1
|
Wang Y, Li R, Shu W, Chen X, Lin Y, Wan J. Designed Nanomaterials-Assisted Proteomics and Metabolomics Analysis for In Vitro Diagnosis. SMALL METHODS 2024; 8:e2301192. [PMID: 37922520 DOI: 10.1002/smtd.202301192] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/12/2023] [Indexed: 11/05/2023]
Abstract
In vitro diagnosis (IVD) is pivotal in modern medicine, enabling early disease detection and treatment optimization. Omics technologies, particularly proteomics and metabolomics, offer profound insights into IVD. Despite its significance, omics analyses for IVD face challenges, including low analyte concentrations and the complexity of biological environments. In addition, the direct omics analysis by mass spectrometry (MS) is often hampered by issues like large sample volume requirements and poor ionization efficiency. Through manipulating their size, surface charge, and functionalization, as well as the nanoparticle-fluid incubation conditions, nanomaterials have emerged as a promising solution to extract biomolecules and enhance the desorption/ionization efficiency in MS detection. This review delves into the last five years of nanomaterial applications in omics, focusing on their role in the enrichment, separation, and ionization analysis of proteins and metabolites for IVD. It aims to provide a comprehensive update on nanomaterial design and application in omics, highlighting their potential to revolutionize IVD.
Collapse
Affiliation(s)
- Yanhui Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiaonan Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yingying Lin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
2
|
Ahmad A, Imran M, Ahsan H. Biomarkers as Biomedical Bioindicators: Approaches and Techniques for the Detection, Analysis, and Validation of Novel Biomarkers of Diseases. Pharmaceutics 2023; 15:1630. [PMID: 37376078 DOI: 10.3390/pharmaceutics15061630] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
A biomarker is any measurable biological moiety that can be assessed and measured as a potential index of either normal or abnormal pathophysiology or pharmacological responses to some treatment regimen. Every tissue in the body has a distinct biomolecular make-up, which is known as its biomarkers, which possess particular features, viz., the levels or activities (the ability of a gene or protein to carry out a particular body function) of a gene, protein, or other biomolecules. A biomarker refers to some feature that can be objectively quantified by various biochemical samples and evaluates the exposure of an organism to normal or pathological procedures or their response to some drug interventions. An in-depth and comprehensive realization of the significance of these biomarkers becomes quite important for the efficient diagnosis of diseases and for providing the appropriate directions in case of multiple drug choices being presently available, which can benefit any patient. Presently, advancements in omics technologies have opened up new possibilities to obtain novel biomarkers of different types, employing genomic strategies, epigenetics, metabolomics, transcriptomics, lipid-based analysis, protein studies, etc. Particular biomarkers for specific diseases, their prognostic capabilities, and responses to therapeutic paradigms have been applied for screening of various normal healthy, as well as diseased, tissue or serum samples, and act as appreciable tools in pharmacology and therapeutics, etc. In this review, we have summarized various biomarker types, their classification, and monitoring and detection methods and strategies. Various analytical techniques and approaches of biomarkers have also been described along with various clinically applicable biomarker sensing techniques which have been developed in the recent past. A section has also been dedicated to the latest trends in the formulation and designing of nanotechnology-based biomarker sensing and detection developments in this field.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane 4102, Australia
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
3
|
Dyubo D, Tsybin OY. Computer Simulation of a Surface Charge Nanobiosensor with Internal Signal Integration. BIOSENSORS 2021; 11:bios11100397. [PMID: 34677353 PMCID: PMC8533784 DOI: 10.3390/bios11100397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The ionized states of molecular analytes located on solid surfaces require profound investigation and better understanding for applications in the basic sciences in general, and in the design of nanobiosensors, in particular. Such ionized states are induced by the interactions of molecules between them in the analyzed substance and with the target surface. Here, computer simulations using COMSOL Multiphysics software show the effect of surface charge density and distribution on the output generation in a dynamic PIN diode with gate control. This device, having built-in potential barriers, has a unique internal integration of output signal generation. The identified interactions showed the possibility of a new design for implementing a nanobiosensor based on a dynamic PIN diode in a mode with surface charge control.
Collapse
|
4
|
Yousefi F, Movahedpour A, Shabaninejad Z, Ghasemi Y, Rabbani S, Sobnani-Nasab A, Mohammadi S, Hajimoradi B, Rezaei S, Savardashtaki A, Mazoochi M, Mirzaei H. Electrochemical-Based Biosensors: New Diagnosis Platforms for Cardiovascular Disease. Curr Med Chem 2020; 27:2550-2575. [DOI: 10.2174/0929867326666191024114207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 02/05/2023]
Abstract
One of the major reasons for mortality throughout the world is cardiovascular diseases.
Therefore, bio-markers of cardiovascular disease are of high importance to diagnose and manage procedure.
Detecting biomarkers provided a promising procedure in developing bio-sensors. Fast, selective,
portable, accurate, inexpensive, and sensitive biomarker sensing instruments will be necessary for
detecting and predicting diseases. One of the cardiac biomarkers may be ordered as C-reactive proteins,
lipoprotein-linked phospho-lipase, troponin I or T, myoglobin, interleukin-6, interleukin-1, tumor necrosis
factor alpha, LDL and myeloperoxidase. The biomarkers are applied to anticipate cardio-vascular
illnesses. Initial diagnoses of these diseases are possible by several techniques; however, they are laborious
and need costly apparatus. Current researches designed various bio-sensors for resolving the respective
issues. Electrochemical instruments and the proposed bio-sensors are preferred over other
methods due to its inexpensiveness, mobility, reliability, repeatability. The present review comprehensively
dealt with detecting biomarkers of cardiovascular disease through electro-chemical techniques.
Collapse
Affiliation(s)
- Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Biological Sciences, Faculty of Nanotechnology, Tarbiat Modares University, Tehran, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Sobnani-Nasab
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Hajimoradi
- Cardiology Department of Shohaday-e-Tajrish Hospital Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Samaneh Rezaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Mazoochi
- Department of Cardiology, Cardiac Electrophysiology Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Tang J, Wang Y, Li Y, Zhang Y, Zhang R, Xiao Z, Luo Y, Guo X, Tao L, Lou Y, Xue W, Zhu F. Recent Technological Advances in the Mass Spectrometry-based Nanomedicine Studies: An Insight from Nanoproteomics. Curr Pharm Des 2019; 25:1536-1553. [PMID: 31258068 DOI: 10.2174/1381612825666190618123306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 11/22/2022]
Abstract
Nanoscience becomes one of the most cutting-edge research directions in recent years since it is gradually matured from basic to applied science. Nanoparticles (NPs) and nanomaterials (NMs) play important roles in various aspects of biomedicine science, and their influences on the environment have caused a whole range of uncertainties which require extensive attention. Due to the quantitative and dynamic information provided for human proteome, mass spectrometry (MS)-based quantitative proteomic technique has been a powerful tool for nanomedicine study. In this article, recent trends of progress and development in the nanomedicine of proteomics were discussed from quantification techniques and publicly available resources or tools. First, a variety of popular protein quantification techniques including labeling and label-free strategies applied to nanomedicine studies are overviewed and systematically discussed. Then, numerous protein profiling tools for data processing and postbiological statistical analysis and publicly available data repositories for providing enrichment MS raw data information sources are also discussed.
Collapse
Affiliation(s)
- Jing Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China.,School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Yi Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Yang Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China.,School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Runyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Ziyu Xiao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Xueying Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China.,School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| |
Collapse
|
6
|
Bakirhan NK, Ozcelikay G, Ozkan SA. Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors. J Pharm Biomed Anal 2018; 159:406-424. [PMID: 30036704 DOI: 10.1016/j.jpba.2018.07.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease is the most reason for deaths in all over the world. Hence, biomarkers of cardiovascular diseases are very crucial for diagnosis and management process. Biomarker detection demand is opened the important way in biosensor development field. Rapid, cheap, portable, precise, selective and sensitive biomarker sensing devices are needed at this point to detect and predict disease. A cardiac biomarker can be orderable as C-reactive protein, troponin I or T, myoglobin, tumor necrosis factor alpha, interleukin-6, interleukin-1, lipoprotein-associated phospholipase, low-density lipoprotein and myeloperoxidase. They are used for prediction of cardiovascular diseases. There are many methods for early diagnosis of cardiovascular diseases, but these have long time process and expensive devices. In recent studies, different biosensors have been developed to remove the problems in this field. Electrochemical devices and developed biosensors have many superiorities than others such as low cost, mobile, reliable, repeatable, need a little amount of solution. In this review, recent studies were presented as details for cardiovascular disease biomarkers detection using electrochemical methods.
Collapse
Affiliation(s)
- Nurgul K Bakirhan
- Hitit University, Faculty of Arts and Sciences, Department of Chemistry, Corum, Turkey
| | - Goksu Ozcelikay
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, Ankara, Turkey
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, Ankara, Turkey.
| |
Collapse
|
7
|
Craciun AM, Focsan M, Magyari K, Vulpoi A, Pap Z. Surface Plasmon Resonance or Biocompatibility-Key Properties for Determining the Applicability of Noble Metal Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E836. [PMID: 28773196 PMCID: PMC5551879 DOI: 10.3390/ma10070836] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022]
Abstract
Metal and in particular noble metal nanoparticles represent a very special class of materials which can be applied as prepared or as composite materials. In most of the cases, two main properties are exploited in a vast number of publications: biocompatibility and surface plasmon resonance (SPR). For instance, these two important properties are exploitable in plasmonic diagnostics, bioactive glasses/glass ceramics and catalysis. The most frequently applied noble metal nanoparticle that is universally applicable in all the previously mentioned research areas is gold, although in the case of bioactive glasses/glass ceramics, silver and copper nanoparticles are more frequently applied. The composite partners/supports/matrix/scaffolds for these nanoparticles can vary depending on the chosen application (biopolymers, semiconductor-based composites: TiO₂, WO₃, Bi₂WO₆, biomaterials: SiO₂ or P₂O₅-based glasses and glass ceramics, polymers: polyvinyl alcohol (PVA), Gelatin, polyethylene glycol (PEG), polylactic acid (PLA), etc.). The scientific works on these materials' applicability and the development of new approaches will be targeted in the present review, focusing in several cases on the functioning mechanism and on the role of the noble metal.
Collapse
Affiliation(s)
- Ana Maria Craciun
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
| | - Klara Magyari
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
| | - Adriana Vulpoi
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
| | - Zsolt Pap
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
- Institute of Environmental Science and Technology, University of Szeged, 6720 Szeged, Hungary.
| |
Collapse
|
8
|
Dhingra R, Vasan RS. Biomarkers in cardiovascular disease: Statistical assessment and section on key novel heart failure biomarkers. Trends Cardiovasc Med 2017; 27:123-133. [PMID: 27576060 PMCID: PMC5253084 DOI: 10.1016/j.tcm.2016.07.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/23/2016] [Accepted: 07/23/2016] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide and continues to increase in prevalence compared to previous decades, in part because of the aging of the world population. Atherosclerotic CVD starts at a very young age and progresses over time allowing sufficient time for screening and early detection of the condition. Advances in biomarker research and developments related to CVD over the past 30 years have led to more sensitive screening methods, a greater emphasis on its early detection and diagnosis, and improved treatments resulting in more favorable clinical outcomes in the community. However, the use of biomarkers for different purposes in CVD remains an important area of research that has been explored by scientists over the years and many new developments are still underway. Therefore, a detailed description of all CVD biomarkers that are currently been used or investigated for future use in the field of cardiovascular medicine is out of scope for any review article. In the present review, we do not intend to replicate the information from previous exhaustive review on biomarkers, but highlight key statistical and clinical issues with an emphasis on methods to evaluate the incremental yield of biomarkers, including their clinical utility, a prerequisite before any putative novel biomarker is utilized in clinical practice. In addition, we will summarize information regarding recent novel heart failure biomarkers in current practice, which are undergoing scrutiny before they can be available for clinical use, and their impact on clinical outcomes.
Collapse
Affiliation(s)
- Ravi Dhingra
- Division of Cardiovascular Medicine, University of Wisconsin-Madison, 600 Highland Avenue, E5/582C, MC 5710, Madison, WI 53792.
| | - Ramachandran S Vasan
- Division of Cardiovascular Medicine, University of Wisconsin-Madison, 600 Highland Avenue, E5/582C, MC 5710, Madison, WI 53792
| |
Collapse
|
9
|
Clinicopathological Analysis and Multipronged Quantitative Proteomics Reveal Oxidative Stress and Cytoskeletal Proteins as Possible Markers for Severe Vivax Malaria. Sci Rep 2016; 6:24557. [PMID: 27090372 PMCID: PMC4835765 DOI: 10.1038/srep24557] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/30/2016] [Indexed: 02/04/2023] Open
Abstract
In Plasmodium vivax malaria, mechanisms that trigger transition from uncomplicated to fatal severe infections are obscure. In this multi-disciplinary study we have performed a comprehensive analysis of clinicopathological parameters and serum proteome profiles of vivax malaria patients with different severity levels of infection to investigate pathogenesis of severe malaria and identify surrogate markers of severity. Clinicopathological analysis and proteomics profiling has provided evidences for the modulation of diverse physiological pathways including oxidative stress, cytoskeletal regulation, lipid metabolism and complement cascades in severe malaria. Strikingly, unlike severe falciparum malaria the blood coagulation cascade was not found to be affected adversely in acute P. vivax infection. To the best of our knowledge, this is the first comprehensive proteomics study, which identified some possible cues for severe P. vivax infection. Our results suggest that Superoxide dismutase, Vitronectin, Titin, Apolipoprotein E, Serum amyloid A, and Haptoglobin are potential predictive markers for malaria severity.
Collapse
|
10
|
Jenie SNA, Plush SE, Voelcker NH. Recent Advances on Luminescent Enhancement-Based Porous Silicon Biosensors. Pharm Res 2016; 33:2314-36. [PMID: 26916167 DOI: 10.1007/s11095-016-1889-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/17/2016] [Indexed: 12/31/2022]
Abstract
Luminescence-based detection paradigms have key advantages over other optical platforms such as absorbance, reflectance or interferometric based detection. However, autofluorescence, low quantum yield and lack of photostability of the fluorophore or emitting molecule are still performance-limiting factors. Recent research has shown the need for enhanced luminescence-based detection to overcome these drawbacks while at the same time improving the sensitivity, selectivity and reducing the detection limits of optical sensors and biosensors. Nanostructures have been reported to significantly improve the spectral properties of the emitting molecules. These structures offer unique electrical, optic and magnetic properties which may be used to tailor the surrounding electrical field of the emitter. Here, the main principles behind luminescence and luminescence enhancement-based detections are reviewed, with an emphasis on europium complexes as the emitting molecule. An overview of the optical porous silicon microcavity (pSiMC) as a biosensing platform and recent proof-of-concept examples on enhanced luminescence-based detection using pSiMCs are provided and discussed.
Collapse
Affiliation(s)
- S N Aisyiyah Jenie
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.,Research Centre for Chemistry, Indonesian Institute of Sciences, PUSPIPTEK, Serpong, Tangerang, Banten, 15314, Indonesia
| | - Sally E Plush
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia. .,, GPO Box 2471, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
11
|
Md Ali MA, Ostrikov K(K, Khalid FA, Majlis BY, Kayani AA. Active bioparticle manipulation in microfluidic systems. RSC Adv 2016. [DOI: 10.1039/c6ra20080j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The motion of bioparticles in a microfluidic environment can be actively controlled using several tuneable mechanisms, including hydrodynamic, electrophoresis, dielectrophoresis, magnetophoresis, acoustophoresis, thermophoresis and optical forces.
Collapse
Affiliation(s)
- Mohd Anuar Md Ali
- Institute of Microengineering and Nanoelectronics
- Universiti Kebangsaan Malaysia
- Bangi
- Malaysia
| | - Kostya (Ken) Ostrikov
- School of Chemistry, Physics, and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
- CSIRO-QUT Joint Sustainable Processes and Devices Laboratory
| | - Fararishah Abdul Khalid
- Faculty of Technology Management and Technopreneurship
- Universiti Teknikal Malaysia Melaka
- Malaysia
| | - Burhanuddin Y. Majlis
- Institute of Microengineering and Nanoelectronics
- Universiti Kebangsaan Malaysia
- Bangi
- Malaysia
| | - Aminuddin A. Kayani
- Institute of Microengineering and Nanoelectronics
- Universiti Kebangsaan Malaysia
- Bangi
- Malaysia
- Center for Advanced Materials and Green Technology
| |
Collapse
|
12
|
Krizkova S, Heger Z, Zalewska M, Moulick A, Adam V, Kizek R. Nanotechnologies in protein microarrays. Nanomedicine (Lond) 2015; 10:2743-55. [PMID: 26039143 DOI: 10.2217/nnm.15.81] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein microarray technology became an important research tool for study and detection of proteins, protein-protein interactions and a number of other applications. The utilization of nanoparticle-based materials and nanotechnology-based techniques for immobilization allows us not only to extend the surface for biomolecule immobilization resulting in enhanced substrate binding properties, decreased background signals and enhanced reporter systems for more sensitive assays. Generally in contemporarily developed microarray systems, multiple nanotechnology-based techniques are combined. In this review, applications of nanoparticles and nanotechnologies in creating protein microarrays, proteins immobilization and detection are summarized. We anticipate that advanced nanotechnologies can be exploited to expand promising fields of proteins identification, monitoring of protein-protein or drug-protein interactions, or proteins structures.
Collapse
Affiliation(s)
- Sona Krizkova
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Zbynek Heger
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Marta Zalewska
- Department of Biomedical & Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland, European Union
| | - Amitava Moulick
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Vojtech Adam
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Rene Kizek
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| |
Collapse
|
13
|
Zaccaria A, Roux-Dalvai F, Bouamrani A, Mombrun A, Mossuz P, Monsarrat B, Berger F. Accessing to the minor proteome of red blood cells through the influence of the nanoparticle surface properties on the corona composition. Int J Nanomedicine 2015; 10:1869-83. [PMID: 25834426 PMCID: PMC4358650 DOI: 10.2147/ijn.s70503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nanoparticle (NP)-protein interactions in complex samples have not yet been clearly understood. Nevertheless, several studies demonstrated that NP's physicochemical features significantly impact on the protein corona composition. Taking advantage of the NP potential to harvest different subsets of proteins, we assessed for the first time the capacity of three kinds of superparamagnetic NPs to highlight the erythrocyte minor proteome. Using both qualitative and quantitative proteomics approaches, nano-liquid chromatography-tandem mass spectrometry allowed the identification of 893 different proteins, confirming the reproducible capacity of NPs to increase the number of identified proteins, through a reduction of the sample concentration range and the capture of specific proteins on the three different surfaces. These NP-specific protein signatures revealed significant differences in their isoelectric point and molecular weight. Moreover, this NP strategy offered a deeper access to the erythrocyte proteome highlighting several signaling pathways implicated in important erythrocyte functions. The automated potentiality, the reproducibility, and the low-consuming sample demonstrate the strong compatibility of our strategy for large-scale clinical studies and may become a standardized sample preparation in future erythrocyte-associated proteomics studies.
Collapse
Affiliation(s)
| | - Florence Roux-Dalvai
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France ; Université de Toulouse, UPS, IPBS, Toulouse, France
| | | | | | - Pascal Mossuz
- TIMC-THEREX UMR 5525 CNRS, UJF, CHU Grenoble, Grenoble, France
| | - Bernard Monsarrat
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France ; Université de Toulouse, UPS, IPBS, Toulouse, France
| | | |
Collapse
|
14
|
Sun G, Liu H, Zhang Y, Yu J, Yan M, Song X, He W. Gold nanorods-paper electrode based enzyme-free electrochemical immunoassay for prostate specific antigen using porous zinc oxide spheres–silver nanoparticles nanocomposites as labels. NEW J CHEM 2015. [DOI: 10.1039/c5nj00629e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanorods-modified paper electrode and porous zinc oxide spheres–silver nanoparticles nanocomposites were used to construct an enzyme-free immunosensor.
Collapse
Affiliation(s)
- Guoqiang Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Haiyun Liu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yan Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Mei Yan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Xianrang Song
- Cancer Research Center
- Shandong Tumor Hospital
- Jinan 250117
- China
| | - Wenxing He
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
15
|
Sakulkhu U, Mahmoudi M, Maurizi L, Coullerez G, Hofmann-Amtenbrink M, Vries M, Motazacker M, Rezaee F, Hofmann H. Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona. Biomater Sci 2015. [DOI: 10.1039/c4bm00264d] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We showed that protein corona is strongly dependent on the coating of the material.
Collapse
Affiliation(s)
- Usawadee Sakulkhu
- Laboratory of Powder Technology
- Ecole Polytechnique Fédérale de Lausanne
- Lausanne
- Switzerland
| | - Morteza Mahmoudi
- Nanotechnology Research Center and Department of Nanotechnology
- Faculty of Pharmacy
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Lionel Maurizi
- Laboratory of Powder Technology
- Ecole Polytechnique Fédérale de Lausanne
- Lausanne
- Switzerland
| | - Geraldine Coullerez
- Laboratory of Powder Technology
- Ecole Polytechnique Fédérale de Lausanne
- Lausanne
- Switzerland
| | | | - Marcel Vries
- University Medical Center Groningen (UMCG)University of Groningen
- Groningen
- The Netherlands
| | - Mahdi Motazacker
- Department for Experimental and Molecular Medicine
- Academic Medical Center
- University of Amsterdam
- Amsterdam
- The Netherlands
| | - Farhad Rezaee
- University Medical Center Groningen (UMCG)University of Groningen
- Groningen
- The Netherlands
| | - Heinrich Hofmann
- Laboratory of Powder Technology
- Ecole Polytechnique Fédérale de Lausanne
- Lausanne
- Switzerland
| |
Collapse
|
16
|
Oliveira-Silva R, Pinto da Costa J, Vitorino R, Daniel-da-Silva AL. Magnetic chelating nanoprobes for enrichment and selective recovery of metalloproteases from human saliva. J Mater Chem B 2015; 3:238-249. [DOI: 10.1039/c4tb01189a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic nanoparticles effective in the selective recovery of metalloproteases from human saliva were fabricated by surface modification of Fe3O4@SiO2nanoparticles with EDTA-TMS.
Collapse
Affiliation(s)
- Rui Oliveira-Silva
- Organic Chemistry
- Natural and Agro-Food Products Research Unit (QOPNA)
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
| | - João Pinto da Costa
- Organic Chemistry
- Natural and Agro-Food Products Research Unit (QOPNA)
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
| | - Rui Vitorino
- Organic Chemistry
- Natural and Agro-Food Products Research Unit (QOPNA)
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
| | - Ana L. Daniel-da-Silva
- CICECO
- Department of Chemistry
- Aveiro Institute of Nanotechnology
- University of Aveiro
- 3810-193 Aveiro
| |
Collapse
|
17
|
Gahoi N, Ray S, Srivastava S. Array-based proteomic approaches to study signal transduction pathways: prospects, merits and challenges. Proteomics 2014; 15:218-31. [PMID: 25266292 DOI: 10.1002/pmic.201400261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 01/17/2023]
Abstract
Very often dysfunctional aspects of various signalling networks are found to be associated with human diseases and disorders. The major characteristics of signal transduction pathways are specificity, amplification of the signal, desensitisation and integration, which is accomplished not solely, but majorly by proteins. Array-based profiling of protein-protein and other biomolecular interactions is a versatile approach, which holds immense potential for multiplex interactome mapping and provides an inclusive representation of the signal transduction pathways and networks. Protein microarrays such as analytical protein microarrays (antigen-antibody interactions, autoantibody screening), RP microarrays (interaction of a particular ligand with all the possible targets in cell), functional protein microarrays (protein-protein or protein-ligand interactions) are implemented for various applications, including analysis of protein interactions and their significance in signalling cascades. Additionally, successful amalgamation of the array-based approaches with different label-free detection techniques allows real-time analysis of interaction kinetics of multiple interaction events simultaneously. This review discusses the prospects, merits and limitations of different variants of array-based techniques and their promising applications for studying the modifications and interactions of biomolecules, and highlights the studies associated with signal transduction pathways and their impact on disease pathobiology.
Collapse
Affiliation(s)
- Nikita Gahoi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | |
Collapse
|
18
|
da Costa JP, Oliveira-Silva R, Daniel-da-Silva AL, Vitorino R. Bionanoconjugation for Proteomics applications — An overview. Biotechnol Adv 2014; 32:952-70. [DOI: 10.1016/j.biotechadv.2014.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/15/2014] [Accepted: 04/26/2014] [Indexed: 12/29/2022]
|
19
|
Ronkainen NJ, Okon SL. Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers. MATERIALS (BASEL, SWITZERLAND) 2014; 7:4669-4709. [PMID: 28788700 PMCID: PMC5455914 DOI: 10.3390/ma7064669] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/26/2014] [Accepted: 06/05/2014] [Indexed: 12/26/2022]
Abstract
Nanotechnology has played a crucial role in the development of biosensors over the past decade. The development, testing, optimization, and validation of new biosensors has become a highly interdisciplinary effort involving experts in chemistry, biology, physics, engineering, and medicine. The sensitivity, the specificity and the reproducibility of biosensors have improved tremendously as a result of incorporating nanomaterials in their design. In general, nanomaterials-based electrochemical immunosensors amplify the sensitivity by facilitating greater loading of the larger sensing surface with biorecognition molecules as well as improving the electrochemical properties of the transducer. The most common types of nanomaterials and their properties will be described. In addition, the utilization of nanomaterials in immunosensors for biomarker detection will be discussed since these biosensors have enormous potential for a myriad of clinical uses. Electrochemical immunosensors provide a specific and simple analytical alternative as evidenced by their brief analysis times, inexpensive instrumentation, lower assay cost as well as good portability and amenability to miniaturization. The role nanomaterials play in biosensors, their ability to improve detection capabilities in low concentration analytes yielding clinically useful data and their impact on other biosensor performance properties will be discussed. Finally, the most common types of electroanalytical detection methods will be briefly touched upon.
Collapse
Affiliation(s)
- Niina J Ronkainen
- Department of Chemistry and Biochemistry, Benedictine University, 5700 College Road, Lisle, IL 60532, USA.
| | - Stanley L Okon
- Department of Psychiatry, Advocate Lutheran General Hospital, 8South, 1775 West Dempster Street, Park Ridge, IL 60068, USA.
- Formerly of the Department of Pathology, University of Illinois at Chicago, MC 847, 840 S. Wood St., Suite 130 CSN, Chicago, IL 60612, USA.
| |
Collapse
|
20
|
Kobeissy FH, Gulbakan B, Alawieh A, Karam P, Zhang Z, Guingab-Cagmat JD, Mondello S, Tan W, Anagli J, Wang K. Post-genomics nanotechnology is gaining momentum: nanoproteomics and applications in life sciences. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:111-31. [PMID: 24410486 DOI: 10.1089/omi.2013.0074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The post-genomics era has brought about new Omics biotechnologies, such as proteomics and metabolomics, as well as their novel applications to personal genomics and the quantified self. These advances are now also catalyzing other and newer post-genomics innovations, leading to convergences between Omics and nanotechnology. In this work, we systematically contextualize and exemplify an emerging strand of post-genomics life sciences, namely, nanoproteomics and its applications in health and integrative biological systems. Nanotechnology has been utilized as a complementary component to revolutionize proteomics through different kinds of nanotechnology applications, including nanoporous structures, functionalized nanoparticles, quantum dots, and polymeric nanostructures. Those applications, though still in their infancy, have led to several highly sensitive diagnostics and new methods of drug delivery and targeted therapy for clinical use. The present article differs from previous analyses of nanoproteomics in that it offers an in-depth and comparative evaluation of the attendant biotechnology portfolio and their applications as seen through the lens of post-genomics life sciences and biomedicine. These include: (1) immunosensors for inflammatory, pathogenic, and autoimmune markers for infectious and autoimmune diseases, (2) amplified immunoassays for detection of cancer biomarkers, and (3) methods for targeted therapy and automatically adjusted drug delivery such as in experimental stroke and brain injury studies. As nanoproteomics becomes available both to the clinician at the bedside and the citizens who are increasingly interested in access to novel post-genomics diagnostics through initiatives such as the quantified self, we anticipate further breakthroughs in personalized and targeted medicine.
Collapse
Affiliation(s)
- Firas H Kobeissy
- 1 Center for Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Patel S. Role of proteomics in biomarker discovery and psychiatric disorders: current status, potentials, limitations and future challenges. Expert Rev Proteomics 2014; 9:249-65. [DOI: 10.1586/epr.12.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Brondani D, Piovesan JV, Westphal E, Gallardo H, Fireman Dutra RA, Spinelli A, Vieira IC. A label-free electrochemical immunosensor based on an ionic organic molecule and chitosan-stabilized gold nanoparticles for the detection of cardiac troponin T. Analyst 2014; 139:5200-8. [DOI: 10.1039/c4an00993b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A immunosensor based on an ionic organic molecule and chitosan-stabilized gold nanoparticles was developed for the detection of cardiac troponin T (cTnT).
Collapse
Affiliation(s)
- Daniela Brondani
- Laboratory of Biosensors
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis, Brazil
| | - Jamille Valéria Piovesan
- Group of Studies of Electrochemical and Electroanalytical Processes
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis, Brazil
| | - Eduard Westphal
- Laboratory of Synthesis of Liquid Crystals
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis, Brazil
| | - Hugo Gallardo
- Laboratory of Synthesis of Liquid Crystals
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis, Brazil
| | | | - Almir Spinelli
- Group of Studies of Electrochemical and Electroanalytical Processes
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis, Brazil
| | - Iolanda Cruz Vieira
- Laboratory of Biosensors
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis, Brazil
| |
Collapse
|
23
|
Mahfoud OK, Rakovich TY, Prina-Mello A, Movia D, Alves F, Volkov Y. Detection of ErbB2: nanotechnological solutions for clinical diagnostics. RSC Adv 2014. [DOI: 10.1039/c3ra45401k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Liu QL, Yan XH, Yin XM, Situ B, Zhou HK, Lin L, Li B, Gan N, Zheng L. Electrochemical enzyme-linked immunosorbent assay (ELISA) for α-fetoprotein based on glucose detection with multienzyme-nanoparticle amplification. Molecules 2013; 18:12675-86. [PMID: 24129276 PMCID: PMC6270425 DOI: 10.3390/molecules181012675] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 11/17/2022] Open
Abstract
Since glucose biosensors are one of the most popular and widely used point-of-care testing devices, a novel electrochemical enzyme-linked immunosorbent assay (ELISA) for protein biomarkers has been developed based on a glucose detection strategy. In this study, α-fetoprotein (AFP) was used as the target protein. An electrochemical ELISA system was constructed using anti-AFP antibodies immobilized on microwell plates as the capture antibody (Ab1) and multi-label bioconjugates as signal tracer. The bioconjugates were synthesized by attaching glucoamylase and the secondary anti-AFP antibodies (Ab2) to gold nanoparticles (AuNPs). After formation of the sandwich complex, the Ab2-glucoamylase-AuNPs conjugates converted starch into glucose in the presence of AFP. The concentration of AFP can be calculated based on the linear relation between AFP and glucose, the concentration of which can be detected by the glucose biosensor. When the AFP concentration ranged from 0.05 to 100 ng/mL, a linear calibration plot (i (µA) = 13.62033 - 2.86252 logCAFP (ng/mL), r = 0.99886) with a detection limit of 0.02 ng/mL was obtained under optimal conditions. The electrochemical ELISA developed in this work shows acceptable stability and reproducibility, and the assay for AFP spiked in human serum also shows good recovery (97.0%-104%). This new method could be applied for detecting any protein biomarker with the corresponding antibodies.
Collapse
Affiliation(s)
- Qin-Lan Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; E-Mails: (Q.-L.L.); (X.-M.Y.); (B.S.); (L.L.); (B.L.)
| | - Xiao-Hui Yan
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; E-Mail:
| | - Xiao-Mao Yin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; E-Mails: (Q.-L.L.); (X.-M.Y.); (B.S.); (L.L.); (B.L.)
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; E-Mails: (Q.-L.L.); (X.-M.Y.); (B.S.); (L.L.); (B.L.)
| | - Han-Kun Zhou
- The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Material Science and Chemical Engineering of Ningbo University, Ningbo 315211, China; E-Mail:
| | - Li Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; E-Mails: (Q.-L.L.); (X.-M.Y.); (B.S.); (L.L.); (B.L.)
| | - Bo Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; E-Mails: (Q.-L.L.); (X.-M.Y.); (B.S.); (L.L.); (B.L.)
| | - Ning Gan
- The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Material Science and Chemical Engineering of Ningbo University, Ningbo 315211, China; E-Mail:
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; E-Mails: (Q.-L.L.); (X.-M.Y.); (B.S.); (L.L.); (B.L.)
| |
Collapse
|
25
|
Napoli C, Zullo A, Picascia A, Infante T, Mancini FP. Recent advances in proteomic technologies applied to cardiovascular disease. J Cell Biochem 2013; 114:7-20. [PMID: 22886784 DOI: 10.1002/jcb.24307] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/26/2012] [Indexed: 12/12/2022]
Abstract
In recent years, the diagnosis of cardiovascular disease (CVD) has increased its potential, also thanks to mass spectrometry (MS) proteomics. Modern MS proteomics tools permit analyzing a variety of biological samples, ranging from single cells to tissues and body fluids, like plasma and urine. This approach enhances the search for informative biomarkers in biological samples from apparently healthy individuals or patients, thus allowing an earlier and more precise diagnosis and a deeper comprehension of pathogenesis, development and outcome of CVD to further reduce the enormous burden of this disease on public health. In fact, many differences in protein expression between CVD-affected and healthy subjects have been detected, but only a few of them have been useful to establish clinical biomarkers because they did not pass the verification and validation tests. For a concrete clinical support of MS proteomics to CVD, it is, therefore, necessary to: ameliorate the resolution, sensitivity, specificity, throughput, precision, and accuracy of MS platform components; standardize procedures for sample collection, preparation, and analysis; lower the costs of the analyses; reduce the time of biomarker verification and validation. At the same time, it will be fundamental, for the future perspectives of proteomics in clinical trials, to define the normal protein maps and the global patterns of normal protein levels, as well as those specific for the different expressions of CVD.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of General Pathology, Excellence Research Centre on Cardiovascular Disease, U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Ospedaliera Universitaria (AOU), 1st School of Medicine, Second University of Naples, 80138 Naples, Italy.
| | | | | | | | | |
Collapse
|
26
|
Agrawal GK, Timperio AM, Zolla L, Bansal V, Shukla R, Rakwal R. Biomarker discovery and applications for foods and beverages: proteomics to nanoproteomics. J Proteomics 2013; 93:74-92. [PMID: 23619387 DOI: 10.1016/j.jprot.2013.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/17/2013] [Accepted: 04/01/2013] [Indexed: 12/18/2022]
Abstract
Foods and beverages have been at the heart of our society for centuries, sustaining humankind - health, life, and the pleasures that go with it. The more we grow and develop as a civilization, the more we feel the need to know about the food we eat and beverages we drink. Moreover, with an ever increasing demand for food due to the growing human population food security remains a major concern. Food safety is another growing concern as the consumers prefer varied foods and beverages that are not only traded nationally but also globally. The 21st century science and technology is at a new high, especially in the field of biological sciences. The availability of genome sequences and associated high-throughput sensitive technologies means that foods are being analyzed at various levels. For example and in particular, high-throughput omics approaches are being applied to develop suitable biomarkers for foods and beverages and their applications in addressing quality, technology, authenticity, and safety issues. Proteomics are one of those technologies that are increasingly being utilized to profile expressed proteins in different foods and beverages. Acquired knowledge and protein information have now been translated to address safety of foods and beverages. Very recently, the power of proteomic technology has been integrated with another highly sensitive and miniaturized technology called nanotechnology, yielding a new term nanoproteomics. Nanoproteomics offer a real-time multiplexed analysis performed in a miniaturized assay, with low-sample consumption and high sensitivity. To name a few, nanomaterials - quantum dots, gold nanoparticles, carbon nanotubes, and nanowires - have demonstrated potential to overcome the challenges of sensitivity faced by proteomics for biomarker detection, discovery, and application. In this review, we will discuss the importance of biomarker discovery and applications for foods and beverages, the contribution of proteomic technology in this process, and a shift towards nanoproteomics to suitably address associated issues. This article is part of a Special Issue entitled: Translational plant proteomics.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal.
| | | | | | | | | | | |
Collapse
|
27
|
A sensitive gold nanoparticles sensing platform based on resonance energy transfer for chemiluminescence light on detection of biomolecules. Biosens Bioelectron 2013; 46:119-23. [PMID: 23524140 DOI: 10.1016/j.bios.2013.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 11/21/2022]
Abstract
In this article, we report a gold nanoparticles (AuNPs) sensing platform based on chemiluminescence resonance energy transfer (CRET) for light on detection of biomolecules. In designing such a CRET-based biosensing platform, the aptamer was first covalently labeled with a chemiluminescent reagent, N-(4-aminobutyl)-N-ethylisoluminol (ABEI). The ABEI labeled aptamer was then hybridized with AuNPs functionalized ssDNA which was complementary to the aptamer, obtaining the aptasensor. The CRET between ABEI and AuNPs in the aptasensor led to the CL quenching of ABEI. In the presence of a target analyte, it formed a complex with aptamer, and released ABEI-aptamer from AuNPs surface that resulted in CL recovery of ABEI. To test this design, a thrombin (used as a model analyte) aptasensor was prepared and evaluated. The results indicate that the proposed approach is simple and provided a linear range of 50-550 pM for thrombin detection with a detection limit of 15 pM. This new methodology can be easily extended to assay other biomolecules by simply changing the recognition sequence with the substrate aptamer.
Collapse
|
28
|
Cinta Pinzaru S, Falamas A, Dehelean CA. Molecular conformation changes along the malignancy revealed by optical nanosensors. J Cell Mol Med 2013; 17:277-86. [PMID: 23301881 PMCID: PMC3822590 DOI: 10.1111/jcmm.12006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 10/24/2012] [Indexed: 02/06/2023] Open
Abstract
An interdisciplinary approach employing functionalized nanoparticles and ultrasensitive spectroscopic techniques is reported here to track the molecular changes in early stage of malignancy. Melanoma tissue tracking at molecular level using both labelled and unlabelled silver and gold nanoparticles has been achieved using surface enhanced Raman scattering (SERS) technique. We used skin tissue from ex vivo mice with induced melanoma. Raman and SERS molecular characterization of melanoma tissue is proposed here for the first time. Optical nanosensors based on Ag and Au nanoparticles with chemisorbed cresyl violet molecular species as labels revealed sensitive capability to tissues tagging and local molecular characterization. Sensitive information originating from surrounding native biological molecules is provided by the tissue SERS spectra obtained either with visible or NIR laser line. Labelled nanoparticles introduced systematic differences in tissue response compared with unlabelled ones, suggesting that the label functional groups tag specific tissue components revealed by proteins or nucleic acids bands. Vibrational data collected from tissue are presented in conjunction with the immunohistochemical analysis. The results obtained here open perspectives in applied plasmonic nanoparticles and SERS for the early cancer diagnostic based on the appropriate spectral databank.
Collapse
|
29
|
Powers AD, Palecek SP. Protein analytical assays for diagnosing, monitoring, and choosing treatment for cancer patients. JOURNAL OF HEALTHCARE ENGINEERING 2012; 3:503-534. [PMID: 25147725 DOI: 10.1260/2040-2295.3.4.503] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer treatment is often hindered by inadequate methods for diagnosing the disease or insufficient predictive capacity regarding therapeutic efficacy. Targeted cancer treatments, including Bcr-Abl and EGFR kinase inhibitors, have increased survival for some cancer patients but are ineffective in other patients. In addition, many patients who initially respond to targeted inhibitor therapy develop resistance during the course of treatment. Molecular analysis of cancer cells has emerged as a means to tailor treatment to particular patients. While DNA analysis can provide important diagnostic information, protein analysis is particularly valuable because proteins are more direct mediators of normal and diseased cellular processes. In this review article, we discuss current and emerging protein assays for improving cancer treatment, including trends toward assay miniaturization and measurement of protein activity.
Collapse
Affiliation(s)
- Alicia D Powers
- Department of Chemical and Biological Engineering University of Wisconsin-Madison
| | - Sean P Palecek
- Department of Chemical and Biological Engineering University of Wisconsin-Madison
| |
Collapse
|
30
|
Liu QY, Sun LQ, Tu B. Magnetic beads-based biological mass spectrometry technology for diagnosis of esophageal carcinoma. Shijie Huaren Xiaohua Zazhi 2012; 20:3021-3026. [DOI: 10.11569/wcjd.v20.i31.3021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect specific protein biomarkers for esophageal cancer by comparing serum proteomic spectra between patients with esophageal cancer and healthy individuals.
METHODS: Serum samples were collected from 63 patients with esophageal cancer and 62 healthy individuals, and randomized into model construction group and validation group. WCX kit and matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF-MS) technology were used to detect serum samples from patients with esophageal cancer and healthy individuals. Flex Analysis software was used to analyze protein peaks for significant difference. Mass spectrometry data obtained were analyzed using ClinPro Tools software. The model was then built using ClinproTools2.2 software and evaluated in a blind test for reliability.
RESULTS: Twenty-four differentially expressed proteins in serum were screened by comparing serum protemic spectra between esophageal cancer patients and healthy individuals, including 12 up-regulated proteins and 9 down-regulated ones. Three proteins (654.74, 1 451.48 and 1 866.67 Dr) were obtained for developing a ClinProt model which was able to classify esophageal cancer patients and healthy individuals with a sensitivity of 93.75% (30/32) and a specificity of 90.00% (27/30). In a double blind validation, the ClinProt model yielded a sensitivity of 93.55% (29/31) and a specificity of 90.32% (28/31).
CONCLUSION: MALDI-TOF-MS combined with WCX kit technology allows directly screening differentially expressed serum protein in esophageal cancer, and these protein markers can be used for diagnosis of early esophageal cancer.
Collapse
|
31
|
Nicolini C, Bragazzi N, Pechkova E. Nanoproteomics enabling personalized nanomedicine. Adv Drug Deliv Rev 2012; 64:1522-31. [PMID: 22820526 DOI: 10.1016/j.addr.2012.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 02/01/2023]
Abstract
Nucleic Acid Programmable Protein Arrays utilize a complex mammalian cell free expression system to produce proteins in situ. In alternative to fluorescent-labeled approaches a new label free method, emerging from the combined utilization of three independent and complementary nanotechnological approaches, appears capable to analyze protein function and protein-protein interaction in studies promising for personalized medicine. Quartz Micro Circuit nanogravimetry, based on frequency and dissipation factor, mass spectrometry and anodic porous alumina overcomes indeed the limits of correlated fluorescence detection plagued by the background still present after extensive washes. This could be further optimized by a homogeneous and well defined bacterial cell free expression system capable to realize the ambitious objective to quantify the regulatory protein networks in humans. Implications for personalized medicine of the above label free protein array using different test genes proteins are reported.
Collapse
|
32
|
Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, kouhi M, Akbarzadeh A, Davaran S. Quantum dots: synthesis, bioapplications, and toxicity. NANOSCALE RESEARCH LETTERS 2012; 7:480. [PMID: 22929008 PMCID: PMC3463453 DOI: 10.1186/1556-276x-7-480] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/26/2012] [Indexed: 05/19/2023]
Abstract
This review introduces quantum dots (QDs) and explores their properties, synthesis, applications, delivery systems in biology, and their toxicity. QDs are one of the first nanotechnologies to be integrated with the biological sciences and are widely anticipated to eventually find application in a number of commercial consumer and clinical products. They exhibit unique luminescence characteristics and electronic properties such as wide and continuous absorption spectra, narrow emission spectra, and high light stability. The application of QDs, as a new technology for biosystems, has been typically studied on mammalian cells. Due to the small structures of QDs, some physical properties such as optical and electron transport characteristics are quite different from those of the bulk materials.
Collapse
Affiliation(s)
- Alireza Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Haleh Mikaeili
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mohammad Samiei
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Samad Mussa Farkhani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Nosratalah Zarghami
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Mohammad kouhi
- Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| |
Collapse
|
33
|
Larguinho M, Baptista PV. Gold and silver nanoparticles for clinical diagnostics — From genomics to proteomics. J Proteomics 2012; 75:2811-23. [DOI: 10.1016/j.jprot.2011.11.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 10/30/2011] [Accepted: 11/06/2011] [Indexed: 12/11/2022]
|
34
|
López E, Madero L, López-Pascual J, Latterich M. Clinical proteomics and OMICS clues useful in translational medicine research. Proteome Sci 2012; 10:35. [PMID: 22642823 PMCID: PMC3536680 DOI: 10.1186/1477-5956-10-35] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 05/04/2012] [Indexed: 12/21/2022] Open
Abstract
Since the advent of the new proteomics era more than a decade ago, large-scale studies of protein profiling have been used to identify distinctive molecular signatures in a wide array of biological systems, spanning areas of basic biological research, clinical diagnostics, and biomarker discovery directed toward therapeutic applications. Recent advances in protein separation and identification techniques have significantly improved proteomic approaches, leading to enhancement of the depth and breadth of proteome coverage. Proteomic signatures, specific for multiple diseases, including cancer and pre-invasive lesions, are emerging. This article combines, in a simple manner, relevant proteomic and OMICS clues used in the discovery and development of diagnostic and prognostic biomarkers that are applicable to all clinical fields, thus helping to improve applications of clinical proteomic strategies for translational medicine research.
Collapse
Affiliation(s)
- Elena López
- Centro de Investigación i + 12, Hospital 12 de Octubre, Av, De Córdoba s/n, 28040, Madrid, Spain.
| | | | | | | |
Collapse
|
35
|
Zhou J, Zhuang J, Miró M, Gao Z, Chen G, Tang D. Carbon nanospheres-promoted electrochemical immunoassay coupled with hollow platinum nanolabels for sensitivity enhancement. Biosens Bioelectron 2012; 35:394-400. [DOI: 10.1016/j.bios.2012.03.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 11/30/2022]
|
36
|
Dasilva N, Díez P, Matarraz S, González-González M, Paradinas S, Orfao A, Fuentes M. Biomarker discovery by novel sensors based on nanoproteomics approaches. SENSORS 2012; 12:2284-308. [PMID: 22438764 PMCID: PMC3304166 DOI: 10.3390/s120202284] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/20/2012] [Accepted: 02/14/2012] [Indexed: 12/23/2022]
Abstract
During the last years, proteomics has facilitated biomarker discovery by coupling high-throughput techniques with novel nanosensors. In the present review, we focus on the study of label-based and label-free detection systems, as well as nanotechnology approaches, indicating their advantages and applications in biomarker discovery. In addition, several disease biomarkers are shown in order to display the clinical importance of the improvement of sensitivity and selectivity by using nanoproteomics approaches as novel sensors.
Collapse
Affiliation(s)
- Noelia Dasilva
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
| | - Paula Díez
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
| | - Sergio Matarraz
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
| | - María González-González
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
| | - Sara Paradinas
- Departamento de Química Analítica, Facultad de Ciencias Químicas, University of Salamanca, Salamanca 37008, Spain; E-Mail:
| | - Alberto Orfao
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
| | - Manuel Fuentes
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-923-294-811; Fax: +34-923-294-743
| |
Collapse
|
37
|
Yu LR. Pharmacoproteomics and toxicoproteomics: The field of dreams. J Proteomics 2011; 74:2549-53. [DOI: 10.1016/j.jprot.2011.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 10/03/2011] [Indexed: 01/09/2023]
|