system in these crops cannot withstand the harmful impacts of heat stress, thus causing a considerable loss in seed and oil yield. Therefore, a proper understanding of underlying mechanisms of genotype-environment interactions that could affect oil synthesis pathways is a prime requirement in developing stable cultivars. Heat stress tolerance is a complex quantitative trait controlled by many genes and is challenging to study and characterize. However, heat tolerance studies to date have pointed to several sophisticated mechanisms to deal with the stress of high temperatures, including hormonal signaling pathways for sensing heat stimuli and acquiring tolerance to heat stress, maintaining membrane integrity, production of heat shock proteins (HSPs), removal of reactive oxygen species (ROS), assembly of antioxidants, accumulation of compatible solutes, modified gene expression to enable changes, intelligent agricultural technologies, and several other agronomic techniques for thriving and surviving. Manipulation of multiple genes responsible for thermo-tolerance and exploring their high expressions greatly impacts their potential application using CRISPR/Cas genome editing and OMICS technology. This review highlights the latest outcomes on the response and tolerance to heat stress at the cellular, organelle, and whole plant levels describing numerous approaches applied to enhance thermos-tolerance in oilseed crops. We are attempting to critically analyze the scattered existing approaches to temperature tolerance used in oilseeds as a whole, work toward extending studies into the field, and provide researchers and related parties with useful information to streamline their breeding programs so that they can seek new avenues and develop guidelines that will greatly enhance ongoing efforts to establish heat stress tolerance in oilseeds.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
- Horticultural Sciences Department, Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL, United States
| | | | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zohaib Anjum
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Habib ur Rahman
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
- Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University Bonn, Bonn, Germany
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Disna Ratnasekera
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka
| | - Laura Lamilla-Tamayo
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Ayman EL Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| |
Collapse
|
18
|
Transcriptomics Reveals the ERF2- bHLH2- CML5 Module Responses to H 2S and ROS in Postharvest Calcium Deficiency Apples. Int J Mol Sci 2021; 22:ijms222313013. [PMID: 34884817 PMCID: PMC8657956 DOI: 10.3390/ijms222313013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Calcium deficiency usually causes accelerated quality deterioration in postharvest fruit, whereas the underlining mechanism is still unclear. Here, we report that calcium deficiency induced the development of bitter pit on the surface of apple peels compared with the healthy appearance in control apples during postharvest storage. Physiological analysis indicates that calcium-deficient peels contained higher levels of superoxide anion (O2•−), malondialdehyde (MDA), total phenol, flavonoid contents and polyphenol oxidase (PPO) activity, and reduced calcium, H2S production, anthocyanin, soluble protein content, and peroxidase (POD) activity compared with those in calcium-sufficient peels. The principal component analysis (PCA) results show that calcium content, ROS, and H2S production were the main factors between calcium-deficient and calcium-sufficient apple peels. Transcriptome data indicated that four calmodulin-like proteins (CMLs), seven AP2/ERFs, and three bHLHs transcripts were significantly differentially expressed in calcium-deficient apple peels. RT-qPCR and correlation analyses further revealed that CML5 expression was significantly positively correlated with the expression of ERF2/17, bHLH2, and H2S production related genes. In addition, transcriptional co-activation of CML5 by ERF2 and bHLH2 was demonstrated by apple transient expression assays and dual-luciferase reporter system experiments. Therefore, these findings provide a basis for studying the molecular mechanism of postharvest quality decline in calcium-deficient apples and the potential interaction between Ca2+ and endogenous H2S.
Collapse
|
19
|
Jamra G, Agarwal A, Singh N, Sanyal SK, Kumar A, Pandey GK. Ectopic expression of finger millet calmodulin confers drought and salinity tolerance in Arabidopsis thaliana. PLANT CELL REPORTS 2021; 40:2205-2223. [PMID: 34250550 DOI: 10.1007/s00299-021-02743-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Overexpression of finger millet calmodulin imparts drought and salt tolerance in plants. Drought and salinity are major environmental stresses which affect crop productivity and therefore are major hindrance in feeding growing population world-wide. Calcium (Ca2+) signaling plays a crucial role during the plant's response to these stress stimuli. Calmodulin (CaM), a crucial Ca2+sensor, is involved in transducing the signal downstream in various physiological, developmental and stress responses by modulating a plethora of target proteins. The role of CaM has been well established in the model plant Arabidopsis thaliana for regulating various developmental processes, stress signaling and ion transport. In the current study, we investigate the CaM of Eleusine coracana (common name finger millet, known especially for its drought tolerance and superior Ca2+ content). In-silico analysis showed that Eleusine CaM (EcCaM) has greater similarity to rice CaM as compared to Arabidopsis CaM due to the presence of highly conserved four EF-hand domains. To decipher the in-planta function of EcCaM, we have adopted the gain-of-function approach by generating the 35S::EcCaM over-expression transgenic in Arabidopsis. Overexpression of EcCaM in Arabidopsis makes the plant tolerant to polyethylene glycol (PEG) induced drought and salt stress (NaCl) as demonstrated by post-germination based phenotypic assay, ion leakage, MDA and proline estimation, ROS detection under stressed and normal conditions. Moreover, EcCaM overexpression leads to hypersensitivity toward exogenously applied ABA at the seed germination stage. These findings reveal that EcCaM mediates tolerance to drought and salinity stress. Also, our results indicate that EcCaM is involved in modulating ABA signaling. Summarizing our results, we report for the first time that EcCaM is involved in modulating plants response to stress and this information can be used for the generation of future-ready crops that can tolerate a wide range of abiotic stresses.
Collapse
Affiliation(s)
- Gautam Jamra
- Department of Molecular Biology and Genetic Engineering, GBPUA&T, Pantnagar, Uttarakhand, India
- Lab No. 302, Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, South Campus, South Moti Bagh, Dhaula Kuan, New Delhi, 110021, India
| | - Aparna Agarwal
- Department of Molecular Biology and Genetic Engineering, GBPUA&T, Pantnagar, Uttarakhand, India
| | - Nidhi Singh
- Lab No. 302, Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, South Campus, South Moti Bagh, Dhaula Kuan, New Delhi, 110021, India
| | - Sibaji K Sanyal
- Lab No. 302, Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, South Campus, South Moti Bagh, Dhaula Kuan, New Delhi, 110021, India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, GBPUA&T, Pantnagar, Uttarakhand, India.
- Rani Lakshmi Bai Central Agriculture University, NH-75, Near Pahuj Dam, Gwalior Road, Jhansi, 284003, Uttar Pradesh, India.
| | - Girdhar K Pandey
- Lab No. 302, Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, South Campus, South Moti Bagh, Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
20
|
Ding H, Qian Y, Fang Y, Ji Y, Sheng J, Ge C. Characteristics of SlCML39, a Tomato Calmodulin-like Gene, and Its Negative Role in High Temperature Tolerance of Arabidopsis thaliana during Germination and Seedling Growth. Int J Mol Sci 2021; 22:ijms222111479. [PMID: 34768907 PMCID: PMC8584099 DOI: 10.3390/ijms222111479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Calmodulin-like (CML) proteins are primary calcium sensors and function in plant growth and response to stress stimuli. However, so far, the function of plant CML proteins, including tomato, is still unclear. Previously, it was found that a tomato (Solanum lycopersicum) CML, here named SlCML39, was significantly induced by high temperature (HT) at transcription level, but its biological function is scarce. In this study, the characteristics of SlCML39 and its role in HT tolerance were studied. SlCML39 encodes a protein of 201 amino acids containing four EF hand motifs. Many cis-acting elements related to plant stress and hormone response appear in the promoter regions of SlCML39. SlCML39 is mainly expressed in the root, stem, and leaf and can be regulated by HT, cold, drought, and salt stresses as well as ABA and H2O2. Furthermore, heterologous overexpression of SlCML39 reduces HT tolerance in Arabidopsis thaliana at the germination and seedling growth stages. To better understand the molecular mechanism of SlCML39, the downstream gene network regulated by SlCML39 under HT was analyzed by RNA-Seq. Interestingly, we found that many genes involved in stress responses as well as ABA signal pathway are down-regulated in the transgenic seedlings under HT stress, such as KIN1, RD29B, RD26, and MAP3K18. Collectively, these data indicate that SlCML39 acts as an important negative regulator in response to HT stress, which might be mediated by the ABA signal pathway.
Collapse
Affiliation(s)
- Haidong Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
- Correspondence: (H.D.); (C.G.); Tel./Fax: +86-514-8797-9204
| | - Ying Qian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Yifang Fang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Yurong Ji
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Jiarong Sheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Cailin Ge
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
- Correspondence: (H.D.); (C.G.); Tel./Fax: +86-514-8797-9204
| |
Collapse
|