1
|
Wadood AA, Zhang X. The Omics Revolution in Understanding Chicken Reproduction: A Comprehensive Review. Curr Issues Mol Biol 2024; 46:6248-6266. [PMID: 38921044 PMCID: PMC11202932 DOI: 10.3390/cimb46060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Omics approaches have significantly contributed to our understanding of several aspects of chicken reproduction. This review paper gives an overview of the use of omics technologies such as genomics, transcriptomics, proteomics, and metabolomics to elucidate the mechanisms of chicken reproduction. Genomics has transformed the study of chicken reproduction by allowing the examination of the full genetic makeup of chickens, resulting in the discovery of genes associated with reproductive features and disorders. Transcriptomics has provided insights into the gene expression patterns and regulatory mechanisms involved in reproductive processes, allowing for a better knowledge of developmental stages and hormone regulation. Furthermore, proteomics has made it easier to identify and quantify the proteins involved in reproductive physiology to better understand the molecular mechanisms driving fertility, embryonic development, and egg quality. Metabolomics has emerged as a useful technique for understanding the metabolic pathways and biomarkers linked to reproductive performance, providing vital insights for enhancing breeding tactics and reproductive health. The integration of omics data has resulted in the identification of critical molecular pathways and biomarkers linked with chicken reproductive features, providing the opportunity for targeted genetic selection and improved reproductive management approaches. Furthermore, omics technologies have helped to create biomarkers for fertility and embryonic viability, providing the poultry sector with tools for effective breeding and reproductive health management. Finally, omics technologies have greatly improved our understanding of chicken reproduction by revealing the molecular complexities that underpin reproductive processes.
Collapse
Affiliation(s)
- Armughan Ahmed Wadood
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China;
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China;
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Adnane M, de Almeida AM, Chapwanya A. Unveiling the power of proteomics in advancing tropical animal health and production. Trop Anim Health Prod 2024; 56:182. [PMID: 38825622 DOI: 10.1007/s11250-024-04037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024]
Abstract
Proteomics, the large-scale study of proteins in biological systems has emerged as a pivotal tool in the field of animal and veterinary sciences, mainly for investigating local and rustic breeds. Proteomics provides valuable insights into biological processes underlying animal growth, reproduction, health, and disease. In this review, we highlight the key proteomics technologies, methodologies, and their applications in domestic animals, particularly in the tropical context. We also discuss advances in proteomics research, including integration of multi-omics data, single-cell proteomics, and proteogenomics, all of which are promising for improving animal health, adaptation, welfare, and productivity. However, proteomics research in domestic animals faces challenges, such as sample preparation variation, data quality control, privacy and ethical considerations relating to animal welfare. We also provide recommendations for overcoming these challenges, emphasizing the importance of following best practices in sample preparation, data quality control, and ethical compliance. We therefore aim for this review to harness the full potential of proteomics in advancing our understanding of animal biology and ultimately improve animal health and productivity in local breeds of diverse animal species in a tropical context.
Collapse
Affiliation(s)
- Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University of Tiaret, Tiaret, 14000, Algeria.
| | - André M de Almeida
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, 00265, Saint Kitts and Nevis
| |
Collapse
|
3
|
Ahmad P, Siqueira WL. Mass spectrometry-based proteomics profiling of dogs with and without oral diseases: a systematic review. BMC Oral Health 2024; 24:369. [PMID: 38519930 PMCID: PMC10958906 DOI: 10.1186/s12903-024-04096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Understanding the distinct proteomics profiles in dogs' oral biofluids enhances diagnostic and therapeutic insights for canine oral diseases, fostering cross-species translational research in dentistry and medicine. This study aimed to conduct a systematic review to investigate the similarities and differences between the oral biofluids' proteomics profile of dogs with and without oral diseases. METHODS PubMed, Web of Science, and Scopus were searched with no restrictions on publication language or year to address the following focused question: "What is the proteome signature of healthy versus diseased (oral) dogs' biofluids?" Gene Ontology enrichment and the Kyoto Encyclopedia of Genes and Genomes pathway analyses of the most abundant proteins were performed. Moreover, protein-protein interaction analysis was conducted. The risk of bias (RoB) among the included studies was assessed using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Studies Reporting Prevalence Data. RESULTS In healthy dogs, the proteomic analysis identified 5,451 proteins, with 137 being the most abundant, predominantly associated with 'innate immune response'. Dogs with oral diseases displayed 6,470 proteins, with distinct associations: 'defense response to bacterium' (periodontal diseases), 'negative regulation of transcription' (dental calculus), and 'positive regulation of transcription' (oral tumors). Clustering revealed significant protein clusters in each case, emphasizing the diverse molecular profiles in health and oral diseases. Only six studies were provided to the JBI tool, as they encompassed case-control evaluations that compared healthy dogs to dogs with oral disease(s). All included studies were found to have low RoB (high quality). CONCLUSION Significant differences in the proteomics profiles of oral biofluids between dogs with and without oral diseases were found. The synergy of animal proteomics and bioinformatics offers a promising avenue for cross-species research, despite persistent challenges in result validation.
Collapse
Affiliation(s)
- Paras Ahmad
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
4
|
Urgessa OE, Woldesemayat AA. OMICs approaches and technologies for understanding low-high feed efficiency traits in chicken: implication to breeding. Anim Biotechnol 2023; 34:4147-4166. [PMID: 36927292 DOI: 10.1080/10495398.2023.2187404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
In poultry production, there has been a trend of continuous increase in cost of feed ingredients which represents the major proportion of the production costs. Feed costs can be reduced by improving feed efficiency traits which increase the possibility of using various indigestible feed sources and decrease the environmental impact of the enhanced poultry production. Therefore, feed efficiency has been used as one of the most important economic traits of selection in the breeding program of chickens. Recently, many OMICs experimental studies have been designed to characterize biological differences between the high and low feed efficiency chicken phenotypes. Biological complexity cannot be fully captured by main individual OMICs such as genomics, transcriptomics, proteomics and metabolomics. Therefore, researchers have combined multiple assays from the same set of samples to create multi-OMICs datasets. OMICs findings are crucial in improving existing approaches to poultry breeding. The current review aimed to highlight the components of feed efficiency and general OMICs approaches and technologies. Besides, individual and multi-OMICs based understanding of chicken feed efficiency traits and the application of the acquired knowledge in the chicken breeding program were addressed.
Collapse
Affiliation(s)
- Olyad Erba Urgessa
- School of Biological Sciences and Biotechnology, College of Natural and Computational Sciences, Haramaya University, Dire Dawa, Ethiopia
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Adugna Abdi Woldesemayat
- College of Biological and Chemical Engineering, Department of Biotechnology, Genomics and Bioinformatics Research Unit, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- College of Agriculture & Environmental Sciences, University of South Africa, Florida Science Campus, 28 Pioneer Ave, Florida Park, Roodepoort, South Africa
| |
Collapse
|
5
|
Abou-Dib A, Aubriet F, Hertzog J, Vernex-Loset L, Schramm S, Carré V. Next Challenges for the Comprehensive Molecular Characterization of Complex Organic Mixtures in the Field of Sustainable Energy. Molecules 2022; 27:8889. [PMID: 36558021 PMCID: PMC9786309 DOI: 10.3390/molecules27248889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The conversion of lignocellulosic biomass by pyrolysis or hydrothermal liquefaction gives access to a wide variety of molecules that can be used as fuel or as building blocks in the chemical industry. For such purposes, it is necessary to obtain their detailed chemical composition to adapt the conversion process, including the upgrading steps. Petroleomics has emerged as an integral approach to cover a missing link in the investigation bio-oils and linked products. It relies on ultra-high-resolution mass spectrometry to attempt to unravel the contribution of many compounds in complex samples by a non-targeted approach. The most recent developments in petroleomics partially alter the discriminating nature of the non-targeted analyses. However, a peak referring to one chemical formula possibly hides a forest of isomeric compounds, which may present a large chemical diversity concerning the nature of the chemical functions. This identification of chemical functions is essential in the context of the upgrading of bio-oils. The latest developments dedicated to this analytical challenge will be reviewed and discussed, particularly by integrating ion source features and incorporating new steps in the analytical workflow. The representativeness of the data obtained by the petroleomic approach is still an important issue.
Collapse
Affiliation(s)
| | | | | | | | | | - Vincent Carré
- LCP A2MC, Université de Lorraine, F-57000 Metz, France
| |
Collapse
|
6
|
Munley KM, Wade KL, Pradhan DS. Uncovering the seasonal brain: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a biochemical approach for studying seasonal social behaviors. Horm Behav 2022; 142:105161. [PMID: 35339904 DOI: 10.1016/j.yhbeh.2022.105161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Many animals show pronounced changes in physiology and behavior across the annual cycle, and these adaptations enable individuals to prioritize investing in the neuroendocrine mechanisms underlying reproduction and/or survival based on the time of year. While prior research has offered valuable insight into how seasonal variation in neuroendocrine processes regulates social behavior, the majority of these studies have investigated how a single hormone influences a single behavioral phenotype. Given that hormones are synthesized and metabolized via complex biochemical pathways and often act in concert to control social behavior, these approaches provide a limited view of how hormones regulate seasonal changes in behavior. In this review, we discuss how seasonal influences on hormones, the brain, and social behavior can be studied using liquid chromatography-tandem mass spectrometry (LC-MS/MS), an analytical chemistry technique that enables researchers to simultaneously quantify the concentrations of multiple hormones and the activities of their synthetic enzymes. First, we examine studies that have investigated seasonal plasticity in brain-behavior interactions, specifically by focusing on how two groups of hormones, sex steroids and nonapeptides, regulate sexual and aggressive behavior. Then, we explain the operations of LC-MS/MS, highlight studies that have used LC-MS/MS to study the neuroendocrine mechanisms underlying social behavior, both within and outside of a seasonal context, and discuss potential applications for LC-MS/MS in the field of behavioral neuroendocrinology. We propose that this cutting-edge technology will provide a more comprehensive understanding of how the multitude of hormones that comprise complex neuroendocrine networks affect seasonal variation in the brain and behavior.
Collapse
Affiliation(s)
- Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Kristina L Wade
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| | - Devaleena S Pradhan
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
7
|
Bai Z, Xu Y, Gu M, Cai W, Zhang Y, Qin Y, Chen R, Sun Y, Wu Y, Wang Z. Proteomic analysis of coarse and fine skin tissues of Liaoning cashmere goat. Funct Integr Genomics 2022; 22:503-513. [PMID: 35366687 DOI: 10.1007/s10142-022-00856-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Proteomics is the study of all proteins expressed by a cell or even an organism. However, knowledge of proteins that regulate the fineness of cashmere is limited. Liaoning cashmere goat (LCG) is a valuable genetic resource of China. The skin samples of Liaoning cashmere goats during the growing period were collected, performed tandem mass tag (TMT) method, and identified 117 differentially expressed proteins in CT_LCG (course type) and FT_LCG (fine type). To verify proteins differentially expressed in LCG, we performed PRM validation on three candidate proteins (ALB, SDC1, and ITGB4) in CT-LCG and FT-LCG. Furthermore, primary metabolic process and lysosome are most enriched in the GO and KEGG pathways, respectively. In addition, we also derived a protein-protein interaction (PPI) regulatory network from the perspective of bioinformatics. This study sought to elucidate the molecular mechanism of differential proteins regulating cashmere fineness of Liaoning cashmere goats by using TMT quantitative proteomics analysis. Differentially expressed proteins ALB and SDC1 may regulate cashmere fineness; ITGB4 can become a promising protein for further study. They can be used as key proteins to lay a foundation for studying cashmere fineness of Liaoning cashmere goats.
Collapse
Affiliation(s)
- Zhixian Bai
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanan Xu
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ming Gu
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Weidong Cai
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yu Zhang
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuting Qin
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rui Chen
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yinggang Sun
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanzhi Wu
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zeying Wang
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
8
|
Gao WZ, Xue HL, Yang JC. Proteomics analysis of the secondary hair follicle cycle in Liaoning cashmere goat. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Creydt M, Fischer M. Food Phenotyping: Recording and Processing of Non-Targeted Liquid Chromatography Mass Spectrometry Data for Verifying Food Authenticity. Molecules 2020; 25:E3972. [PMID: 32878155 PMCID: PMC7504784 DOI: 10.3390/molecules25173972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Experiments based on metabolomics represent powerful approaches to the experimental verification of the integrity of food. In particular, high-resolution non-targeted analyses, which are carried out by means of liquid chromatography-mass spectrometry systems (LC-MS), offer a variety of options. However, an enormous amount of data is recorded, which must be processed in a correspondingly complex manner. The evaluation of LC-MS based non-targeted data is not entirely trivial and a wide variety of strategies have been developed that can be used in this regard. In this paper, an overview of the mandatory steps regarding data acquisition is given first, followed by a presentation of the required preprocessing steps for data evaluation. Then some multivariate analysis methods are discussed, which have proven to be particularly suitable in this context in recent years. The publication closes with information on the identification of marker compounds.
Collapse
Affiliation(s)
- Marina Creydt
- Hamburg School of Food Science-Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany;
- Center for Hybrid Nanostructures (CHyN), Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science-Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany;
- Center for Hybrid Nanostructures (CHyN), Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
10
|
Akhremko A, Vasilevskaya ER, Fedulova L. Adaptation of two-dimensional electrophoresis for muscle tissue analysis. POTRAVINARSTVO 2020. [DOI: 10.5219/1380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is important to understand the molecular mechanisms that take place in muscle tissues and to predict meat quality characteristics. One of the most popular methods is two-dimensional electrophoresis, which allows us to visualize, share and identify different molecules, including meat proteins. However, the standard conditions of this method are not universal for all types of raw material, so the authors suggest a new variation of two-dimensional electrophoresis for muscle tissue analysis. Samples were tested by the classical version of isoelectric focusing (cathode buffer in the top and anode buffer in the bottom chamber of the electrophoresis cell) and its variation (anode buffer in the top and cathode buffer in the bottom chamber of the electrophoresis cell). Next, extruded gels were incubated in two different buffer systems: the first was equilibration buffer I (6 M urea, 20% w/v glycerol, 2% w/v SDS and 1% w/v Ditiothreitol in 375 mM Tris-HCl buffer, pH 8.8) followed by equilibration buffer II (6 M urea, 20% w/v glycerol, 2% w/v SDS and 4% w/v iodoacetamide in 375 mM Tris-HCl buffer pH 8.8 and the second, buffer А, consisting of 5 M urea, 2% w/v SDS, 5% v/v mercaptoethanol, 62.5 mM Tris-HCl buffer, pH 6.8 and 0.01% w/v bromophenol blue. Electrophoretic studies of muscle tissue revealed the best protein separation after changing the direction of the current (authors' variation), while no differences were detected after changing incubation buffers.
Collapse
|
11
|
Plowman JE, Harland DP, Campos AM, Rocha e Silva S, Thomas A, Vernon JA, van Koten C, Hefer C, Clerens S, de Almeida AM. The wool proteome and fibre characteristics of three distinct genetic ovine breeds from Portugal. J Proteomics 2020; 225:103853. [DOI: 10.1016/j.jprot.2020.103853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
|
12
|
Campos A, Freitas M, de Almeida AM, Martins JC, Domínguez-Pérez D, Osório H, Vasconcelos V, Reis Costa P. OMICs Approaches in Diarrhetic Shellfish Toxins Research. Toxins (Basel) 2020; 12:E493. [PMID: 32752012 PMCID: PMC7472309 DOI: 10.3390/toxins12080493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Diarrhetic shellfish toxins (DSTs) are among the most prevalent marine toxins in Europe's and in other temperate coastal regions. These toxins are produced by several dinoflagellate species; however, the contamination of the marine trophic chain is often attributed to species of the genus Dinophysis. This group of toxins, constituted by okadaic acid (OA) and analogous molecules (dinophysistoxins, DTXs), are highly harmful to humans, causing severe poisoning symptoms caused by the ingestion of contaminated seafood. Knowledge on the mode of action and toxicology of OA and the chemical characterization and accumulation of DSTs in seafood species (bivalves, gastropods and crustaceans) has significantly contributed to understand the impacts of these toxins in humans. Considerable information is however missing, particularly at the molecular and metabolic levels involving toxin uptake, distribution, compartmentalization and biotransformation and the interaction of DSTs with aquatic organisms. Recent contributions to the knowledge of DSTs arise from transcriptomics and proteomics research. Indeed, OMICs constitute a research field dedicated to the systematic analysis on the organisms' metabolisms. The methodologies used in OMICs are also highly effective to identify critical metabolic pathways affecting the physiology of the organisms. In this review, we analyze the main contributions provided so far by OMICs to DSTs research and discuss the prospects of OMICs with regard to the DSTs toxicology and the significance of these toxins to public health, food safety and aquaculture.
Collapse
Affiliation(s)
- Alexandre Campos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
| | - Marisa Freitas
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
- ESS-P.Porto, School of Health, Polytechnic Institute of Porto. Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - André M. de Almeida
- LEAF-Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal;
| | - José Carlos Martins
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
| | - Dany Domínguez-Pérez
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
| | - Hugo Osório
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro Reis Costa
- IPMA—Instituto Português do Mar da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal;
| |
Collapse
|
13
|
Abstract
Increased animal productivity has reduced animal fitness, resulting in increased susceptibility to infectious and metabolic diseases, locomotion problems and subfertility. Future animal breeding strategies should focus on balancing high production levels with health status monitoring and improved welfare. Additionally, understanding how animals interact with their internal and external environment is essential for improving health, fitness, and welfare. In this context, the continuous validation of existing biomarkers and the discovery and field implementation of new biomarkers will enable us to understand the specific physiological process and regulatory mechanisms used by the organism to adapt to different environmental conditions. Thus, biomarkers may be used to monitor welfare and improve management and breeding strategies. In this article, we describe major achievements in the establishment of biomarkers in dairy cows and small ruminants. This review mainly focuses on the physiological biomarkers used to monitor animal responses to, and recovery from, environmental perturbations. We highlight future avenues for research in this field and present a timely positioning document to the scientific community.
Collapse
|
14
|
Noor Z, Ranganathan S. Bioinformatics approaches for improving seminal plasma proteome analysis. Theriogenology 2019; 137:43-49. [PMID: 31186128 DOI: 10.1016/j.theriogenology.2019.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Reproduction efficiency of male animals is one of the key factors influencing the sustainability of livestock. Mass spectrometry (MS) based proteomics has become an important tool for studying seminal plasma proteomes. In this review, we summarize bioinformatics analysis strategies for current proteomics approaches, for identifying novel biomarkers of reproductive robustness.
Collapse
Affiliation(s)
- Zainab Noor
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Shoba Ranganathan
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
15
|
Zhu X, Wu HY, Shaw PC, Peng W, Su W. Specific DNA identification of Pheretima in the Naoxintong capsule. Chin Med 2019; 14:41. [PMID: 31583012 PMCID: PMC6767644 DOI: 10.1186/s13020-019-0264-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/23/2019] [Indexed: 12/28/2022] Open
Abstract
Background Pheretima is a minister drug in Naoxintong capsule (NXTC), a well-known traditional Chinese medicine (TCM) formula for the treatment of cardiovascular and cerebrovascular diseases. Owing to the loss of morphological and microscopic characteristics and the lack of recognized chemical marker, it is difficult to identify Pheretima in NXTC. This study aims to evaluate the feasibility of using DNA techniques to authenticate Pheretima, especially when it is processed into NXTC. Methods DNA was extracted from crude drugs of the genuine and adulterant species, as well as nine batches of NXTCs. Based on mitochondrial cytochrome c oxidase subunit I (COI) gene, specific primers were designed for two genera of genuine species, Metaphire and Amynthas, respectively. PCR amplification was performed with the designed primers on crude drugs of Pheretima and NXTCs. The purified PCR products were sequenced and the obtained sequences were identified to species level with top hit of similarity with BLAST against GenBank nucleotide database. Results Primers MF2R2 and AF3R1 could amplify specific DNA fragments with sizes around 230–250 bp, both in crude drugs and NXTC. With sequencing and the BLAST search, identities of the tested samples were found. Conclusion This study indicated that the molecular approach is effective for identifying Pheretima in NXTC. Therefore, DNA identification may contribute to the quality control and assurance of NXTC.
Collapse
Affiliation(s)
- Xiaoxiao Zhu
- 1Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Hoi-Yan Wu
- 2Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong China
| | - Pang-Chui Shaw
- 2Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong China.,3Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong China.,4School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong China
| | - Wei Peng
- 1Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Weiwei Su
- 1Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| |
Collapse
|
16
|
Boschetti E, Hernández-Castellano LE, Righetti PG. Progress in farm animal proteomics: The contribution of combinatorial peptide ligand libraries. J Proteomics 2019; 197:1-13. [DOI: 10.1016/j.jprot.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/17/2019] [Accepted: 02/07/2019] [Indexed: 02/08/2023]
|
17
|
|
18
|
Zampiga M, Flees J, Meluzzi A, Dridi S, Sirri F. Application of omics technologies for a deeper insight into quali-quantitative production traits in broiler chickens: A review. J Anim Sci Biotechnol 2018; 9:61. [PMID: 30214720 PMCID: PMC6130060 DOI: 10.1186/s40104-018-0278-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
The poultry industry is continuously facing substantial and different challenges such as the increasing cost of feed ingredients, the European Union's ban of antibiotic as growth promoters, the antimicrobial resistance and the high incidence of muscle myopathies and breast meat abnormalities. In the last decade, there has been an extraordinary development of many genomic techniques able to describe global variation of genes, proteins and metabolites expression level. Proper application of these cutting-edge omics technologies (mainly transcriptomics, proteomics and metabolomics) paves the possibility to understand much useful information about the biological processes and pathways behind different complex traits of chickens. The current review aimed to highlight some important knowledge achieved through the application of omics technologies and proteo-genomics data in the field of feed efficiency, nutrition, meat quality and disease resistance in broiler chickens.
Collapse
Affiliation(s)
- Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell’Emilia, Italy
| | - Joshua Flees
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell’Emilia, Italy
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell’Emilia, Italy
| |
Collapse
|
19
|
Bilić P, Kuleš J, Galan A, Gomes de Pontes L, Guillemin N, Horvatić A, Festa Sabes A, Mrljak V, Eckersall PD. Proteomics in Veterinary Medicine and Animal Science: Neglected Scientific Opportunities with Immediate Impact. Proteomics 2018; 18:e1800047. [DOI: 10.1002/pmic.201800047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/24/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Petra Bilić
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Josipa Kuleš
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Asier Galan
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Leticia Gomes de Pontes
- Botucatu Medical School; Sao Paulo State University (UNESP); Avenida José Barbosa de Barros, 1780; Botucatu 18610-307 Brazil
| | - Nicolas Guillemin
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Anita Horvatić
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Amanda Festa Sabes
- Department of Clinical and Veterinary Surgery; Faculty of Agrarian and Veterinary Sciences; Via de Acesso Paulo Donato Castellane s/n. 14884-900 Jaboticabal São Paulo Brazil
| | - Vladimir Mrljak
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Peter David Eckersall
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
- Institute of Biodiversity; Animal Health and Comparative Medicine; College of Medicine; Veterinary Medicine and Life Sciences; University of Glasgow; Glasgow G61 1QH UK
| |
Collapse
|
20
|
Pan L, Zhao Y, Yuan Z, Farouk MH, Zhang S, Bao N, Qin G. The Integrins Involved in Soybean Agglutinin-Induced Cell Cycle Alterations in IPEC-J2. Mol Cells 2017; 40:109-116. [PMID: 28222496 PMCID: PMC5339501 DOI: 10.14348/molcells.2017.2207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/09/2016] [Accepted: 01/06/2017] [Indexed: 12/26/2022] Open
Abstract
Soybean agglutinin (SBA) is an anti-nutritional factor of soybean, affecting cell proliferation and inducing cytotoxicity. Integrins are transmembrane receptors, mediating a variety of cell biological processes. This research aims to study the effects of SBA on cell proliferation and cell cycle progression of the intestinal epithelial cell line from piglets (IPEC-J2), to identify the integrin subunits especially expressed in IPEC-J2s, and to analyze the functions of these integrins on IPEC-J2 cell cycle progression and SBA-induced IPEC-J2 cell cycle alteration. The results showed that SBA lowered cell proliferation rate as the cell cycle progression from G0/G1 to S phase (P < 0.05) was inhibited. Moreover, SBA lowered mRNA expression of cell cycle-related gene CDK4, Cyclin E and Cyclin D1 (P < 0.05). We successfully identified integrins α2, α3, α6, β1, and β4 in IPEC-J2s. These five subunits were crucial to maintain normal cell proliferation and cell cycle progression in IPEC-J2s. Restrain of either these five subunits by their inhibitors, lowered cell proliferation rate, and arrested the cells at G0/G1 phase of cell cycle (P < 0.05). Further analysis indicated that integrin α2, α6, and β1 were involved in the blocking of G0/G1 phase induced by SBA. In conclusion, these results suggested that SBA lowered the IPEC-J2 cell proliferation rate through the perturbation of cell cycle progression. Furthermore, integrins were important for IPEC-J2 cell cycle progression, and they were involved in the process of SBA-induced cell cycle progression alteration, which provide a basis for further revealing SBA anti-proliferation and anti-nutritional mechanism.
Collapse
Affiliation(s)
- Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun,
P. R. China
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun,
P. R. China
| | - Zhijie Yuan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun,
P. R. China
| | - Mohammed Hamdy Farouk
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun,
P. R. China
- Animal production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo,
Egypt
| | - Shiyao Zhang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun,
P. R. China
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun,
P. R. China
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun,
P. R. China
| |
Collapse
|
21
|
The longissimus thoracis muscle proteome in Alentejana bulls as affected by growth path. J Proteomics 2017; 152:206-215. [DOI: 10.1016/j.jprot.2016.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/25/2016] [Accepted: 10/29/2016] [Indexed: 12/21/2022]
|
22
|
Top-Down Proteomics and Farm Animal and Aquatic Sciences. Proteomes 2016; 4:proteomes4040038. [PMID: 28248248 PMCID: PMC5260971 DOI: 10.3390/proteomes4040038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 01/16/2023] Open
Abstract
Proteomics is a field of growing importance in animal and aquatic sciences. Similar to other proteomic approaches, top-down proteomics is slowly making its way within the vast array of proteomic approaches that researchers have access to. This opinion and mini-review article is dedicated to top-down proteomics and how its use can be of importance to animal and aquatic sciences. Herein, we include an overview of the principles of top-down proteomics and how it differs regarding other more commonly used proteomic methods, especially bottom-up proteomics. In addition, we provide relevant sections on how the approach was or can be used as a research tool and conclude with our opinions of future use in animal and aquatic sciences.
Collapse
|
23
|
Hernández-Castellano LE, Ferreira AM, Nanni P, Grossmann J, Argüello A, Capote J, Cai G, Lippolis J, Castro N, de Almeida AM. The goat (Capra hircus) mammary gland secretory tissue proteome as influenced by weight loss: A study using label free proteomics. J Proteomics 2016; 145:60-69. [DOI: 10.1016/j.jprot.2016.03.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/10/2016] [Accepted: 03/18/2016] [Indexed: 01/02/2023]
|
24
|
Jiang LL, Lo YT, Chen WT, Shaw PC. DNA authentication of animal-derived concentrated Chinese medicine granules. J Pharm Biomed Anal 2016; 129:398-404. [PMID: 27468133 DOI: 10.1016/j.jpba.2016.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/15/2016] [Accepted: 07/17/2016] [Indexed: 11/26/2022]
Abstract
Concentrated Chinese medicine granules (CCMG) offer patients a convenient option for traditional therapy. However with morphological and microscopic characteristics lost, it is difficult to authenticate and control the quality of these medicinal products. This study is the first to examine the feasibility of using DNA techniques to authenticate animal-derived CCMG, which has so far lacking of effective means for authentication. Primers targeting amplicons of different sizes were designed to determine the presence of PCR-amplifiable DNA fragments in two types of CCMG, namely Zaocys and Scorpio. Species-specific primers were designed to differentiate the genuine drugs from their adulterants. The specificity of the designed primers was evaluated in crude drugs (including genuine and adulterant) and CCMG. Results showed that by using species-specific primers, DNA fragments of less than 200bp could be isolated from the CCMG and the concerned source materials. This study demonstrated the presence of small size DNA in animal-derived CCMG and the DNA is effective in species identification. The work has extended the application of DNA techniques in herbal medicine and this approach may be further developed for quality control and regulatory compliance in the CCMG industry.
Collapse
Affiliation(s)
- Li-Li Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Yat-Tung Lo
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Wei-Ting Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Pang-Chui Shaw
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
25
|
Milk of Greek sheep and goat breeds; characterization by means of proteomics. J Proteomics 2016; 147:76-84. [PMID: 27102495 DOI: 10.1016/j.jprot.2016.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/24/2016] [Accepted: 04/12/2016] [Indexed: 12/20/2022]
Abstract
UNLABELLED Over the past 30years there has been a growing interest to unravel the dynamic framework of the milk proteome, and now that available technology is mature enough to enable techniques of protein fractionation and identification, this process is on-going. Due to its rarity and unique biological traits, as well as its growing financial value, milk of dairy Greek animals is continuously attracting interest from both the scientific community and industry. In the present study we employed cutting-edge proteomics methodologies to investigate and characterize, in depth, the proteome of whey from all pure-breed Greek sheep and goats. A mean of >500 protein groups were identified in whey from each breed of each animal species, reporting for the first time the proteome dataset of this precious biological material. Given its high nutritional value, the protein properties exposed herein will govern future steps in optimizing characteristics and features of sheep and goat milk products. SIGNIFICANCE In the present study we employed cutting-edge proteomics methodologies to investigate and characterize, in depth, the proteome of milk from all pure-breed Greek sheep and goats. A mean of >500 protein groups were identified in milk whey from each breed of each animal species, reporting for the first time the proteome dataset of this precious biological material. Given its high nutritional value, the protein properties exposed herein will govern future steps in optimizing characteristics and features of sheep and goat milk products.
Collapse
|
26
|
Cugno G, Parreira JR, Ferlizza E, Hernández-Castellano LE, Carneiro M, Renaut J, Castro N, Arguello A, Capote J, Campos AMO, Almeida AM. The Goat (Capra hircus) Mammary Gland Mitochondrial Proteome: A Study on the Effect of Weight Loss Using Blue-Native PAGE and Two-Dimensional Gel Electrophoresis. PLoS One 2016; 11:e0151599. [PMID: 27031334 PMCID: PMC4816393 DOI: 10.1371/journal.pone.0151599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/01/2016] [Indexed: 12/23/2022] Open
Abstract
Seasonal weight loss (SWL) is the most important limitation to animal production in the Tropical and Mediterranean regions, conditioning producer’s incomes and the nutritional status of rural communities. It is of importance to produce strategies to oppose adverse effects of SWL. Breeds that have evolved in harsh climates have acquired tolerance to SWL through selection. Most of the factors determining such ability are related to changes in biochemical pathways as affected by SWL. In this study, a gel based proteomics strategy (BN: Blue-Native Page and 2DE: Two-dimensional gel electrophoresis) was used to characterize the mitochondrial proteome of the secretory tissue of the goat mammary gland. In addition, we have conducted an investigation of the effects of weight loss in two goat breeds with different levels of adaptation to nutritional stress: Majorera (tolerant) and Palmera (susceptible). The study used Majorera and Palmera dairy goats, divided in 4 sets, 2 for each breed: underfed group fed on wheat straw (restricted diet, so their body weight would be 15–20% reduced by the end of experiment), and a control group fed with an energy-balanced diet. At the end of the experimental period (22 days), mammary gland biopsies were obtained for all experimental groups. The proteomic analysis of the mitochondria enabled the resolution of a total of 277 proteins, and 148 (53%) were identified by MALDI-TOF/TOF mass spectrometry. Some of the proteins were identified as subunits of the glutamate dehydrogenase complex and the respiratory complexes I, II, IV, V from mitochondria, as well as numerous other proteins with functions in: metabolism, development, localization, cellular organization and biogenesis, biological regulation, response to stimulus, among others, that were mapped in both BN and 2DE gels. The comparative proteomics analysis enabled the identification of several proteins: NADH-ubiquinone oxidoreductase 75 kDa subunit and lamin B1 mitochondrial (up-regulated in the Palmera breed), Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 (up-regulated in the Majorera breed) and cytochrome b-c1 complex subunit 1, mitochondrial and Chain D, Bovine F1-C8 Sub-Complex Of Atp Synthase (down-regulated in the Majorera breed) as a consequence of weight loss.
Collapse
Affiliation(s)
- Graziano Cugno
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Animal Science Department, Universidad de Las Palmas de Gran Canaria, Arucas, Gran Canaria, Spain
| | - José R. Parreira
- IBET – Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal
- ITQB/UNL – Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Enea Ferlizza
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Lorenzo E. Hernández-Castellano
- Animal Science Department, Universidad de Las Palmas de Gran Canaria, Arucas, Gran Canaria, Spain
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Mariana Carneiro
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| | - Jenny Renaut
- LIST – Luxemburg Institute of Science and Technology, Belvaux, Luxemburg
| | - Noemí Castro
- Animal Science Department, Universidad de Las Palmas de Gran Canaria, Arucas, Gran Canaria, Spain
| | - Anastasio Arguello
- Animal Science Department, Universidad de Las Palmas de Gran Canaria, Arucas, Gran Canaria, Spain
| | - Juan Capote
- Instituto Canario de Investigaciones Agrarias, Valle Guerra, Tenerife, Spain
| | - Alexandre M. O. Campos
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| | - André M. Almeida
- IBET – Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal
- ITQB/UNL – Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- CIISA-Centro Interdisciplinar de Investigação em Sanidade Animal, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
27
|
Packialakshmi B, Liyanage R, Lay JO, Makkar SK, Rath NC. Proteomic Changes in Chicken Plasma Induced by Salmonella typhimurium Lipopolysaccharides. PROTEOMICS INSIGHTS 2016; 7:1-9. [PMID: 27053921 PMCID: PMC4818023 DOI: 10.4137/pri.s31609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 12/25/2022]
Abstract
Lipopolysaccharides (LPS) are cell wall components of Gram-negative bacteria that produce inflammation and sickness in higher animals. The objective was to identify plasma proteomic changes in an avian model of inflammation. Chickens were treated with either saline or LPS, and blood was collected at 24 hours postinjection. The pooled plasma samples were depleted of high-abundant proteins and analyzed by matrix-assisted laser desorption ionization (MALDI)-time-of-flight mass spectrometry and liquid chromatography–tandem mass spectrometry (LC–MS/MS). MALDI analyses showed an increase in fibrinogen beta-derived peptide and a decrease in apolipoprotein-AII-derived peptide in LPS samples. Label-free quantitation of LC–MS/MS spectra revealed an increase in the levels of α1-acid glycoprotein, a chemokine CCLI10, and cathelicidin-2, but a decrease in an interferon-stimulated gene-12-2 protein in the LPS group. These differentially expressed proteins are associated with immunomodulation, cytokine changes, and defense mechanisms, which may be useful as candidate biomarkers of infection and inflammation.
Collapse
Affiliation(s)
- Balamurugan Packialakshmi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.; Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.; Poultry Production and Product Safety Research Unit, Agricultural Research Service, USDA, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Jackson O Lay
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Sarbjeet K Makkar
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.; Poultry Production and Product Safety Research Unit, Agricultural Research Service, USDA, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| | - Narayan C Rath
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, USDA, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
28
|
The Effect of Weight Loss on the Muscle Proteome in the Damara, Dorper and Australian Merino Ovine Breeds. PLoS One 2016; 11:e0146367. [PMID: 26828937 PMCID: PMC4734549 DOI: 10.1371/journal.pone.0146367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/16/2015] [Indexed: 11/20/2022] Open
Abstract
Seasonal Weight Loss (SWL) is an important constraint, limiting animal production in the Tropics and the Mediterranean. As a result, the study of physiological and biochemical mechanisms by which domestic animal breeds respond to SWL is important to those interested in animal breeding and the improvement thereof. To that end, the study of the proteome has been instrumental in gathering important information on physiological mechanisms, including those underlying SWL. In spite of that, little information is available concerning physiological mechanisms of SWL in production animals. The objective of this study was to determine differential protein expression in the muscle of three different breeds of sheep, the Australian Merino, the Dorper and the Damara, each showing different levels of tolerance to weight loss (low, medium and high, respectively). Per breed, two experimental groups were established, one labeled “Growth” and the other labeled “Restricted.” After forty-two days of dietary treatment, all animals were euthanized. Muscle samples were then taken. Total protein was extracted from the muscle, then quantified and two-dimensional gel electrophoresis were conducted using 24 cm pH 3–10 immobiline dry strips and colloidal coomassie staining. Gels were analyzed using Samespots® software and spots of interest were in-gel digested with trypsin. The isolated proteins were identified using MALDI-TOF/TOF. Results indicated relevant differences between breeds; several proteins are suggested as putative biomarkers of tolerance to weight loss: Desmin, Troponin T, Phosphoglucomutase and the Histidine Triad nucleotide-binding protein 1. This information is of relevance to and of possible use in selection programs aiming towards ruminant animal production in regions prone to droughts and weight loss.
Collapse
|
29
|
Labeling and label free shotgun proteomics approaches to characterize muscle tissue from farmed and wild gilthead sea bream (Sparus aurata). J Chromatogr A 2016; 1428:193-201. [DOI: 10.1016/j.chroma.2015.07.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/09/2015] [Accepted: 07/12/2015] [Indexed: 11/19/2022]
|
30
|
Marco-Ramell A, de Almeida AM, Cristobal S, Rodrigues P, Roncada P, Bassols A. Proteomics and the search for welfare and stress biomarkers in animal production in the one-health context. MOLECULAR BIOSYSTEMS 2016; 12:2024-35. [DOI: 10.1039/c5mb00788g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stress and welfare are important factors in animal production in the context of growing production optimization and scrutiny by the general public.
Collapse
Affiliation(s)
- A. Marco-Ramell
- Departament de Bioquímica i Biologia Molecular
- Facultat de Veterinària
- Universitat Autònoma de Barcelona
- 08193 Cerdanyola del Vallès
- Spain
| | - A. M. de Almeida
- Instituto de Biologia Experimental e Tecnologica
- Oeiras
- Portugal
- CIISA/FMV – Centro Interdisciplinar de Investigação em Sanidade Animal
- Faculdade de Medicina Veterinária
| | - S. Cristobal
- Department of Clinical and Experimental Medicine
- Cell Biology
- Faculty of Medicine
- Linköping University
- Linköping
| | - P. Rodrigues
- CCMAR
- Center of Marine Science
- University of Algarve
- 8005-139 Faro
- Portugal
| | - P. Roncada
- Istituto Sperimentale Italiano L. Spallanzani
- Milano
- Italy
| | - A. Bassols
- Departament de Bioquímica i Biologia Molecular
- Facultat de Veterinària
- Universitat Autònoma de Barcelona
- 08193 Cerdanyola del Vallès
- Spain
| |
Collapse
|
31
|
Fadda S, Almeida AM. Proteomics in Argentina - limitations and future perspectives: A special emphasis on meat proteomics. Proteomics 2015; 15:3676-87. [DOI: 10.1002/pmic.201500185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/08/2015] [Accepted: 08/19/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Silvina Fadda
- CERELA - Centro de Referencia para Lactobacilos; CONICET - Consejo Nacional de Investigaciones Científicas y Técnicas; San Miguel de Tucumán; Tucumán Argentina
| | - André M. Almeida
- CIISA - Centro Interdisciplinar de Investigação em Sanidade Animal and Instituto de Investigação Científica Tropical; CVZ-FMV; Av. Univ. Técnica; Lisboa Portugal
- IBET - Instituto de Biologia Experimental e Tecnologica; ITQB/UNL - Instituto de Tecnologia Quimica e Biologica da Universidade Nova de Lisboa; Oeiras Portugal
| |
Collapse
|
32
|
Sundberg M, Bergquist J, Ramström M. High-abundant protein depletion strategies applied on dog cerebrospinal fluid and evaluated by high-resolution mass spectrometry. Biochem Biophys Rep 2015; 3:68-75. [PMID: 30338299 PMCID: PMC6189695 DOI: 10.1016/j.bbrep.2015.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 12/27/2022] Open
Abstract
As the number of fully sequenced animal genomes and the performance of advanced mass spectrometry-based proteomics techniques are continuously improving, there is now a great opportunity to increase the knowledge of various animal proteomes. This research area is further stimulated by a growing interest from veterinary medicine and the pharmaceutical industry. Cerebrospinal fluid (CSF) is a good source for better understanding of diseases related to the central nervous system, both in humans and other animals. In this study, four high-abundant protein depletion columns, developed for human or rat serum, were evaluated for dog CSF. For the analysis, a shotgun proteomics approach, based on nanoLC-LTQ Orbitrap MS/MS, was applied. All the selected approaches were shown to deplete dog CSF with different success. It was demonstrated that the columns significantly improved the coverage of the detected dog CSF proteome. An antibody-based column showed the best performance, in terms of efficiency, repeatability and the number of proteins detected in the sample. In total 983 proteins were detected. Of those, 801 proteins were stated as uncharacterized in the UniProt database. To the best of our knowledge, this is the so far largest number of proteins reported for dog CSF in one single study. We evaluated four high-abundant protein depletion kits on dog CSF. High abundant depletion kit developed for humans/rats can be used for dog CSF. Protein depletion of dog CSF gives extended coverage of the CSF proteome. In total, 983 dog proteins were identified in this study.
Collapse
Affiliation(s)
- Mårten Sundberg
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| | - Margareta Ramström
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| |
Collapse
|
33
|
Almeida AM, Bassols A, Bendixen E, Bhide M, Ceciliani F, Cristobal S, Eckersall PD, Hollung K, Lisacek F, Mazzucchelli G, McLaughlin M, Miller I, Nally JE, Plowman J, Renaut J, Rodrigues P, Roncada P, Staric J, Turk R. Animal board invited review: advances in proteomics for animal and food sciences. Animal 2015; 9:1-17. [PMID: 25359324 PMCID: PMC4301196 DOI: 10.1017/s1751731114002602] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/27/2014] [Indexed: 01/15/2023] Open
Abstract
Animal production and health (APH) is an important sector in the world economy, representing a large proportion of the budget of all member states in the European Union and in other continents. APH is a highly competitive sector with a strong emphasis on innovation and, albeit with country to country variations, on scientific research. Proteomics (the study of all proteins present in a given tissue or fluid - i.e. the proteome) has an enormous potential when applied to APH. Nevertheless, for a variety of reasons and in contrast to disciplines such as plant sciences or human biomedicine, such potential is only now being tapped. To counter such limited usage, 6 years ago we created a consortium dedicated to the applications of Proteomics to APH, specifically in the form of a Cooperation in Science and Technology (COST) Action, termed FA1002--Proteomics in Farm Animals: www.cost-faproteomics.org. In 4 years, the consortium quickly enlarged to a total of 31 countries in Europe, as well as Israel, Argentina, Australia and New Zealand. This article has a triple purpose. First, we aim to provide clear examples on the applications and benefits of the use of proteomics in all aspects related to APH. Second, we provide insights and possibilities on the new trends and objectives for APH proteomics applications and technologies for the years to come. Finally, we provide an overview and balance of the major activities and accomplishments of the COST Action on Farm Animal Proteomics. These include activities such as the organization of seminars, workshops and major scientific conferences, organization of summer schools, financing Short-Term Scientific Missions (STSMs) and the generation of scientific literature. Overall, the Action has attained all of the proposed objectives and has made considerable difference by putting proteomics on the global map for animal and veterinary researchers in general and by contributing significantly to reduce the East-West and North-South gaps existing in the European farm animal research. Future activities of significance in the field of scientific research, involving members of the action, as well as others, will likely be established in the future.
Collapse
Affiliation(s)
- A. M. Almeida
- Instituto de Investigação Científica Tropical, CVZ – Centro de Veterinária e Zootecnia, Av. Univ. Técnica, 1300-477 Lisboa, Portugal
- CIISA – Centro Interdisciplinar de Investigação em Sanidade Animal, 1300-477 Lisboa, Portugal
- ITQB – Instituto de Tecnologia Química e Biológica da UNL, 2780-157 Oeiras, Portugal
- IBET – Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - A. Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona,08193 Cerdanyola del Vallès, Spain
| | - E. Bendixen
- Institute of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - M. Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho-73 Kosice, Slovakia
| | - F. Ceciliani
- Department of Veterinary Science and Public Health, Università di Milano, Via Celoria 10, 20133 Milano, Italy
| | - S. Cristobal
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Science, Linköping University, SE-581 85 Linköping, Sweden
- IKERBASQUE, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Dentistry, University of Basque Country,48940 Leioa, Bizkaia, Spain
| | - P. D. Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - K. Hollung
- Nofima AS, PO Box 210, NO-1431 Aas, Norway
| | - F. Lisacek
- Swiss Institute of Bioinformatics, CMU – Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - G. Mazzucchelli
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, 4000 Liège, Belgium
| | - M. McLaughlin
- Division of Veterinary Bioscience, School of Veterinary Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - I. Miller
- Institute of Medical Biochemistry, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - J. E. Nally
- National Animal Disease Center, Bacterial Diseases of Livestock Research Unit, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA
| | - J. Plowman
- Food & Bio-Based Products, AgResearch, Lincoln Research Centre, Christchurch 8140, New Zealand
| | - J. Renaut
- Department of Environment and Agrobiotechnologies, Centre de Recherche Public – Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - P. Rodrigues
- CCMAR – Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - P. Roncada
- Department of Veterinary Science and Public Health, Istituto Sperimentale Italiano L. Spallanzani Milano, University of Milano, 20133 Milano, Italy
| | - J. Staric
- Clinic for Ruminants with Ambulatory Clinic, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - R. Turk
- Department of Pathophysiology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
34
|
Hernández-Castellano LE, Argüello A, Almeida AM, Castro N, Bendixen E. Colostrum protein uptake in neonatal lambs examined by descriptive and quantitative liquid chromatography-tandem mass spectrometry. J Dairy Sci 2015; 98:135-47. [DOI: 10.3168/jds.2014-8143] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 09/25/2014] [Indexed: 11/19/2022]
|
35
|
Shishkin SS, Kovalev LI, Kovaleva MA, Ivanov AV, Eremina LS, Sadykhov EG. The application of proteomic technologies for the analysis of muscle proteins of farm animals used in the meat industry (Review). APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814050093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Righetti PG, Candiano G, Citterio A, Boschetti E. Combinatorial Peptide Ligand Libraries as a “Trojan Horse” in Deep Discovery Proteomics. Anal Chem 2014; 87:293-305. [DOI: 10.1021/ac502171b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pier Giorgio Righetti
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “Giulio
Natta”, Via Mancinelli
7, Milano 20131, Italy
| | - Giovanni Candiano
- Laboratory on Pathophysiology of Uremia
and Department of Nephrology, Istituto Giannina Gaslini, Genova, Italy
| | - Attilio Citterio
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “Giulio
Natta”, Via Mancinelli
7, Milano 20131, Italy
| | | |
Collapse
|
37
|
Bermúdez R, Franco D, Carballo J, Sentandreu MÁ, Lorenzo JM. Influence of muscle type on the evolution of free amino acids and sarcoplasmic and myofibrillar proteins through the manufacturing process of Celta dry-cured ham. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.12.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Incorporation of genetic technologies associated with applied reproductive technologies to enhance world food production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 752:77-96. [PMID: 24170355 DOI: 10.1007/978-1-4614-8887-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Animal breeding and reproductive physiology have been closely related throughout the history of animal production science. Artificial insemination provides the best method of increasing the influence of sires with superior genetics to improve production traits. Multiple ovulation embryo transfer (MOET) provides some ability to increase the genetic influence of the maternal line as well. The addition of genetic technologies to this paradigm allows for improved methods of selecting sires and dams carrying the best genes for production and yield of edible products and resistance to diseases and parasites. However, decreasing the number of influential parents within a population also increases the risk of propagating a recessive gene that could negatively impact the species (Reprod Domest Anim 44:792-796, 2009; BMC Genomics 11:337, 2010). Furthermore, antagonistic genotypic relationships between production traits and fertility (Anim Prod Sci 49:399-412, 2009; Anim Genet 43:442-446, 2012) suggest that care must be taken to ensure that increasing the frequency of genes with a positive influence on production does not negatively impact the fertility of the replacement females entering the herd.
Collapse
|
39
|
Minkiewicz P, Miciński J, Darewicz M, Bucholska J. Biological and Chemical Databases for Research into the Composition of Animal Source Foods. FOOD REVIEWS INTERNATIONAL 2013. [DOI: 10.1080/87559129.2013.818011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Ferreira AM, Bislev SL, Bendixen E, Almeida AM. The mammary gland in domestic ruminants: a systems biology perspective. J Proteomics 2013; 94:110-23. [PMID: 24076120 DOI: 10.1016/j.jprot.2013.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/04/2013] [Accepted: 09/17/2013] [Indexed: 11/16/2022]
Abstract
UNLABELLED Milk and dairy products are central elements in the human diet. It is estimated that 108kg of milk per year are consumed per person worldwide. Therefore, dairy production represents a relevant fraction of the economies of many countries, being cattle, sheep, goat, water buffalo, and other ruminants the main species used worldwide. An adequate management of dairy farming cannot be achieved without the knowledge on the biological mechanisms behind lactation in ruminants. Thus, understanding the morphology, development and regulation of the mammary gland in health, disease and production is crucial. Presently, innovative and high-throughput technologies such as genomics, transcriptomics, proteomics and metabolomics allow a much broader and detailed knowledge on such issues. Additionally, the application of a systems biology approach to animal science is vastly growing, as new advances in one field of specialization or animal species lead to new lines of research in other areas or/and are expanded to other species. This article addresses how modern research approaches may help us understand long-known issues in mammary development, lactation biology and dairy production. BIOLOGICAL SIGNIFICANCE Dairy production depends upon the knowledge of the morphology and regulation of the mammary gland and lactation. High-throughput technologies allow a much broader and detailed knowledge on the biology of the mammary gland. This paper reviews the major contributions that genomics, transcriptomics, metabolomics and proteomics approaches have provided to understand the regulation of the mammary gland in health, disease and production. In the context of mammary gland "omics"-based research, the integration of results using a Systems Biology Approach is of key importance.
Collapse
Affiliation(s)
- Ana M Ferreira
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal; BCV Laboratory, Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa (ITQB/UNL), Oeiras, Portugal
| | | | | | | |
Collapse
|
41
|
Tholey A, Treitz C, Kussmann M, Bendixen E, Schrimpf SP, Hengartner MO. Model Organisms Proteomics-From Holobionts to Human Nutrition. Proteomics 2013; 13:2537-41. [DOI: 10.1002/pmic.201370144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andreas Tholey
- Division of Systematic Proteome Research; Institute for Experimental Medicine; Christian-Albrechts-Universität zu Kiel; Kiel; Germany
| | - Christian Treitz
- Division of Systematic Proteome Research; Institute for Experimental Medicine; Christian-Albrechts-Universität zu Kiel; Kiel; Germany
| | | | - Emöke Bendixen
- Department of Molecular Biology and Genetics; Laboratory of Proteomics and Mass spectrometry; Aarhus University; Arhus; Denmark
| | - Sabine P. Schrimpf
- Institute of Molecular Life Sciences; University of Zurich; Zurich; Switzerland
| | | |
Collapse
|
42
|
Paredi G, Sentandreu MA, Mozzarelli A, Fadda S, Hollung K, de Almeida AM. Muscle and meat: New horizons and applications for proteomics on a farm to fork perspective. J Proteomics 2013; 88:58-82. [DOI: 10.1016/j.jprot.2013.01.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/31/2013] [Indexed: 11/16/2022]
|