1
|
Shegay PV, Shatova OP, Zabolotneva AA, Shestopalov AV, Kaprin AD. Moonlight functions of glycolytic enzymes in cancer. Front Mol Biosci 2023; 10:1076138. [PMID: 37449059 PMCID: PMC10337784 DOI: 10.3389/fmolb.2023.1076138] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Since an extensive genome research has started, basic principle "one gene-one protein-one function" was significantly revised. Many proteins with more than one function were identified and characterized as "moonlighting" proteins, which activity depend not only on structural peculiarities but also on compartmentation and metabolic environment. It turned out that "housekeeping" glycolytic enzymes show important moonlight functions such as control of development, proliferation, apoptosis, migration, regulation of transcription and cell signaling. Glycolytic enzymes emerged very early in evolution and because of the limited content of genomes, they could be used as ancient regulators for intercellular and intracellular communication. The multifunctionality of the constitutively expressed enzymes began to serve cancer cell survival and growth. In the present review we discuss some moonlight functions of glycolytic enzymes that important for malignant transformation and tumor growth.
Collapse
Affiliation(s)
- Petr V. Shegay
- Federal State Budget Institution, National Medical Research Radiology Center of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Olga P. Shatova
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Biochemistry Department, Peoples’ Friendship University of Russia, Moscow, Russia
| | - Anastasia A. Zabolotneva
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- National Medical Research Centre for Endocrinology, Laboratory of Biochemistry of Signaling Pathways, Moscow, Russia
| | - Aleksandr V. Shestopalov
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- National Medical Research Centre for Endocrinology, Laboratory of Biochemistry of Signaling Pathways, Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei D. Kaprin
- Federal State Budget Institution, National Medical Research Radiology Center of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
- Biochemistry Department, Peoples’ Friendship University of Russia, Moscow, Russia
| |
Collapse
|
2
|
Tian T, Han J, Huang J, Li S, Pang H. Hypoxia-Induced Intracellular and Extracellular Heat Shock Protein gp96 Increases Paclitaxel-Resistance and Facilitates Immune Evasion in Breast Cancer. Front Oncol 2022; 11:784777. [PMID: 34988020 PMCID: PMC8722103 DOI: 10.3389/fonc.2021.784777] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUNDS Hypoxia contributes to cancer progression, drug resistance and immune evasion in various cancers, including breast cancer (BC), but the molecular mechanisms have not been fully studied. Thus, the present study aimed to investigate this issue. METHODS The paclitaxel-sensitive BC (PS-BC) cells were administered with continuous low-dose paclitaxel treatment to establish paclitaxel-resistant BC (PR-BC) cells. Exosomes were isolated/purified by using the commercial kit, which were observed by Transmission electron microscopy (TEM). Cell viability was measured by MTT assay, cell apoptosis was determined by flow cytometer (FCM). Gene expressions were respectively measured by Real-Time qPCR, Western Blot and immunofluorescence staining assay. The peripheral mononuclear cells (PBMCs) derived CD8+ T cells were obtained and co-cultured with gp96-containing exosomes, and cell proliferation was evaluated by EdU assay. ELISA was employed to measure cytokine secretion in CD8+ T cells' supernatants. RESULTS HSP gp96 was significantly upregulated in the cancer tissues and plasma exosomes collected from BC patients with paclitaxel-resistant properties. Also, continuous low-dose paclitaxel treatment increased gp96 levels in the descendent PR-BC cells and their exosomes, in contrast with the parental PS-BC cells. Upregulation of gp96 increased paclitaxel-resistance in PS-BC cells via degrading p53, while gp96 silence sensitized PR-BC cells to paclitaxel treatments. Moreover, PR-BC derived gp96 exosomes promoted paclitaxel-resistance in PS-BC cells and induced pyroptotic cell death in the CD8+ T cells isolated from human peripheral blood mononuclear cells (pPBMCs). Furthermore, we noticed that hypoxia promoted gp96 generation and secretion through upregulating hypoxia-inducible factor 1 (HIF-1), and hypoxia increased paclitaxel-resistance and accelerated epithelial-mesenchymal transition (EMT) in PS-BC cells. CONCLUSIONS Hypoxia induced upregulation of intracellular and extracellular gp96, which further degraded p53 to increase paclitaxel-sensitivity in BC cells and activated cell pyroptosis in CD8+ T cells to impair immune surveillance.
Collapse
Affiliation(s)
- Tian Tian
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiguang Han
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jian Huang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shangziyan Li
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hui Pang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
3
|
Ye M, Lin Y, Pan S, Wang ZW, Zhu X. Applications of Multi-omics Approaches for Exploring the Molecular Mechanism of Ovarian Carcinogenesis. Front Oncol 2021; 11:745808. [PMID: 34631583 PMCID: PMC8497990 DOI: 10.3389/fonc.2021.745808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer ranks as the fifth most common cause of cancer-related death in females. The molecular mechanisms of ovarian carcinogenesis need to be explored in order to identify effective clinical therapies for ovarian cancer. Recently, multi-omics approaches have been applied to determine the mechanisms of ovarian oncogenesis at genomics (DNA), transcriptomics (RNA), proteomics (proteins), and metabolomics (metabolites) levels. Multi-omics approaches can identify some diagnostic and prognostic biomarkers and therapeutic targets for ovarian cancer, and these molecular signatures are beneficial for clarifying the development and progression of ovarian cancer. Moreover, the discovery of molecular signatures and targeted therapy strategies could noticeably improve the prognosis of ovarian cancer patients.
Collapse
Affiliation(s)
| | | | | | - Zhi-wei Wang
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Cao L, Zhou Y, Li X, Lin S, Tan Z, Guan F. Integrating transcriptomics, proteomics, glycomics and glycoproteomics to characterize paclitaxel resistance in breast cancer cells. J Proteomics 2021; 243:104266. [PMID: 34000456 DOI: 10.1016/j.jprot.2021.104266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022]
Abstract
Chemoresistance is a major factor driving breast cancer (BC) relapse and the high rates of cancer-related deaths. Aberrant levels of glycans are closely correlated with chemoresistance. The essential functions of glycans in chemoresistance is not systematically studied. In this study, an integrated strategy with a combination of transcriptomics, proteomics, glycomics and glycoproteomics was applied to explore the dysregulation of glycogenes, glycan structures and glycoproteins in chemoresistance of breast cancer cells. In paclitaxel (PTX) resistant MCF7 cells, 19 differentially expressed N-glycan-related proteins were identified, of which MGAT4A was the most significantly down-regulated, consistent with decrease in MGAT4A expression at mRNA level in PTX treated BC cells. Glycomic analysis consistently revealed suppressed levels of multi-antennary branching structures using MALDI-TOF/TOF-MS and lectin microarray. Several target glycoproteins bearing suppressed levels of multi-antennary branching structures were identified, and ERK signaling pathway was strongly suppressed in PTX resistant MCF7 cells. Our findings demonstrated the aberrant levels of multi-antennary branching structures and their target glycoproteins on PTX resistance. Systematically integrative multi-omic analysis is expected to facilitate the discovery of the aberrant glycosyltransferases, N-glycosylation and glycoproteins in tumor progression and chemoresistance. SIGNIFICANCE: An integrated strategy with a combination of transcriptomics, proteomics, glycomics and glycoproteomics is crucial to understand the association between glycans and chemoresistance in BC. In this multi-omic analysis, we identified unique glycan-related protein, glycan and glycoprotein signatures defining PTX chemoresistance in BC. This study might provide valuable information to understand molecular mechanisms underlying chemoresistance in BC.
Collapse
Affiliation(s)
- Lin Cao
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China
| | - Yue Zhou
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China; The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an 710069, PR China
| | - Shuai Lin
- Department of Oncology, The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zengqi Tan
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China
| | - Feng Guan
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
5
|
Althurwi SI, Yu JQ, Beale P, Huq F. Sequenced Combinations of Cisplatin and Selected Phytochemicals towards Overcoming Drug Resistance in Ovarian Tumour Models. Int J Mol Sci 2020; 21:ijms21207500. [PMID: 33053689 PMCID: PMC7589098 DOI: 10.3390/ijms21207500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/27/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
In the present study, cisplatin, artemisinin, and oleanolic acid were evaluated alone, and in combination, on human ovarian A2780, A2780ZD0473R, and A2780cisR cancer cell lines, with the aim of overcoming cisplatin resistance and side effects. Cytotoxicity was assessed by MTT reduction assay. Combination index (CI) values were used as a measure of combined drug effect. MALDI TOF/TOF MS/MS and 2-DE gel electrophoresis were used to identify protein biomarkers in ovarian cancer and to evaluate combination effects. Synergism from combinations was dependent on concentration and sequence of administration. Generally, bolus was most synergistic. Moreover, 49 proteins differently expressed by 2 ≥ fold were: CYPA, EIF5A1, Op18, p18, LDHB, P4HB, HSP7C, GRP94, ERp57, mortalin, IMMT, CLIC1, NM23, PSA3,1433Z, and HSP90B were down-regulated, whereas hnRNPA1, hnRNPA2/B1, EF2, GOT1, EF1A1, VIME, BIP, ATP5H, APG2, VINC, KPYM, RAN, PSA7, TPI, PGK1, ACTG and VDAC1 were up-regulated, while TCPA, TCPH, TCPB, PRDX6, EF1G, ATPA, ENOA, PRDX1, MCM7, GBLP, PSAT, Hop, EFTU, PGAM1, SERA and CAH2 were not-expressed in A2780cisR cells. The proteins were found to play critical roles in cell cycle regulation, metabolism, and biosynthetic processes and drug resistance and detoxification. Results indicate that appropriately sequenced combinations of cisplatin with artemisinin (ART) and oleanolic acid (OA) may provide a means to reduce side effects and circumvent platinum resistance.
Collapse
Affiliation(s)
- Safiah Ibrahim Althurwi
- School of Medical Sciences, University of Sydney, Sydney NSW 2006, Australia; (S.I.A.); (J.Q.Y.)
| | - Jun Q. Yu
- School of Medical Sciences, University of Sydney, Sydney NSW 2006, Australia; (S.I.A.); (J.Q.Y.)
| | - Philip Beale
- Department of Medical Oncology, Concord Repatriation General Hospital, Concord NSW 2137, Australia;
| | - Fazlul Huq
- Eman Research Ltd., Canberra ACT 2609, Australia
- Correspondence: ; Tel.: +61-411235462
| |
Collapse
|
6
|
Jin C, Wang K, Oppong-Gyebi A, Hu J. Application of Nanotechnology in Cancer Diagnosis and Therapy - A Mini-Review. Int J Med Sci 2020; 17:2964-2973. [PMID: 33173417 PMCID: PMC7646098 DOI: 10.7150/ijms.49801] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/03/2020] [Indexed: 12/30/2022] Open
Abstract
Cancer is a leading cause of death and poor quality of life globally. Even though several strategies are devised to reduce deaths, reduce chronic pain and improve the quality of life, there remains a shortfall in the adequacies of these cancer therapies. Among the cardinal steps towards ensuring optimal cancer treatment are early detection of cancer cells and drug application with high specificity to reduce toxicities. Due to increased systemic toxicities and refractoriness with conventional cancer diagnostic and therapeutic tools, other strategies including nanotechnology are being employed to improve diagnosis and mitigate disease severity. Over the years, immunotherapeutic agents based on nanotechnology have been used for several cancer types to reduce the invasiveness of cancerous cells while sparing healthy cells at the target site. Nanomaterials including carbon nanotubes, polymeric micelles and liposomes have been used in cancer drug design where they have shown considerable pharmacokinetic and pharmacodynamic benefits in cancer diagnosis and treatment. In this review, we outline the commonly used nanomaterials which are employed in cancer diagnosis and therapy. We have highlighted the suitability of these nanomaterials for cancer management based on their physicochemical and biological properties. We further reviewed the challenges that are associated with the various nanomaterials which limit their uses and hamper their translatability into the clinical setting in certain cancer types.
Collapse
Affiliation(s)
- Cancan Jin
- Department of Oncology, Affiliated Dongyang People's Hospital of Wenzhou Medical University, Dongyang, Zhejiang 322100,China
| | - Kankai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Anthony Oppong-Gyebi
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Jiangnan Hu
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| |
Collapse
|
7
|
Pokhriyal R, Hariprasad R, Kumar L, Hariprasad G. Chemotherapy Resistance in Advanced Ovarian Cancer Patients. BIOMARKERS IN CANCER 2019; 11:1179299X19860815. [PMID: 31308780 PMCID: PMC6613062 DOI: 10.1177/1179299x19860815] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/08/2019] [Indexed: 12/26/2022]
Abstract
Ovarian cancer is the seventh most common gynaecologic malignancy seen in women. Majority of the patients with ovarian cancer are diagnosed at the advanced stage making prognosis poor. The standard management of advanced ovarian cancer includes tumour debulking surgery followed by chemotherapy. Various types of chemotherapeutic regimens have been used to treat advanced ovarian cancer, but the most promising and the currently used standard first-line treatment is carboplatin and paclitaxel. Despite improved clinical response and survival to this combination of chemotherapy, numerous patients either undergo relapse or succumb to the disease as a result of chemotherapy resistance. To understand this phenomenon at a cellular level, various macromolecules such as DNA, messenger RNA and proteins have been developed as biomarkers for chemotherapy response. This review comprehensively summarizes the problem that pertains to chemotherapy resistance in advanced ovarian cancer and provides a good overview of the various biomarkers that have been developed in this field.
Collapse
Affiliation(s)
- Ruchika Pokhriyal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Roopa Hariprasad
- Division of Clinical Oncology, National Institute of Cancer Prevention and Research, Noida, India
| | - Lalit Kumar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Glucose-Regulated Protein 94 Modulates the Response of Osteosarcoma to Chemotherapy. DISEASE MARKERS 2019; 2019:4569718. [PMID: 30719181 PMCID: PMC6335772 DOI: 10.1155/2019/4569718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/19/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023]
Abstract
Background Osteosarcoma (OS) is the most common and most aggressive primary solid malignant bone tumor in children and young adults and has high rates of recurrence and metastasis. The endoplasmic reticulum (ER) stress pathway is important in regulating the chemo-responsiveness of cancer. However, the role of glucose-regulated protein 94 (GRP94) in regulating the response of OS to chemotherapy has never been explored. Methods In this study, two OS cell lines, MG63 and 143B cells, were used to evaluate the mechanism by which GRP94 modulates the response of osteosarcoma to chemotherapy. GRP94-knockdown (GRP94-KD) OS cells were generated using short hairpin RNAs, and the response to chemotherapy was assessed using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Cell apoptosis was quantified with propidium iodide (PI) staining and flow cytometry. Results Silencing of GRP94 in MG63 and 143B cells did not influence the growth and migration of the cells, but reduced the colony formation. GRP94-KD OS cells were more resistant to paclitaxel, gemcitabine, and epirubicin treatments than cells transfected with the scrambled control, and more cells transfected with the scrambled control underwent apoptosis after paclitaxel, gemcitabine, and epirubicin treatments than GRP94-KD cells. Conclusions Therefore, GRP94 silencing may increase the resistance of MG63 and 143B cells to paclitaxel, gemcitabine, and epirubicin treatments by inhibiting the induction of apoptosis. Thus, GRP94 may be a key biomarker for the chemotherapeutic response of OS.
Collapse
|
9
|
Swiatly A, Plewa S, Matysiak J, Kokot ZJ. Mass spectrometry-based proteomics techniques and their application in ovarian cancer research. J Ovarian Res 2018; 11:88. [PMID: 30270814 PMCID: PMC6166298 DOI: 10.1186/s13048-018-0460-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/20/2018] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer has emerged as one of the leading cause of gynecological malignancies. So far, the measurement of CA125 and HE4 concentrations in blood and transvaginal ultrasound examination are essential ovarian cancer diagnostic methods. However, their sensitivity and specificity are still not sufficient to detect disease at the early stage. Moreover, applied treatment may appear to be ineffective due to drug-resistance. Because of a high mortality rate of ovarian cancer, there is a pressing need to develop innovative strategies leading to a full understanding of complicated molecular pathways related to cancerogenesis. Recent studies have shown the great potential of clinical proteomics in the characterization of many diseases, including ovarian cancer. Therefore, in this review, we summarized achievements of proteomics in ovarian cancer management. Since the development of mass spectrometry has caused a breakthrough in systems biology, we decided to focus on studies based on this technique. According to PubMed engine, in the years 2008-2010 the number of studies concerning OC proteomics was increasing, and since 2010 it has reached a plateau. Proteomics as a rapidly evolving branch of science may be essential in novel biomarkers discovery, therapy decisions, progression predication, monitoring of drug response or resistance. Despite the fact that proteomics has many to offer, we also discussed some limitations occur in ovarian cancer studies. Main difficulties concern both complexity and heterogeneity of ovarian cancer and drawbacks of the mass spectrometry strategies. This review summarizes challenges, capabilities, and promises of the mass spectrometry-based proteomics techniques in ovarian cancer management.
Collapse
Affiliation(s)
- Agata Swiatly
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznań, Poland
| | - Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznań, Poland
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznań, Poland
| | - Zenon J. Kokot
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznań, Poland
| |
Collapse
|
10
|
Shan J, Liu Y, Wang Y, Li Y, Yu X, Wu C. GALNT14 Involves the Regulation of Multidrug Resistance in Breast Cancer Cells. Transl Oncol 2018; 11:786-793. [PMID: 29702465 PMCID: PMC6058006 DOI: 10.1016/j.tranon.2018.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 01/15/2023] Open
Abstract
GALNT14 is a member of N-acetylgalactosaminyltransferase enzyme family and mediates breast cancer cell development. Here, we find that GALNT14 regulates multidrug resistance (MDR) in breast cancer. The expression of GALNT14 is associated with MDR in breast cancer. Higher level of GALNT14 facilitates MCF-7 cells to resist Adriamycin, whereas knockdown of GALNT14 sensitizes cells to Adriamycin. Moreover, the expression of GALNT14 associates with the expression of P-gp, the efflux pump localized on the cell membrane, which could be the underlying mechanism of how GALNT14 induces MDR. In-depth analysis shows that GALNT14 regulates the stability of P-gp. Finally, GALNT14 associates with higher level of P-gp in chemotherapy-resistant human breast cancer tissues. Taken together, our studies reveal a molecular mechanism in breast cancer MDR.
Collapse
Affiliation(s)
- Jinshuai Shan
- College of Life Sciences, Hebei University, Baoding 071002, Hebei, P.R. China
| | - Yang Liu
- College of Life Sciences, Hebei University, Baoding 071002, Hebei, P.R. China
| | - Yukun Wang
- College of Life Sciences, Hebei University, Baoding 071002, Hebei, P.R. China
| | - Yimiao Li
- College of Life Sciences, Hebei University, Baoding 071002, Hebei, P.R. China
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte, California, 91010, USA.
| | - Chen Wu
- College of Life Sciences, Hebei University, Baoding 071002, Hebei, P.R. China.
| |
Collapse
|
11
|
Ji Y, Wei S, Hou J, Zhang C, Xue P, Wang J, Chen X, Guo X, Yang F. Integrated proteomic and N-glycoproteomic analyses of doxorubicin sensitive and resistant ovarian cancer cells reveal glycoprotein alteration in protein abundance and glycosylation. Oncotarget 2017; 8:13413-13427. [PMID: 28077793 PMCID: PMC5355108 DOI: 10.18632/oncotarget.14542] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/29/2016] [Indexed: 01/26/2023] Open
Abstract
Ovarian cancer is one of the most common cancer among women in the world, and chemotherapy remains the principal treatment for patients. However, drug resistance is a major obstacle to the effective treatment of ovarian cancers and the underlying mechanism is not clear. An increased understanding of the mechanisms that underline the pathogenesis of drug resistance is therefore needed to develop novel therapeutics and diagnostic. Herein, we report the comparative analysis of the doxorubicin sensitive OVCAR8 cells and its doxorubicin-resistant variant NCI/ADR-RES cells using integrated global proteomics and N-glycoproteomics. A total of 1525 unique N-glycosite-containing peptides from 740 N-glycoproteins were identified and quantified, of which 253 N-glycosite-containing peptides showed significant change in the NCI/ADR-RES cells. Meanwhile, stable isotope labeling by amino acids in cell culture (SILAC) based comparative proteomic analysis of the two ovarian cancer cells led to the quantification of 5509 proteins. As about 50% of the identified N-glycoproteins are low-abundance membrane proteins, only 44% of quantified unique N-glycosite-containing peptides had corresponding protein expression ratios. The comparison and calibration of the N-glycoproteome versus the proteome classified 14 change patterns of N-glycosite-containing peptides, including 8 up-regulated N-glycosite-containing peptides with the increased glycosylation sites occupancy, 35 up-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy, 2 down-regulated N-glycosite-containing peptides with the decreased glycosylation sites occupancy, 46 down-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy. Integrated proteomic and N-glycoproteomic analyses provide new insights, which can help to unravel the relationship of N-glycosylation and multidrug resistance (MDR), understand the mechanism of MDR, and discover the new diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Yanlong Ji
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shasha Wei
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Hou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengqian Zhang
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xue
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jifeng Wang
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiulan Chen
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojing Guo
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuquan Yang
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
El Bairi K, Amrani M, Kandhro AH, Afqir S. Prediction of therapy response in ovarian cancer: Where are we now? Crit Rev Clin Lab Sci 2017; 54:233-266. [PMID: 28443762 DOI: 10.1080/10408363.2017.1313190] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/27/2017] [Indexed: 02/08/2023]
Abstract
Therapy resistance is a major challenge in the management of ovarian cancer (OC). Advances in detection and new technology validation have led to the emergence of biomarkers that can predict responses to available therapies. It is important to identify predictive biomarkers to select resistant and sensitive patients in order to reduce important toxicities, to reduce costs and to increase survival. The discovery of predictive and prognostic biomarkers for monitoring therapy is a developing field and provides promising perspectives in the era of personalized medicine. This review article will discuss the biology of OC with a focus on targetable pathways; current therapies; mechanisms of resistance; predictive biomarkers for chemotherapy, antiangiogenic and DNA-targeted therapies, and optimal cytoreductive surgery; and the emergence of liquid biopsy using recent studies from the Medline database and ClinicalTrials.gov.
Collapse
Affiliation(s)
- Khalid El Bairi
- a Faculty of Medicine and Pharmacy , Mohamed Ist University , Oujda , Morocco
| | - Mariam Amrani
- b Equipe de Recherche ONCOGYMA, Faculty of Medicine, Pathology Department , National Institute of Oncology, Université Mohamed V , Rabat , Morocco
| | - Abdul Hafeez Kandhro
- c Department of Biochemistry , Healthcare Molecular and Diagnostic Laboratory , Hyderabad , Pakistan
| | - Said Afqir
- d Department of Medical Oncology , Mohamed VI University Hospital , Oujda , Morocco
| |
Collapse
|
13
|
Talukdar PK, Udompijitkul P, Hossain A, Sarker MR. Inactivation Strategies for Clostridium perfringens Spores and Vegetative Cells. Appl Environ Microbiol 2017; 83:e02731-16. [PMID: 27795314 PMCID: PMC5165105 DOI: 10.1128/aem.02731-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clostridium perfringens is an important pathogen to human and animals and causes a wide array of diseases, including histotoxic and gastrointestinal illnesses. C. perfringens spores are crucial in terms of the pathogenicity of this bacterium because they can survive in a dormant state in the environment and return to being live bacteria when they come in contact with nutrients in food or the human body. Although the strategies to inactivate C. perfringens vegetative cells are effective, the inactivation of C. perfringens spores is still a great challenge. A number of studies have been conducted in the past decade or so toward developing efficient inactivation strategies for C. perfringens spores and vegetative cells, which include physical approaches and the use of chemical preservatives and naturally derived antimicrobial agents. In this review, different inactivation strategies applied to control C. perfringens cells and spores are summarized, and the potential limitations and challenges of these strategies are discussed.
Collapse
Affiliation(s)
- Prabhat K Talukdar
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USA
| | - Pathima Udompijitkul
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Ashfaque Hossain
- Department of Medical Microbiology and Immunology, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
14
|
Deng J, Wang L, Ni J, Beretov J, Wasinger V, Wu D, Duan W, Graham P, Li Y. Proteomics discovery of chemoresistant biomarkers for ovarian cancer therapy. Expert Rev Proteomics 2016; 13:905-915. [DOI: 10.1080/14789450.2016.1233065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Junli Deng
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
- Department of Gynecological Oncology, Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Department of Gynecological Oncology, Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Jie Ni
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
| | - Julia Beretov
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
| | - Valerie Wasinger
- Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales (UNSW), Kensington, Australia
- School of Medical Sciences, University of New South Wales (UNSW), Kensington, Australia
| | - Duojia Wu
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Peter Graham
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
| |
Collapse
|
15
|
Sehrawat U, Pokhriyal R, Gupta AK, Hariprasad R, Khan MI, Gupta D, Naru J, Singh SB, Mohanty AK, Vanamail P, Kumar L, Kumar S, Hariprasad G. Comparative Proteomic Analysis of Advanced Ovarian Cancer Tissue to Identify Potential Biomarkers of Responders and Nonresponders to First-Line Chemotherapy of Carboplatin and Paclitaxel. BIOMARKERS IN CANCER 2016; 8:43-56. [PMID: 26997873 PMCID: PMC4795487 DOI: 10.4137/bic.s35775] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 12/16/2022]
Abstract
Conventional treatment for advanced ovarian cancer is an initial debulking surgery followed by chemotherapy combination of carboplatin and paclitaxel. Despite initial high response, three-fourths of these women experience disease recurrence with a dismal prognosis. Patients with advanced-stage ovarian cancer who underwent cytoreductive surgery were enrolled and tissue samples were collected. Post surgery, these patients were started on chemotherapy and followed up till the end of the cycle. Fluorescence-based differential in-gel expression coupled with mass spectrometric analysis was used for discovery phase of experiments, and real-time polymerase chain reaction, Western blotting, and pathway analysis were performed for expression and functional validation of differentially expressed proteins. While aldehyde reductase, hnRNP, cyclophilin A, heat shock protein-27, and actin are upregulated in responders, prohibitin, enoyl-coA hydratase, peroxiredoxin, and fibrin-β are upregulated in the nonresponders. The expressions of some of these proteins correlated with increased apoptotic activity in responders and decreased apoptotic activity in nonresponders. Therefore, the proteins qualify as potential biomarkers to predict chemotherapy response.
Collapse
Affiliation(s)
- Urmila Sehrawat
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ruchika Pokhriyal
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ashish Kumar Gupta
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Roopa Hariprasad
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Mohd Imran Khan
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Divya Gupta
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Jasmine Naru
- National Dairy Research Institute, Karnal, India
| | | | | | - Perumal Vanamail
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Lalit Kumar
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Sunesh Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
16
|
Elzek MA, Rodland KD. Proteomics of ovarian cancer: functional insights and clinical applications. Cancer Metastasis Rev 2016; 34:83-96. [PMID: 25736266 DOI: 10.1007/s10555-014-9547-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decade, there has been an increasing interest in applying proteomics to assist in understanding the pathogenesis of ovarian cancer, elucidating the mechanism of drug resistance, and in the development of biomarkers for early detection of ovarian cancer. Although ovarian cancer is a spectrum of different diseases, the strategies for diagnosis and treatment with surgery and adjuvant therapy are similar across ovarian cancer types, increasing the general applicability of discoveries made through proteomics research. While proteomic experiments face many difficulties which slow the pace of clinical applications, recent advances in proteomic technology contribute significantly to the identification of aberrant proteins and networks which can serve as targets for biomarker development and individualized therapies. This review provides a summary of the literature on proteomics' contributions to ovarian cancer research and highlights the current issues, future directions, and challenges. We propose that protein-level characterization of primary lesion in ovarian cancer can decipher the mystery of this disease, improve diagnostic tools, and lead to more effective screening programs.
Collapse
Affiliation(s)
- Mohamed A Elzek
- Egybiotech for Research and Biotechnology, Alexandria, Egypt,
| | | |
Collapse
|
17
|
Guzmán-Luna V, Olvera-Rodríguez L, Bustamante-Villalobos P, Saab-Rincón G. Characterization of a New Allelic Variant of Triosephosphate Isomerase from the LNCaP Human Prostate Cancer Cell Line: Enzyme Inhibition and Spectroscopic Studies. ACTA ACUST UNITED AC 2015; 13:184-190. [PMID: 29123462 PMCID: PMC5652080 DOI: 10.2174/1573408012666160906110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 08/29/2016] [Accepted: 09/05/2016] [Indexed: 11/22/2022]
Abstract
Background The glycolytic pathway plays an important role in tumor cells. Triosephosphate isomerase (TIM) catalyzes the reversible isomerization of D-glyceraldehyde-3-phosphate (GAP) to dihydroxyacetone phosphate (DHAP) in the glycolysis. Proteomics of a human prostate adenocarcinoma cell line revealed the presence of the G233D TIM variant, a new allelic type whose biochemical properties have not been reported [1]. Objective Provide the first biochemical and biophysical characterization of the allelic variant G233D of TIM. Methods The Michaelis-Menten curves using both substrates of TIM were obtained. Also the effect of the competitive inhibitor phosphoenolpyruvate (PEP) was assessed in presence of GAP and DHAP. The thermal stability in absence and presence of PEP was analyzed by circular dichroism spectroscopy. For comparison purposes, all the measurements were carried out on the wild type TIM and variant G233D. Results The G233D variant exhibited a kcat value 4-fold lower than that of the WT enzyme in the GAP isomerization to DHAP, which is the reverse reaction of the glycolytic pathway. The G233D variant exhibited Ki and IC50 values of 120 μM and 356 μM in the presence of several concentrations of GAP and 0.3 mM DHAP, respectively. These inhibition parameters are similar to those exhibited by the WT enzyme. The thermal unfolding cooperativity of G233D variant was significantly increased upon PEP binding, suggesting that the ligand-bound enzyme was trapped in a rigid conformation. Conclusion We suggest that the flow of GAP through glycolysis could be enhanced by the decreased activity of the G233D variant in the formation of DHAP.
Collapse
Affiliation(s)
- Valeria Guzmán-Luna
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250Cuernavaca, Morelos, México
| | - Leticia Olvera-Rodríguez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250Cuernavaca, Morelos, México
| | - Peniel Bustamante-Villalobos
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250Cuernavaca, Morelos, México
| | - Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250Cuernavaca, Morelos, México
| |
Collapse
|
18
|
Lincet H, Icard P. How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions? Oncogene 2014; 34:3751-9. [PMID: 25263450 DOI: 10.1038/onc.2014.320] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/23/2014] [Accepted: 08/23/2014] [Indexed: 12/16/2022]
Abstract
Cancer cells enhance their glycolysis, producing lactate, even in the presence of oxygen. Glycolysis is a series of ten metabolic reactions catalysed by enzymes whose expression is most often increased in tumour cells. HKII and phosphoglucose isomerase (PGI) have mainly an antiapoptotic effect; PGI and glyceraldehyde-3-phosphate dehydrogenase activate survival pathways (Akt and so on); phosphofructokinase 1 and triose phosphate isomerase participate in cell cycle activation; aldolase promotes epithelial mesenchymal transition; PKM2 enhances various nuclear effects such as transcription, stabilisation and so on. This review outlines the multiple non-glycolytic roles of glycolytic enzymes, which are essential for promoting cancer cells' survival, proliferation, chemoresistance and dissemination.
Collapse
Affiliation(s)
- H Lincet
- 1] Locally Aggressive Cancer Biology and Therapy Unit (BioTICLA), Caen, France [2] Normandie University, Caen, France [3] François-Baclesse Centre for Cancer, Caen, France
| | - P Icard
- 1] Locally Aggressive Cancer Biology and Therapy Unit (BioTICLA), Caen, France [2] Ecole Polytechnique, Laboratoire d'Informatique, Palaiseau, France
| |
Collapse
|
19
|
Longuespée R, Tastet C, Desmons A, Kerdraon O, Day R, Fournier I, Salzet M. HFIP extraction followed by 2D CTAB/SDS-PAGE separation: a new methodology for protein identification from tissue sections after MALDI mass spectrometry profiling for personalized medicine research. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:374-84. [PMID: 24841221 DOI: 10.1089/omi.2013.0176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and profiling technology have become the easiest methods for quickly accessing the protein composition of a tissue area. Unfortunately, the demand for the identification of these proteins remains unmet. To overcome this bottleneck, we combined several strategies to identify the proteins detected via MALDI profiling including on-tissue protein extraction using hexafluoroIsopropanol (1,1,1,3,3,3-hexafluoro-2-propanol, HFIP) coupled with two-dimensional cetyl trimethylammonium bromide/sodium dodecyl sulfate-polyacrylamide gel electrophoresis (2D CTAB/SDS-PAGE) for separation followed by trypsin digestion and MALDI-MS analyses for identification. This strategy was compared with an on-tissue bottom-up strategy that we previously developed. The data reflect the complementarity of the approaches. An increase in the number of specific proteins identified has been established. This approach demonstrates the potential of adapted extraction procedures and the combination of parallel identification approaches for personalized medicine applications. The anatomical context provides important insight into identifying biomarkers and may be considered a first step for tissue-based biomarker research, as well as the extemporaneous examination of biopsies during surgery.
Collapse
Affiliation(s)
- Rémi Longuespée
- 1 Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), MALDI Imaging Team, Université de Lille 1 , Cité Scientifique, Lille, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Guo C, Liu XJ, Cheng ZX, Liu YJ, Li H, Peng X. Characterization of protein species and weighted protein co-expression network regulation of Escherichia coli in response to serum killing using a 2-DE based proteomics approach. MOLECULAR BIOSYSTEMS 2013; 10:475-84. [PMID: 24366695 DOI: 10.1039/c3mb70404a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Posttranslational modifications, providing covalent alterations to extend their functions, show protein species on 2-DE gels, but our knowledge on protein species is still limited. In the present study, characteristics of protein species are determined in Escherichia coli using 2-DE based proteomics. In the E. coli proteome, 691 unique proteins (representing 1096 protein spots) accounting for 15.37% of gene-coding proteins of the bacterium are identified. Out of them, 191 have 596 protein species. Proteins with higher abundance, a higher proportion of Glu, Gly, Lys, and higher pI are more likely to have protein species. Further investigation on bacterial serum resistance indicates that more proteins with protein species are found in the bacterium in response to serum stress. A weighted protein co-expression network shows that protein species are related to topological connection as a result of protein regulation. The node protein IleS is demonstrated to contribute to serum resistance using a gene-deleted mutant. These results have revealed general characteristic features of bacterial species, and also provided novel insights into the biological significance of bacterial protein species, particularly the role in serum resistance.
Collapse
Affiliation(s)
- Chang Guo
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
21
|
Tai CJ, Wang JW, Su HY, Tai CJ, Wang CK, Wu CT, Lien YC, Chang YJ. Glucose-regulated protein 94 modulates the therapeutic efficacy to taxane in cervical cancer cells. Tumour Biol 2013; 35:403-10. [PMID: 23929391 DOI: 10.1007/s13277-013-1056-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/24/2013] [Indexed: 11/26/2022] Open
Abstract
Cervical cancer is an important health issue for women worldwide, and the endoplasmic reticulum stress pathway is important for determining the chemotherapeutic response to cancer. However, the role of glucose-regulated protein 94 (GRP94) in taxane therapy for cervical cancer remains unclear. In this study, we generated GRP94 knockdown (GRP94-KD) Hela cells using short hairpin RNAs and found that GRP94-KD cells were resistant to taxane treatment in an MTT assay. Scrambled control cells demonstrated higher levels of apoptosis when treated with taxanes in comparison to GRP94-KD cells, as determined by cell cycle profiling, 4',6-diamidino-2-phenylindole staining, and terminal deoxynucleotidyl transferase-mediated nick end labeling staining. Caspase 3 and caspase 7 activity was also higher in scrambled control cells treated with taxane in comparison to GRP94-KD cells. Moreover, we found that depletion of GRP94 altered the levels of the apoptosis-related proteins Bcl2 and Bad, leading to sensitivity to taxane. Exposure to taxane also induced the expression of Bad in scrambled cells but not in GRP94-KD cells. In addition, the expression of Bcl2 was increased dramatically in GRP94-KD cells, whereas only a small increase was observed in scrambled cells. Therefore, we conclude that silencing GRP94 may increase resistance to taxane treatment in cervical cancer cells by altering the activation of the apoptosis pathway. In addition, GRP94 may represent a key biomarker for determining the therapeutic efficacy of taxane treatment in cervical cancer patients.
Collapse
Affiliation(s)
- Cheng-Jeng Tai
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tian Y, Zhang H. Characterization of disease-associated N-linked glycoproteins. Proteomics 2013; 13:504-11. [PMID: 23255236 DOI: 10.1002/pmic.201200333] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/20/2012] [Accepted: 10/13/2012] [Indexed: 12/14/2022]
Abstract
N-linked glycoproteins play important roles in biological processes, including cell-to-cell recognition, growth, differentiation, and programmed cell death. Specific N-linked glycoprotein changes are associated with disease progression and identification of these N-linked glycoproteins has potential for use in disease diagnosis, prognosis, and prediction of treatments. In this review, we summarize common strategies for N-linked glycoprotein characterization and applications of these strategies to identification of glycoprotein changes associated with disease states. We also review the N-linked glycoproteins altered in diseases such as breast cancer, lung cancer, and prostate cancer. Although assays for these glycoproteins have potential clinical utility, research is needed to translate these glycoproteins to clinical biomarkers.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
23
|
Xie X, Bartholomeusz C, Ahmed AA, Kazansky A, Diao L, Baggerly KA, Hortobagyi GN, Ueno NT. Bisphosphorylated PEA-15 sensitizes ovarian cancer cells to paclitaxel by impairing the microtubule-destabilizing effect of SCLIP. Mol Cancer Ther 2013; 12:1099-111. [PMID: 23543364 DOI: 10.1158/1535-7163.mct-12-0737] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Paclitaxel is a standard chemotherapeutic agent for ovarian cancer. PEA-15 (phosphoprotein enriched in astrocytes-15 kDa) regulates cell proliferation, autophagy, apoptosis, and glucose metabolism and also mediates AKT-dependent chemoresistance in breast cancer. The functions of PEA-15 are tightly regulated by its phosphorylation status at Ser104 and Ser116. However, the effect of PEA-15 phosphorylation status on chemosensitivity of cancer cells remains unknown. Here, we tested the hypothesis that PEA-15 phosphorylated at both Ser104 and Ser116 (pPEA-15) sensitizes ovarian cancer cells to paclitaxel. We first found that knockdown of PEA-15 in PEA-15-high expressing HEY and OVTOKO ovarian cancer cells resulted in paclitaxel resistance, whereas re-expression of PEA-15 in these cells led to paclitaxel sensitization. We next found that SKOV3.ip1-DD cells (expressing phosphomimetic PEA-15) were more sensitive to paclitaxel than SKOV3.ip1-AA cells (expressing nonphosphorylatable PEA-15). Compared with SKOV3.ip1-vector and SKOV3.ip1-AA cells, SKOV3.ip1-DD cells displayed reduced cell viability, inhibited anchorage-independent growth, and augmented apoptosis when treated with paclitaxel. Furthermore, HEY and OVTOKO cells displayed enhanced paclitaxel sensitivity when transiently overexpressing phosphomimetic PEA-15 and reduced paclitaxel sensitivity when transiently overexpressing nonphosphorylatable PEA-15. These results indicate that pPEA-15 sensitizes ovarian cancer cells to paclitaxel. cDNA microarray analysis suggested that SCLIP (SCG10-like protein), a microtubule-destabilizing protein, is involved in pPEA-15-mediated chemosensitization. We found that reduced expression and possibly posttranslational modification of SCLIP following paclitaxel treatment impaired the microtubule-destabilizing effect of SCLIP, thereby promoting induction of mitotic arrest and apoptosis by paclitaxel. Our findings highlight the importance of pPEA-15 as a promising target for improving the efficacy of paclitaxel-based therapy in ovarian cancer.
Collapse
Affiliation(s)
- Xuemei Xie
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Li K, Sun Z, Zheng J, Lu Y, Bian Y, Ye M, Wang X, Nie Y, Zou H, Fan D. In-depth research of multidrug resistance related cell surface glycoproteome in gastric cancer. J Proteomics 2013; 82:130-40. [PMID: 23470797 DOI: 10.1016/j.jprot.2013.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 12/13/2022]
Abstract
UNLABELLED Human gastric cancer is a big public health problem. Multidrug resistance is a main obstacle to successful chemotherapeutic treatment in gastric cancers and the underlying mechanism is not clear. Glycosylation, one of the most important post translational modifications of proteins, plays a vital role in diverse aspects of tumor progression. In the present study, we applied two multidrug resistance cell lines and their parental drug sensitive gastric cancer cell line to a modified cell surface capturing strategy with triplex labeling to characterize MDR related cell surface glycoproteome. Finally, 56 cell membrane glycoproteins were successfully identified via combination of identification by glycopeptides and quantitation by non-glycopeptides, and 11 of them were found to be differentially expressed with the same trend in both drug resistant cell lines compared with that in sensitive cell line. The further analysis by western blot and in vitro drug sensitivity assay demonstrated that our approach is reliable and accurate and suggested that these glycoproteins may represent as biomarkers for multidrug resistance in gastric cancer. BIOLOGICAL SIGNIFICANCE In this study, we performed a cell surface glycoproteomics research of multidrug resistance in gastric cancer using a modified CSC approach. Totally we identified and quantified 11 membrane N-glycoproteins which were significantly changed in MDR gastric cancer cells. These glycoproteins are quite possible to be biomarkers for predicting MDR or key regulators for targeted therapy, and are also helpful for better interpreting the sophisticated mechanisms of MDR in gastric cancer. In addition to that, this approach used in this study can be well applied to screen aberrantly glycosylated biomarkers associated with other malignant phenotypes of various kinds of cancers.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ma H, Miao X, Ma Q, Zheng W, Zhou H, Jia L. Functional roles of glycogene and N-glycan in multidrug resistance of human breast cancer cells. IUBMB Life 2013; 65:409-22. [PMID: 23441047 DOI: 10.1002/iub.1133] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/10/2012] [Indexed: 11/07/2022]
Abstract
Drug resistance is a major problem in cancer chemotherapy. Aberrant glycosylation has been known to be associated with cancer chemoresistance. Aim of this work is to investigate the alterations of glycogene and N-glycan involved in multidrug resistance (MDR) in human breast cancer cell lines. Using real-time polymerase chain reaction (PCR) for quantification of glycogenes, fluorescein isothiocyanate (FITC)-lectin binding for glycan profiling, and mass spectrometry for N-glycan composition, the expression of glycogenes, glycan profiling, and N-glycan composition differed between drug-resistant MCF/ADR cells and the parental MCF-7 line. Further analysis of the N-glycan regulation by tunicamycin (TM) application or PNGase F treatment in MCF/ADR cells showed partial inhibition of the N-glycan biosynthesis and increased sensitivity to chemotherapeutic drugs dramatically both in vitro and in vivo. Using an RNA interference strategy, we showed that the downregulation of MGAT5 in MCF/ADR cells could enhance the chemosensitivity to antitumor drugs both in vitro and in vivo. Conversely, a stable high expression of MGAT5 in MCF-7 cells could increase resistance to chemotherapeutic drugs both in vitro and in vivo. In conclusion, the alterations of glycogene and N-glycan in human breast cancer cells correlate with tumor sensitivity to chemotherapeutic drug and have significant implications for the development of new treatment strategies. © 2013 IUBMB Life, 65(5):409-422, 2013.
Collapse
Affiliation(s)
- Hongye Ma
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | | | | | | | | | | |
Collapse
|
26
|
Leung F, Musrap N, Diamandis EP, Kulasingam V. Advances in mass spectrometry-based technologies to direct personalized medicine in ovarian cancer. TRANSLATIONAL PROTEOMICS 2013. [DOI: 10.1016/j.trprot.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
27
|
Leung F, Diamandis EP, Kulasingam V. From bench to bedside: discovery of ovarian cancer biomarkers using high-throughput technologies in the past decade. Biomark Med 2012; 6:613-25. [PMID: 23075239 DOI: 10.2217/bmm.12.70] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy and survival of this disease has remained relatively unchanged over the past 30 years. A contributing factor to this has been the lack of reliable biomarkers for the clinical management of ovarian cancer. Rapid advances in high-throughput technologies over the past decade has allowed for new and exciting opportunities for biomarker discovery in the field of ovarian cancer, especially with respect to serum biomarkers that can be used for various clinical applications. This review highlights the major genomic and proteomic studies dedicated to ovarian cancer biomarker discovery over the past decade. An emphasis will be placed on the HE4, Risk of Malignancy Algorithm (ROMA) and OVA1™ serum-based tests/algorithms that have recently been approved by the US FDA as ovarian cancer biomarkers.
Collapse
Affiliation(s)
- Felix Leung
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
28
|
Thirant C, Galan-Moya EM, Dubois LG, Pinte S, Chafey P, Broussard C, Varlet P, Devaux B, Soncin F, Gavard J, Junier MP, Chneiweiss H. Differential proteomic analysis of human glioblastoma and neural stem cells reveals HDGF as a novel angiogenic secreted factor. Stem Cells 2012; 30:845-53. [PMID: 22331796 DOI: 10.1002/stem.1062] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Presence in glioblastomas of cancer cells with normal neural stem cell (NSC) properties, tumor initiating capacity, and resistance to current therapies suggests that glioblastoma stem-like cells (GSCs) play central roles in glioblastoma development. We cultured human GSCs endowed with all features of tumor stem cells, including tumor initiation after xenograft and radio-chemoresistance. We established proteomes from four GSC cultures and their corresponding whole tumor tissues (TTs) and from human NSCs. Two-dimensional difference gel electrophoresis and tandem mass spectrometry revealed a twofold increase of hepatoma-derived growth factor (HDGF) in GSCs as compared to TTs and NSCs. Western blot analysis confirmed HDGF overexpression in GSCs as well as its presence in GSC-conditioned medium, while, in contrast, no HDGF was detected in NSC secretome. At the functional level, GSC-conditioned medium induced migration of human cerebral endothelial cells that can be blocked by anti-HDGF antibodies. In vivo, GSC-conditioned medium induced neoangiogenesis, whereas HDGF-targeting siRNAs abrogated this effect. Altogether, our results identify a novel candidate, by which GSCs can support neoangiogenesis, a high-grade glioma hallmark. Our strategy illustrates the usefulness of comparative proteomic analysis to decipher molecular pathways, which underlie GSC properties.
Collapse
Affiliation(s)
- Cécile Thirant
- INSERM U894, Psychiatry and Neuroscience Center, Glial Plasticity Team, Cochin Institute, Paris Descartes University, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Proteomics: Bases for protein complexity understanding. Thromb Res 2012; 129:257-62. [DOI: 10.1016/j.thromres.2011.12.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 01/10/2023]
|
30
|
Li XH, Li C, Xiao ZQ. Proteomics for identifying mechanisms and biomarkers of drug resistance in cancer. J Proteomics 2011; 74:2642-9. [PMID: 21964283 DOI: 10.1016/j.jprot.2011.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 08/31/2011] [Accepted: 09/07/2011] [Indexed: 01/08/2023]
Abstract
A major problem in chemotherapy of cancer patients is drug resistance as well as unpredictable response to treatment. During chemotherapy, multiple alterations of genetics and epigenetics that contribute to chemoresistance take place, eventually impacting on disease outcome. A more complex picture of the mechanisms of drug resistance is now emerging through application of high-throughput proteomics technology. We have entered an exciting time where proteomics are being applied to characterize the mechanisms of drug resistance, and to identify biomarkers for predicting response to chemotherapy, thereby leading to personalized therapeutic strategies of cancer patients. Comparative proteomics have identified a large number of differentially expressed proteins associated with chemoresistance. Although roles and mechanisms of such proteins in chemoresistance need to be further proved, at least some of them may be potential biomarkers for predicting chemotherapeutic response. Herein, we review the recent advancements on proteomic investigation of chemoresistance in human cancer, and emphasize putative biomarkers for predicting chemotherapeutic response and possible mechanisms of chemoresistance identified through proteomic approaches. Suggested avenues for future work are discussed.
Collapse
Affiliation(s)
- Xin-Hui Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | | |
Collapse
|
31
|
Sterrenberg JN, Blatch GL, Edkins AL. Human DNAJ in cancer and stem cells. Cancer Lett 2011; 312:129-42. [PMID: 21925790 DOI: 10.1016/j.canlet.2011.08.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/15/2011] [Accepted: 08/17/2011] [Indexed: 12/12/2022]
Abstract
The heat shock protein 40kDa (HSP40/DNAJ) co-chaperones constitute the largest and most diverse sub-group of the heat shock protein (HSP) family. DNAJ are widely accepted as regulators of HSP70 function, but also have roles as co-chaperones for the HSP90 chaperone machine, and a growing number of biological functions that may be independent of either of these chaperones. The DNAJ proteins are differentially expressed in human tissues and demonstrate the capacity to function to both promote and suppress cancer development by acting as chaperones for tumour suppressors or oncoproteins. We review the current literature on the function and expression of DNAJ in cancer, stem cells and cancer stem cells. Combining data from gene expression, proteomics and studies in other systems, we propose that DNAJ will be key regulators of cancer, stem cell and possibly cancer stem cell function. The diversity of DNAJ and their assorted roles in a range of biological functions means that selected DNAJ, provided there is limited redundancy and that a specific link to malignancy can be established, may yet provide an attractive target for specific and selective drug design for the development of anti-cancer treatments.
Collapse
Affiliation(s)
- Jason N Sterrenberg
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown South Africa
| | | | | |
Collapse
|
32
|
Della Corte A, Tamburrelli C, Crescente M, Giordano L, D'Imperio M, Di Michele M, Donati MB, De Gaetano G, Rotilio D, Cerletti C. Platelet proteome in healthy volunteers who smoke. Platelets 2011; 23:91-105. [PMID: 21736419 DOI: 10.3109/09537104.2011.587916] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Smoking accelerates atherosclerosis and is a well-known risk factor for acute cardiovascular complications; however, the mechanisms of these effects have not been completely clarified. Recently developed proteomic approaches may offer new clues when combined with well-established functional tests. Platelet proteome of healthy smokers and non-smokers was resolved by two-dimensional difference gel electrophoresis, compared by Decyder software and identified by mass spectrometry analysis (nano-LC-MS/MS). In smokers, three proteins (Factor XIII-A subunit, platelet glycoprotein IIb and beta-actin) were significantly up-regulated, whereas WDR1 protein and chaperonine HSP60 were down-regulated. Furthermore, the highest scored network derived by Ingenuity Pathway Analysis using the modulated proteins as input showed the involvement of several proteins to be related to inflammation and apoptosis. Platelet function tests and the levels of markers of platelet and leukocyte activation were not different in smokers vs. non-smoker subjects. The platelet proteomic approach confirms that cigarette smoking triggers several inflammatory reactions and may help clarify some of the molecular mechanisms of smoke effect on cellular systems relevant for vascular integrity and human health.
Collapse
Affiliation(s)
- Anna Della Corte
- Laboratory of Analytical Techniques and Proteomics, Research Laboratories, Catholic University, Campobasso, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Meany DL, Chan DW. Aberrant glycosylation associated with enzymes as cancer biomarkers. Clin Proteomics 2011; 8:7. [PMID: 21906357 PMCID: PMC3170274 DOI: 10.1186/1559-0275-8-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/03/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND One of the new roles for enzymes in personalized medicine builds on a rational approach to cancer biomarker discovery using enzyme-associated aberrant glycosylation. A hallmark of cancer, aberrant glycosylation is associated with differential expressions of enzymes such as glycosyltransferase and glycosidases. The aberrant expressions of the enzymes in turn cause cancer cells to produce glycoproteins with specific cancer-associated aberrations in glycan structures. CONTENT In this review we provide examples of cancer biomarker discovery using aberrant glycosylation in three areas. First, changes in glycosylation machinery such as glycosyltransferases/glycosidases could be used as cancer biomarkers. Second, most of the clinically useful cancer biomarkers are glycoproteins. Discovery of specific cancer-associated aberrations in glycan structures of these existing biomarkers could improve their cancer specificity, such as the discovery of AFP-L3, fucosylated glycoforms of AFP. Third, cancer-associated aberrations in glycan structures provide a compelling rationale for discovering new biomarkers using glycomic and glycoproteomic technologies. SUMMARY As a hallmark of cancer, aberrant glycosylation allows for the rational design of biomarker discovery efforts. But more important, we need to translate these biomarkers from discovery to clinical diagnostics using good strategies, such as the lessons learned from translating the biomarkers discovered using proteomic technologies to OVA 1, the first FDA-cleared In Vitro Diagnostic Multivariate Index Assay (IVDMIA). These lessons, providing important guidance in current efforts in biomarker discovery and translation, are applicable to the discovery of aberrant glycosylation associated with enzymes as cancer biomarkers as well.
Collapse
Affiliation(s)
- Danni L Meany
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA.
| | | |
Collapse
|
34
|
Novel nanotechnology approaches to diagnosis and therapy of ovarian cancer. Gynecol Oncol 2011; 120:393-403. [DOI: 10.1016/j.ygyno.2010.11.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 12/22/2022]
|
35
|
Haneklaus AN, Harris KB, Márquez-González M, Lucia LM, Castillo A, Hardin MD, Osburn WN, Savell JW. Alternative cooling procedures for large, intact meat products to achieve stabilization microbiological performance standards. J Food Prot 2011; 74:101-5. [PMID: 21219768 DOI: 10.4315/0362-028x.jfp-10-213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Achieving the U. S. Department of Agriculture, Food Safety and Inspection Service (USDA-FSIS) stabilization microbiological performance standards for cooling procedures proves to be challenging for processors of large, whole-muscle meat products. This study was conducted to determine if slower cooling times than those provided by USDA-FSIS guidance will comply with the performance standard for Clostridium perfringens. Large (9 to 12 kg) cured bone-in hams (n = 110) and large (8 to 13 kg) uncured beef inside rounds (n = 100) were used. Stabilization treatments extended times to reduce internal product temperature from 54.4 to 26.7°C (hams and rounds) and from 26.7 to 7.2°C (for hams) and 26.7 to 4.4°C (for rounds). Control treatments, defined by current USDA-FSIS Appendix B guidelines, and a "worst-case scenario" treatment, in which products were cooled at room temperature (approximately 22.8°C) until internal product temperature equilibrated, were used. For both hams and rounds, stabilization showed less than 1-log growth of C. perfringens for all treatments, with the exception of the worst-case scenario for rounds. As expected for products cooled at room temperature, there was >1-log growth of C. perfringens reported for rounds, and the addition of curing ingredients to hams had an inhibitory effect on the growth of C. perfringens. The results demonstrate that industry may have increased flexibility associated with cooling large, whole-muscle cuts while still complying with the required stabilization microbiological performance standards.
Collapse
Affiliation(s)
- Ashley N Haneklaus
- Center for Food Safety, Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843-2471, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee DH, Chung K, Song JA, Kim TH, Kang H, Huh JH, Jung SG, Ko JJ, An HJ. Proteomic identification of paclitaxel-resistance associated hnRNP A2 and GDI 2 proteins in human ovarian cancer cells. J Proteome Res 2010; 9:5668-76. [PMID: 20858016 DOI: 10.1021/pr100478u] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ovarian cancer is a gynecological malignancy with the highest mortality. Chemoresistance is an important subject for the treatment of ovarian cancer, because obtaining significant drug resistance to the first line chemotherapy, paclitaxel, causes major therapeutic obstacles. It is essential to improve the survival rate of ovarian cancer patients by mining the biomarkers indicating the drug resistance and prognosis, and by further understanding underlying mechanisms of drug resistance. In the present study, we established paclitaxel-resistant subline (SKpac) from human epithelial ovarian cancer cell line, SKOV3, and performed comparative analysis of whole proteomes between paclitaxel-resistant SKpac sublines and paclitaxel-sensitive parental SKOV3 cells to identify differentially expressed proteins and useful biomarkers indicating chemoresistance. Proteins related to chemoresistant process were identified by two-dimensional gel electrophoresis (2DE) with mass spectrometry (MALDI-TOF and LC-MS/MS). Eighteen spots were differentially expressed and were identified in SKpac chemoresistant cells compared to SKOV3. The expressions of ALDH 1A1, annexin A1, hnRNP A2, and GDI 2 proteins were validated by Western blot, which was consistent with proteomic analysis. Among the selected proteins, downregulation of hnRNP A2 and GDI 2 was found to be the most significant finding in SKpac cells and chemoresistant ovarian cancer tissues. Our results suggest that hnRNP A2 and GDI 2 may represent potential biomarkers of the paclitaxel-resistant ovarian cancers for tailored cancer therapy.
Collapse
Affiliation(s)
- Dong Hyeon Lee
- Department of Physiology, CHA University, Sungnam, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pan S, Chen R, Aebersold R, Brentnall TA. Mass spectrometry based glycoproteomics--from a proteomics perspective. Mol Cell Proteomics 2010; 10:R110.003251. [PMID: 20736408 DOI: 10.1074/mcp.r110.003251] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glycosylation is one of the most important and common forms of protein post-translational modification that is involved in many physiological functions and biological pathways. Altered glycosylation has been associated with a variety of diseases, including cancer, inflammatory and degenerative diseases. Glycoproteins are becoming important targets for the development of biomarkers for disease diagnosis, prognosis, and therapeutic response to drugs. The emerging technology of glycoproteomics, which focuses on glycoproteome analysis, is increasingly becoming an important tool for biomarker discovery. An in-depth, comprehensive identification of aberrant glycoproteins, and further, quantitative detection of specific glycosylation abnormalities in a complex environment require a concerted approach drawing from a variety of techniques. This report provides an overview of the recent advances in mass spectrometry based glycoproteomic methods and technology, in the context of biomarker discovery and clinical application.
Collapse
Affiliation(s)
- Sheng Pan
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|