1
|
Muntaha SN, Fettke J. Protein targeting to Starch 2 and the plastidial phosphorylase 1 revealed protein-protein interactions with photosynthesis proteins in yeast two-hybrid screenings. PLANT SIGNALING & BEHAVIOR 2025; 20:2470775. [PMID: 40008471 DOI: 10.1080/15592324.2025.2470775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Starch metabolism in plants involves a complex network of interacting proteins that work together to ensure the efficient synthesis and degradation of starch. These interactions are crucial for regulating the balance between energy storage and release, adapting to the plant's developmental stage and environmental conditions. Several studies have been performed to investigate protein-protein interactions (PPIs) in starch metabolism complexes, yet it remains impossible to unveil all of the PPIs in this highly regulated process. This study uses yeast-two-hybrid (Y2H) screening against the Arabidopsis leaf cDNA library to explore PPIs, focusing on the starch-granule-initiating protein named Protein Targeting to Starch 2 (PTST2, At1g27070) and the protein involved in starch and maltodextrin metabolism, namely, plastidial phosphorylase 1 (PHS1, EC 2.4.1.1). More than 100 positive interactions were sequenced, and we found chloroplastidial proteins to be putative interacting partners of PTST2 and PHS1. Among them, photosynthetic proteins were discovered. These novel interactions could reveal new roles of PTST2 and PHS1 in the connection between starch metabolism and photosynthesis. This dynamic interplay between starch metabolism and other chloroplast functions highlights the importance of starch as both an energy reservoir and a regulatory component in the broader context of plant physiology and adaptation.
Collapse
Affiliation(s)
- Sidratul Nur Muntaha
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| |
Collapse
|
2
|
Liu Y, Wang Y, Cao J, Wu H, Yao Z. The polysaccharide-based nanoemulsions: Preparation, mechanism, and application in food preservation-A review. Int J Biol Macromol 2025; 309:142898. [PMID: 40203936 DOI: 10.1016/j.ijbiomac.2025.142898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/26/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
The stability and bioavailability of antioxidant, antibacterial, and other bioactive substances could be improved through nanoemulsion systems, as a result, nanoemulsion technology has become popular in food preservation. Polysaccharides are green polymers, their renewability, richness, safety, and functionality determine broad application prospects. Polysaccharide-based nanoemulsion coatings with good waterproofness, and mechanical and biological properties are found to effectively prevent or delay water loss, respiration, gas exchange, and microbial corruption of fruits, vegetables, and meat products, and they will be an important innovative technology for sustainable development in the future. The structural and functional properties of polysaccharides that could stabilize nanoemulsions have been discussed, and the preparation methods, physicochemical properties, stability, and formation mechanism of nanoemulsions have been summarized in this review. In addition, the preparation methods of polysaccharide-based nanoemulsion coatings are summarized, the application and preservation mechanisms in fruits, vegetables, and meat products have been introduced, and future perspectives have been discussed. At present, the related researches mainly focus on the bactericidal activity and the sensory quality of food products, while the in-depth research is unclear, this review provides ideas for the subsequent research on polysaccharide-based nanoemulsions for food preservation.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Yibing Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Haige Wu
- College of Life and Health, Dalian University, Dalian 116600, Liaoning, China
| | - Ziang Yao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
3
|
Liu Q, Zhou Y, Flores Castellanos J, Fettke J. The maltose-related starch degradation pathway promotes the formation of large and spherical transitory starch granules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:712-728. [PMID: 39254098 DOI: 10.1111/tpj.17016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
Previously, in Arabidopsis thaliana, we found atypical spherical starch granules in dpe2ss4 and dpe2phs1ss4. However, the mechanism of such abnormal morphogenesis is still obscure. By tracking starch granule length and thickness with leaf ageing, we reported that the starch granules in dpe2phs1ss4 gradually change to a spherical shape over time. In comparison, Col-0 and the parental line ss4 did not exhibit macroscopic morphological alteration. In this study, firstly, we specify that the additional lack of DPE2 resulted in the gradual alteration of starch granule morphology over time. Similar gradual morphological alterations were also found in dpe2, mex1, and sex4 but not in the other starch degradation-related mutants, such as sex1-8, pwd, and bam3. The gradual alteration of starch morphology can be eliminated by omitting the dark phase, suggesting that the particular impaired starch degradation in dpe2- and mex1-related mutants influences starch morphology. Secondly, we observed that spherical starch morphology generation was accompanied by prominent elevated short glucan chains of amylopectin and an increased amylose proportion. Thirdly, the interplay between soluble starch synthase 2 and branching enzymes was affected and resulted in the formation of spherical starch granules. The resulting spherical starch granules allow for elevated starch synthesis efficiency. Fourthly, the starch phosphate content at the granule surface correlated with the morphology alteration of the starch granules. Herewith, we propose a model that spherical starch granules, accumulated in mutants with a misbalance of the starch degradation pathway, are result of elevated starch synthesis to cope with overloaded carbohydrates.
Collapse
Affiliation(s)
- Qingting Liu
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476, Potsdam-Golm, Germany
| | - Yuan Zhou
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Junio Flores Castellanos
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476, Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476, Potsdam-Golm, Germany
| |
Collapse
|
4
|
Malekzadeh E, Tatari A, Dehghani Firouzabadi M. Effects of biodegradation of starch-nanocellulose films incorporated with black tea extract on soil quality. Sci Rep 2024; 14:18817. [PMID: 39138283 PMCID: PMC11322552 DOI: 10.1038/s41598-024-69841-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
This study aimed to investigate the biodegradation behaviour of starch/nanocellulose/black tea extract (SNBTE) films in a 30-day soil burial test. The SNBTE films were prepared by mixing commercial starch, nanocellulose (2, 4, and 6%), and an aqueous solution of black tea extract by a simple mixing and casting process. The chemical and morphological properties of the SNBTE films before and after biodegradation were characterized using the following analytical techniques such as field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and fourier transform infrared (FTIR). The changes in soil composition, namely pH, electrical conductivity (EC), moisture content, water holding capacity (WHC), soil respiration, total nitrogen, weight mean diameter (MDW), and geometric mean diameter (GMD), as a result of the biodegradation process, were also estimated. The results showed that the films exhibited considerable biodegradability (35-67%) within 30 days while increasing soil nutrients. The addition of black tea extract reduced the biodegradation rate due to its polyphenol content, which likely resulted in a reduction in microbial activity. The addition of nanocellulose (2-6% weight of starch) increased the tensile strength, but decreased the elongation at break of the films. These results suggest that starch nanocellulose and SNBTE films are not only biodegradable under soil conditions but also positively contribute to soil health, highlighting their potential as an environmentally friendly alternative to traditional plastic films in the packaging industry.
Collapse
Affiliation(s)
- Elham Malekzadeh
- Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, PO Box: 4918943464, Gorgan, Golestan, Iran.
| | - Aliasghar Tatari
- Department of Paper Science and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | |
Collapse
|
5
|
Li X, Ahmad AM, Zhong Y, Ding L, Blennow A, Fettke J. Starch phosphorylation regulates starch granule morphological homogeneity in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 194:2600-2615. [PMID: 38060678 PMCID: PMC10980398 DOI: 10.1093/plphys/kiad656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 04/01/2024]
Abstract
Starch granule morphological homogeneity presents a gap in starch research. Transitory starch granules in wild-type plants are discoid, regardless of species. Notably, while the shape of starch granules can differ among mutants, it typically remains homogeneous within a genotype. We found an Arabidopsis thaliana mutant, dpe2sex4, lacking both the cytosolic disproportionating enzyme 2 (DPE2) and glucan phosphatase SEX4, showing an unprecedented bimodal starch granule diameter distribution when grown under a light/dark rhythm. dpe2sex4 contained 2 types of starch granules: large granules and small granules. In contrast to the double starch initiation in wheat (Triticum aestivum) endosperm, where A-type granules are initiated first and B-type granules are initiated later, dpe2sex4 small and large granules developed simultaneously in the same chloroplast. Compared with the large granules, the small granules had more branched amylopectin and less surface starch-phosphate, thus having a more compact structure that may hinder starch synthesis. During plant aging, the small granules barely grew. In in vitro experiments, fewer glucosyl residues were incorporated in small granules. Under continuous light, dpe2sex4 starch granules were morphologically homogeneous. Omitting the dark phase after a 2-wk light/dark cycle by moving plants into continuous light also reduced morphological variance between these 2 types of granules. These data shed light on the impact of starch phosphorylation on starch granule morphology homogeneity.
Collapse
Affiliation(s)
- Xiaoping Li
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm 14776, Germany
| | - Abubakar Musa Ahmad
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm 14776, Germany
| | - Yuyue Zhong
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Li Ding
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm 14776, Germany
| |
Collapse
|
6
|
Wang Y, Li H, Rasool A, Wang H, Manzoor R, Zhang G. Polymeric nanoparticles (PNPs) for oral delivery of insulin. J Nanobiotechnology 2024; 22:1. [PMID: 38167129 PMCID: PMC10763344 DOI: 10.1186/s12951-023-02253-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Successful oral insulin administration can considerably enhance the quality of life (QOL) of diabetes patients who must frequently take insulin injections. Oral insulin administration, on the other hand, is seriously hampered by gastrointestinal enzymes, wide pH range, mucus and mucosal layers, which limit insulin oral bioavailability to ≤ 2%. Therefore, a large number of technological solutions have been proposed to increase the oral bioavailability of insulin, in which polymeric nanoparticles (PNPs) are highly promising for oral insulin delivery. The recently published research articles chosen for this review are based on applications of PNPs with strong future potential in oral insulin delivery, and do not cover all related work. In this review, we will summarize the controlled release mechanisms of oral insulin delivery, latest oral insulin delivery applications of PNPs nanocarrier, challenges and prospect. This review will serve as a guide to the future investigators who wish to engineer and study PNPs as oral insulin delivery systems.
Collapse
Affiliation(s)
- Yunyun Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Hao Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Aamir Rasool
- Institute of Biochemistry, University of Balochistan, Quetta, 78300, Pakistan.
| | - Hebin Wang
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, 741000, China.
| | - Robina Manzoor
- Department of Biotechnology and Bioinformatics, Water and Marine Sciences, Lasbella University of Agriculture, Uthal, 90150, Pakistan
| | - Genlin Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
7
|
Compart J, Singh A, Fettke J, Apriyanto A. Customizing Starch Properties: A Review of Starch Modifications and Their Applications. Polymers (Basel) 2023; 15:3491. [PMID: 37631548 PMCID: PMC10459083 DOI: 10.3390/polym15163491] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Starch has been a convenient, economically important polymer with substantial applications in the food and processing industry. However, native starches present restricted applications, which hinder their industrial usage. Therefore, modification of starch is carried out to augment the positive characteristics and eliminate the limitations of the native starches. Modifications of starch can result in generating novel polymers with numerous functional and value-added properties that suit the needs of the industry. Here, we summarize the possible starch modifications in planta and outside the plant system (physical, chemical, and enzymatic) and their corresponding applications. In addition, this review will highlight the implications of each starch property adjustment.
Collapse
Affiliation(s)
| | | | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Golm, 14476 Potsdam, Germany; (J.C.); (A.S.); (A.A.)
| | | |
Collapse
|
8
|
Guo X, Ge Z, Wang M, Zhao M, Pei Y, Song X. Genome-wide association study of quality traits and starch pasting properties of maize kernels. BMC Genomics 2023; 24:59. [PMID: 36732681 PMCID: PMC9893588 DOI: 10.1186/s12864-022-09031-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/21/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Starch are the main nutritional components of maize (Zea mays L.), and starch pasting properties are widely used as essential indicators for quality estimation. Based on the previous studies, various genes related to pasting properties have been identified in maize. However, the loci underlying variations in starch pasting properties in maize inbred lines remain to be identified. RESULTS To investigate the genetic architecture of these traits, the starch pasting properties were examined based on 292 maize inbred lines, which were genotyped with the MaizeSNP50 BeadChip composed of 55,126 evenly spaced, random SNPs. A genome-wide association study (GWAS) implemented in the software package FarmCPU was employed to identify genomic loci for the starch pasting properties. 48 SNPs were found to be associated with pasting properties. Moreover, 37 candidate genes were correlated with pasting properties. Among the candidate genes, GRMZM2G143646 and GRMZM2G166407 were associated with breakdown and final viscosity significantly, and both genes encode PPR (Pentatricopeptide repeat) protein. We used GWAS to explore candidate genes of maize starch pasting properties in this study. The identified candidate genes will be useful for further understanding of the genetic architecture of starch pasting properties in maize. CONCLUSION This study showed a complex regulation network about maize quality trait and starch pasting properties. It may provide some useful markers for marker assisted selection and a basis for cloning the genes behind these SNPs.
Collapse
Affiliation(s)
- Xinmei Guo
- grid.412608.90000 0000 9526 6338College of Agronomy, Qingdao Agricultural University, Qingdao, 266109 China
| | - Zhaopeng Ge
- grid.412608.90000 0000 9526 6338College of Agronomy, Qingdao Agricultural University, Qingdao, 266109 China
| | - Ming Wang
- grid.412608.90000 0000 9526 6338College of Agronomy, Qingdao Agricultural University, Qingdao, 266109 China
| | - Meiai Zhao
- grid.412608.90000 0000 9526 6338College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
| | - Yuhe Pei
- grid.412608.90000 0000 9526 6338College of Agronomy, Qingdao Agricultural University, Qingdao, 266109 China
| | - Xiyun Song
- grid.412608.90000 0000 9526 6338College of Agronomy, Qingdao Agricultural University, Qingdao, 266109 China
| |
Collapse
|
9
|
Lal MK, Sharma N, Adavi SB, Sharma E, Altaf MA, Tiwari RK, Kumar R, Kumar A, Dey A, Paul V, Singh B, Singh MP. From source to sink: mechanistic insight of photoassimilates synthesis and partitioning under high temperature and elevated [CO 2]. PLANT MOLECULAR BIOLOGY 2022; 110:305-324. [PMID: 35610527 DOI: 10.1007/s11103-022-01274-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/10/2022] [Indexed: 05/27/2023]
Abstract
Photosynthesis is the vital metabolism of the plant affected by abiotic stress such as high temperature and elevated [CO2] levels, which ultimately affect the source-sink relationship. Triose phosphate, the primary precursor of carbohydrate (starch and sucrose) synthesis in the plant, depends on environmental cues. The synthesis of starch in the chloroplasts of leaves (during the day), the transport of photoassimilates (sucrose) from source to sink, the loading and unloading of photoassimilates, and the accumulation of starch in the sink tissue all require a highly regulated network and communication system within the plant. These processes might be affected by high-temperature stress and elevated [CO2] conditions. Generally, elevated [CO2] levels enhance plant growth, photosynthetic rate, starch synthesis, and accumulation, ultimately diluting the nutrient of sink tissues. On the contrary, high-temperature stress is detrimental to plant development affecting photosynthesis, starch synthesis, sucrose synthesis and transport, and photoassimilate accumulation in sink tissues. Moreover, these environmental conditions also negatively impact the quality attributes such as grain/tuber quality, cooking quality, nutritional status in the edible parts and organoleptic traits. In this review, we have attempted to provide an insight into the source-sink relationship and the sugar metabolites synthesized and utilized by the plant under elevated [CO2] and high-temperature stress. This review will help future researchers comprehend the source-sink process for crop growth under changing climate scenarios.
Collapse
Affiliation(s)
- Milan Kumar Lal
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Nitin Sharma
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Dr Yashwant, Singh Parmar University of Horticulture & Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| | - Sandeep B Adavi
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Eshita Sharma
- Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | | | - Rahul Kumar Tiwari
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Vijay Paul
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Madan Pal Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
10
|
Panigrahy SK, Kumar A. Biopolymeric nanocarrier: an auspicious system for oral delivery of insulin. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2145-2164. [PMID: 35773232 DOI: 10.1080/09205063.2022.2096527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Subcutaneous administration of insulin has been practiced for the clinical supervision of diabetes pathogenesis but it is often ineffective to imitate the glucose homeostasis and is always invasive. Therefore, it causes patient discomfort and infection of local tissue. These issues lead to finding an alternative route for insulin delivery that could be effective, promising, and non-invasive. However, delivery of insulin orally is the most suitable route but the rapid breakdown of insulin by the gastrointestinal enzymes becomes a major barrier to this method. Therefore, nanocarriers (which guard insulin against degradation and facilitate its uptake) are preferred for oral insulin delivery. Among various categories of nanocarriers, bio-polymeric nanocarriers draw special attention owing to their hydrophilic, non-toxic, and biodegradable nature. This review provides a detailed overview of insulin-loaded biopolymer-based nanocarriers, which give future direction in the optimization and development of a clinically functional formulation for their effective and safe delivery.
Collapse
Affiliation(s)
- Suchitra Kumari Panigrahy
- Department of Biotechnology, Guru GhasidasVishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| |
Collapse
|
11
|
Meng Y, Qiu C, Li X, McClements DJ, Sang S, Jiao A, Jin Z. Polysaccharide-based nano-delivery systems for encapsulation, delivery, and pH-responsive release of bioactive ingredients. Crit Rev Food Sci Nutr 2022; 64:187-201. [PMID: 35930011 DOI: 10.1080/10408398.2022.2105800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polysaccharides are natural polymers isolated from plants, microorganisms, algae, and some animals they are composed of aldoses or ketoses linked by glycosidic bonds. Due to the affordability, abundance, safety, and functionality, polysaccharides are widely used in the foods and medicines to construct oral delivery systems for sensitive bioactive ingredients. In this article, the characteristics and applications of nanoscale polysaccharide-based delivery carriers are reviewed, including their ability to encapsulate, protect, and deliver bioactive ingredients. This review discusses the sources, characteristics, and functional properties of common food polysaccharides, including starch, pectin, chitosan, xanthan gum, and alginate. It also highlights the potential advantages of using polysaccharides for the construction of nano-delivery systems, such as nanoparticles, nanogels, nanoemulsions, nanocapsules, and nanofibers. Moreover, the application of delivery systems assembled from polysaccharides is summarized, with a focus on pH-responsive delivery of bioactives. There are some key findings and conclusions: Nanoscale polysaccharide delivery systems provide several advantages, including improved water-dispersibility, flavor masking, stability enhancement, reduced volatility, and controlled release; Polysaccharide nanocarriers can be used to construct pH-responsive delivery vehicles to achieve intestinal-targeted delivery and controlled release of bioactive ingredients; Polysaccharides can be used in combination with other biopolymers to form composite delivery systems with enhanced functional attributes.
Collapse
Affiliation(s)
- Yaxu Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, United States
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Singh A, Compart J, Al-Rawi SA, Mahto H, Ahmad AM, Fettke J. LIKE EARLY STARVATION 1 alters the glucan structures at the starch granule surface and thereby influences the action of both starch-synthesizing and starch-degrading enzymes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:819-835. [PMID: 35665549 DOI: 10.1111/tpj.15855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
For starch metabolism to take place correctly, various enzymes and proteins acting on the starch granule surface are crucial. Recently, two non-catalytic starch-binding proteins, pivotal for normal starch turnover in Arabidopsis leaves, namely, EARLY STARVATION 1 (ESV1) and its homolog LIKE EARLY STARVATION 1 (LESV), have been identified. Both share nearly 38% sequence homology. As ESV1 has been found to influence glucan phosphorylation via two starch-related dikinases, α-glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD), through modulating the surface glucan structures of the starch granules and thus affecting starch degradation, we assess the impact of its homolog LESV on starch metabolism. Thus, the 65-kDa recombinant protein LESV and the 50-kDa ESV1 were analyzed regarding their influence on the action of GWD and PWD on the surface of the starch granules. We included starches from various sources and additionally assessed the effect of these non-enzymatic proteins on other starch-related enzymes, such as starch synthases (SSI and SSIII), starch phosphorylases (PHS1), isoamylase and β-amylase. The data obtained indicate that starch phosphorylation, hydrolyses and synthesis were affected by LESV and ESV1. Furthermore, incubation with LESV and ESV1 together exerted an additive effect on starch phosphorylation. In addition, a stable alteration of the glucan structures at the starch granule surface following treatment with LESV and ESV1 was observed. Here, we discuss all the observed changes that point to modifications in the glucan structures at the surface of the native starch granules and present a model to explain the existing processes.
Collapse
Affiliation(s)
- Aakanksha Singh
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Julia Compart
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Shadha Abduljaleel Al-Rawi
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Harendra Mahto
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Abubakar Musa Ahmad
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| |
Collapse
|
13
|
Orally Disintegrating Film: A New Approach to Nutritional Supplementation. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Abdel-Moneim A, Ramadan H. Novel strategies to oral delivery of insulin: Current progress of nanocarriers for diabetes management. Drug Dev Res 2021; 83:301-316. [PMID: 34859477 DOI: 10.1002/ddr.21903] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/30/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus is one of the most serious public health problems in the world. Repeated daily injections of subcutaneous insulin is the standard treatment for patients with type 1 diabetes mellitus; however, subcutaneous insulin injections can potentially cause local discomfort, patient noncompliance, hypoglycemia, failure to regulate glucose homeostasis, infections, and fat deposits at the injection sites. In recent years, numerous attempts have been made to produce safe and efficient nanoparticles for oral insulin delivery. Oral administration is considered the most effective alternative route to insulin injection, but it is accompanied by several challenges related to enzymatic proteolysis, digestive breakdown, and absorption barriers. A number of natural and synthetic polymeric, lipid-based, and inorganic nanoparticles have been investigated for use. Although improvements have recently been made in potential oral insulin delivery systems, these require further investigation before clinical trials are conducted. In this review, new approaches to oral insulin delivery for diabetes treatment are discussed, including polymeric, lipid-based, and inorganic nanoparticles, as well as the clinical trials performed for this purpose.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hanaa Ramadan
- Histology and Molecular Cytology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
15
|
Mérida A, Fettke J. Starch granule initiation in Arabidopsis thaliana chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:688-697. [PMID: 34051021 DOI: 10.1111/tpj.15359] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
The initiation of starch granule formation and the mechanism controlling the number of granules per plastid have been some of the most elusive aspects of starch metabolism. This review covers the advances made in the study of these processes. The analyses presented herein depict a scenario in which starch synthase isoform 4 (SS4) provides the elongating activity necessary for the initiation of starch granule formation. However, this protein does not act alone; other polypeptides are required for the initiation of an appropriate number of starch granules per chloroplast. The functions of this group of polypeptides include providing suitable substrates (maltooligosaccharides) to SS4, the localization of the starch initiation machinery to the thylakoid membranes, and facilitating the correct folding of SS4. The number of starch granules per chloroplast is tightly regulated and depends on the developmental stage of the leaves and their metabolic status. Plastidial phosphorylase (PHS1) and other enzymes play an essential role in this process since they are necessary for the synthesis of the substrates used by the initiation machinery. The mechanism of starch granule formation initiation in Arabidopsis seems to be generalizable to other plants and also to the synthesis of long-term storage starch. The latter, however, shows specific features due to the presence of more isoforms, the absence of constantly recurring starch synthesis and degradation, and the metabolic characteristics of the storage sink organs.
Collapse
Affiliation(s)
- Angel Mérida
- Institute of Plant Biochemistry and Photosynthesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla (US), Avda Américo Vespucio, 49, Sevilla, 41092, Spain
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, 14476, Germany
| |
Collapse
|