1
|
Wang Q, Huang Z, Wang F, Sun Z, Ju X, Chen K. Evidence for Transgenerational Immunity in Antiviral Immunity in Silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70041. [PMID: 40114532 DOI: 10.1002/arch.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 03/22/2025]
Abstract
Transgenerational immune priming (TGIP) is a phenomenon in which parental exposure to pathogen infection enhances resistance to pathogens in their offspring. TGIP has been reported in several insects, including Lepidoptera, but it has not yet been documented in silkworms. In this study, we demonstrated the existence of TGIP in silkworms by exposing the parental generation to a low dose of Bombyx mori nucleopolyhedrovirus (BmNPV). Notably, when maternal or paternal-primed moths were mated to produce the F1 generation, the F1 generation larvae from both primed groups were more resistant to the BmNPV challenge than silkworm larvae with only maternal or paternal priming. Importantly, both maternal and paternal contributions to offspring immunity were essential for TGIP. However, due to the characteristics of the BmNPV itself, no within-generation immune responses were detected following BmNPV priming. Further analysis revealed that immune-related genes might play a role in mediating specific TGIP in silkworms after BmNPV priming. These results broaden our understanding of TGIP and the antiviral memory of insects in their offspring.
Collapse
Affiliation(s)
- Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zengqing Huang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - FeiFei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhonghe Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Zhang T, Yang Z, Zhang Y, Yi L, Duan F, Zhao Q, Gu Y, Wang S. Proteomics-guided isolation of a novel serine protease with milk-clotting activity from tamarillo (Solanum betaceum Cav.). Food Chem 2025; 465:141956. [PMID: 39541676 DOI: 10.1016/j.foodchem.2024.141956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/17/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Tamarillo is widely grown in Yunnan Province, China, and has been found that it can be used in cheese-making with a distinctive fruity flavour. However, this primary component responsible for curdling milk remains unclear. This study aimed to identify the main component in tamarillo responsible for curdling milk using proteomics and ammonium sulfate (AS) precipitation. Herein, 3199 proteins were identified in tamarillo, of which 546 exhibited hydrolase activity. In particular, a novel serine protease with milk-clotting activity (MCA) and a molecular weight of 79.1 kDa, named "MCP746", was isolated from tamarillo. The milk-clotting proteases (MCPs) from tamarillo exhibited the highest MCA at 80 °C and stability under incubation temperatures below 70 °C, pH range of 5-8, and NaCl concentrations below 1 mol/L. This study revealed that serine protease is the primary MCPs of tamarillo along with a characterization of its milk-clotting characteristics, providing valuable insights into its potential application in cheese-making.
Collapse
Affiliation(s)
- Tong Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhihong Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yingcui Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Fengmin Duan
- Yunnan Institute of Measuring and Testing Technology, Kunming 650228, China
| | - Qiong Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Shuo Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Fei S, Xia J, Mehmood N, Wang Y, Feng M, Sun J. Autophagy promotes replication of Bombyx mori Nucleopolyhedrovirus in insect cells. Int J Biol Macromol 2024; 277:134325. [PMID: 39089561 DOI: 10.1016/j.ijbiomac.2024.134325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
BmNPV is a pathogen that infects silkworms exclusively. Although the interaction between BmNPV and the silkworm has been widely noticed and studied, its specific mechanism has still not been elucidated. In this study, we investigated whether BmNPV infection induces the onset of host cell autophagy to enhance viral replication. We observed a significant increase in double- or single-membrane vesicles and an accumulation of enhanced green fluorescent protein eGFP-ATG8 spots in virus-infected cells 72 h after BmNPV infection, accompanied by a conversion of ATG8 to ATG8-PE. In addition, we observed changes in the mitochondrial morphology of BmN cells after BmNPV infection by transmission electron microscopy. By detecting the mitochondrial membrane potential, we found that BmNPV infection resulted in the decrease of mitochondrial membrane potential, and that eGFP-ATG8 was able to co-localise with mitochondria after virus infection of the cells. Moreover, the use of drugs to regulate the occurrence of autophagy affects the replication of cellular BmNPV. Our data demonstrates that BmNPV infection induces host cell autophagy and leads to cellular mitochondrial damage, which in turn may lead to mitochondrial autophagy, and that BmNPV-induced host autophagy promotes its replication in cells. These findings will provide clues for further understanding of host-virus interactions.
Collapse
Affiliation(s)
- Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Nasir Mehmood
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yeyuan Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
4
|
Yu L, Ling C, Li Y, Guo H, Xu A, Qian H, Li G. The Bombyx mori G protein β subunit 1 (BmGNβ1) gene inhibits BmNPV infection. J Invertebr Pathol 2024; 204:108097. [PMID: 38537687 DOI: 10.1016/j.jip.2024.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
G protein β subunit 1 (GNβ1) has several functions, including cell growth regulation, the control of second messenger levels, and ion channel switching. Previous transcriptome analyses in our laboratory have shown that BmGNβ1 transcription is reduced following infection with Bombyx mori nucleopolyhedrovirus (BmNPV), but it is unknown what role this gene may have in the host response to BmNPV infection. In this study, the BmGNβ1 gene was cloned using the RACE method. After BmNPV infection, BmGNβ1 was downregulated in Baiyu strains in tissues such as the hemolymph and midgut. Indirect immunofluorescence showed that BmGNβ1 was localized to the cytoplasm. We further constructed a BmGNβ1-pIZ/V5-His-mCherry overexpression plasmid and designed siRNA to evaluate the role of BmGNβ1 in host response to infection. The results showed that BmGNβ1 overexpression inhibited BmNPV proliferation, while knockdown of BmGNβ1 was correlated with increased BmNPV proliferation. The siRNA-mediated reduction of BmGNβ1 was correlated with an increase in BmNPV infection of BmN cells, increased BmNPV vp39 transcription, and reduced survival time of BmNPV-infected B. mori. Overexpression of BmGNβ1 in BmN cells was also correlated with apoptosis and a modification in transcript levels of genes involved in host response to BmNPV infection (PI3K, AKT, Bmp53, BmFOXO, Caspase-1, Bmp21, BmPKN and BmCREB), suggesting that BmGNβ1 may influence the apoptotic host response of infected B. mori through the PI3K-AKT pathway. This study provides potential targets and theoretical support for breeding BmNPV-resistant silkworm varieties.
Collapse
Affiliation(s)
- Linyuan Yu
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Chenyu Ling
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yizhu Li
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Huiduo Guo
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Anying Xu
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, the Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, Zhenjiang, China
| | - Heying Qian
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, the Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, Zhenjiang, China.
| | - Gang Li
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, the Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, Zhenjiang, China.
| |
Collapse
|
5
|
Lü P, Zhang R, Yang Y, Tang M, Chen K, Pan Y. Transcriptome analysis indicates the mechanisms of BmNPV resistance in Bombyx mori midgut. J Invertebr Pathol 2024; 204:108103. [PMID: 38583693 DOI: 10.1016/j.jip.2024.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) caused serious economic losses in sericulture. Analyzing the molecular mechanism of silkworms (B. mori) resistance to BmNPV is of great significance for the prevention and control of silkworm virus diseases and the biological control of agricultural lepidopteran pests. In order to clarify the defense mechanisms of silkworms against BmNPV, we constructed a near isogenic line BC8 with high resistance to BmNPV through the highly BmNPV-resistant strain NB and the highly BmNPV-susceptible strain 306. In this study, RNA-Seq technique was used to analyze the transcriptome level differences in the midgut of BC8 and 306 following BmNPV infection. A total of 1350 DEGs were identified. Clustering analysis showed that these genes could be divided into 8 clusters with different expression patterns. Functional annotations based on GO and KEGG analysis indicated that they were involved in various metabolism pathways. Finally, 32 BmNPV defense responsive genes were screened. They were involved in metabolism, reactive oxygen species (ROS), signal transduction and immune response, and insect hormones. The further verification shows that HSP70 should participate in resistance responses of anti-BmNPV. These findings have paved the way in further functional characterization of candidate genes and subsequently can be used in breeding of BmNPV resistance dominant silkworms.
Collapse
Affiliation(s)
- Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Rusong Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Ye Pan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Fan YX, Andoh V, Chen L. Multi-omics study and ncRNA regulation of anti-BmNPV in silkworms, Bombyx mori: an update. Front Microbiol 2023; 14:1123448. [PMID: 37275131 PMCID: PMC10232802 DOI: 10.3389/fmicb.2023.1123448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Bombyx mori silkworm is an important economic insect which has a significant contribution to the improvement of the economy. Bombyx mori nucleopolyhedrovirus (BmNPV) is a vitally significant purulent virus that impedes the sustainable and stable development of the silkworm industry, resulting in substantial economic losses. In recent years, with the development of biotechnology, transcriptomics, proteomics, metabolomics, and the related techniques have been used to select BmNPV-resistant genes, proteins, and metabolites. The regulatory networks between viruses and hosts have been gradually clarified with the discovery of ncRNAs, such as miRNA, lncRNA, and circRNA in cells. Thus, this paper aims to highlight the results of current multi-omics and ncRNA studies on BmNPV resistance in the silkworm, providing some references for resistant strategies in the silkworm to BmNPV.
Collapse
|
7
|
Hu Z, Zhu F, Chen K. The Mechanisms of Silkworm Resistance to the Baculovirus and Antiviral Breeding. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:381-399. [PMID: 36689303 DOI: 10.1146/annurev-ento-120220-112317] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Silkworm (Bombyx mori) is not only an economic insect but also a model organism for life science research. Bombyx mori nucleopolyhedrovirus (BmNPV) disease is a major infectious disease in the world's sericulture industry. The cocoon loss caused by this disease accounts for more than 60% of the total loss caused by all silkworm diseases. To date, there has been no effective solution for preventing and treating this disease. The most effective measure is to breed disease-resistant varieties. The quickest way to breed disease-resistant varieties is to apply genetic modification. However, this requires that we obtain disease resistance genes and know the mechanism of disease resistance. Since the discovery of disease-resistant resources in 1989, scholars in the sericulture industry around the world have been inspired to search for resistance genes. In the past two decades, with the help of multi-omics technologies, screening of resistance genes, gene localization, protein modification, virus-host interactions, etc., researchers have found some candidate genes that have been proposed to function at the cellular or individual level. Several disease-resistant varieties have been obtained and used in production through hybrid breeding, RNA interference, and genetic modification. This article summarizes and reviews the discovery of and research advances related to silkworm resistance to BmNPV. It is anticipated that the review will inspire scientific researchers to continue searching for disease resistance genes, clarify the molecular mechanism of silkworm disease resistance, and promote disease-resistant silkworm breeding.
Collapse
Affiliation(s)
- Zhaoyang Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| |
Collapse
|
8
|
Xu J, Xie X, Ma Q, Zhang L, Li Y, Chen Y, Li K, Xiao Y, Tettamanti G, Xu H, Tian L. Identification of Host Molecules Involved in the Proliferation of Nucleopolyhedrovirus in Bombyx mori. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14427-14438. [PMID: 36321811 DOI: 10.1021/acs.jafc.2c06758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The Bombyx mori nucleopolyhedrovirus (BmNPV), a foodborne infectious virus, is the pathogen causing nuclear polyhedrosis and high lethality in the silkworm. In this study, we characterized the molecules involved in BmNPV-silkworm interaction by RNA sequencing of the fat body isolated from the virus-susceptible strain P50. Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation showed that the upregulated differentially expressed genes (DEGs) were mainly involved in translation, signal transduction, folding, sorting, and degradation, as well as transport and catabolism, while the downregulated DEGs were predominantly enriched in the metabolism of carbohydrates, amino acids, and lipids at 72 h post BmNPV infection. Knockout of the upregulated somatomedin-B and thrombospondin type-1 domain-containing protein, probable allantoicase, trifunctional purine biosynthetic protein adenosine-3, and Psl and pyoverdine operon regulator inhibited the proliferation of BmNPV, while knockout of the downregulated clip domain serine protease 3 and carboxylesterase clade H, member 1 promoted it. The molecules herein identified provide a foundation for developing strategies and designing drugs against BmNPV.
Collapse
Affiliation(s)
- Jing Xu
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xiaole Xie
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qiuqin Ma
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lu Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu Li
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yin Chen
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Kang Li
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yang Xiao
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou 510507, China
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese 21100, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, 80055 Portici, Italy
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Ling Tian
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Xiao R, Yuan Y, Xia H, Ge Q, Chen L, Zhu F, Xu J, Wang X, Fan Y, Wang Q, Yang Y, Chen K. Comparative transcriptome and proteome reveal synergistic functions of differentially expressed genes and proteins implicated in an over-dominant silkworm heterosis of increased silk yield. INSECT MOLECULAR BIOLOGY 2022; 31:551-567. [PMID: 35445454 DOI: 10.1111/imb.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
We previously observed an over-dominant silkworm heterosis of increased yield in a cross of Bombyx mori nuclear polyhydrosis virus-resistant strain NB with a susceptible strain 306. In the present study, we found that heterosis also exists in crosses of NB with other susceptible strains, indicating it is a more general phenomenon. We performed comparative transcriptome and proteome and identified 1624 differentially expressed genes (DEGs) and 298 differentially expressed proteins (DEPs) in silk glands between parents and F1 hybrids, of which 24 DEGs/DEPs showed consistent expression at mRNA and protein levels revealed by Venn joint analysis. Their expressions are completely non-additive, mainly transgressive and under low-parent, suggesting recombination of parental genomes may be the major genetic mechanism for the heterosis. GO and KEGG analyses revealed that they may function in generally similar but distinctive aspects of metabolisms and processes with signal transduction and translation being most affected. Notably, they may not only up-regulate biosynthesis and transport of silk proteins but also down-regulate other unrelated processes, synergistically and globally remodelling the silk gland to increase yield and cause the heterosis. Our findings contribute insights into the understanding of silkworm heterosis and silk gland development and provide targets for transgenic manipulation to further increase the silk yield.
Collapse
Affiliation(s)
- Rui Xiao
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yi Yuan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hengchuan Xia
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qi Ge
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xueqi Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yixuan Fan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
10
|
Qian H, Guo H, Zhang X, Liu M, Zhao G, Xu A, Li G. Metabolic characterization of hemolymph in Bombyx mori varieties after Bombyx mori nucleopolyhedrovirus infection by GC-MS-based metabolite profiling. Arch Virol 2022; 167:1637-1648. [PMID: 35650326 DOI: 10.1007/s00705-022-05463-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/25/2022] [Indexed: 11/02/2022]
Abstract
The "Huakang 2" silkworm variety, bred by the Sericulture Research Institute of the Chinese Academy of Agricultural Sciences, is highly resistant to Bombyx mori nucleopolyhedrovirus (BmNPV) and effectively solves the issue of frequent Bombyx mori nuclear polyhedrosis in sericultural production. The molecular mechanism of its resistance to BmNPV, however, is still unknown. The purpose of the present study was therefore to identify these anti-BmNPV mechanisms by using metabolomics in combination with transcriptomics after subcutaneous injection of budded virus (BV) with high concentrations of BmNPV from specimens of the Baiyu N variety (which is highly resistant to BmNPV) and the Baiyu variety (which is sensitive to BmNPV). A total of 375 differential metabolites were identified, which mainly included sugars, acids, amines, alcohols, glycosides, and other small molecules. KEGG enrichment analysis and functional clustering of differential metabolites identified possible metabolic pathways, including tyrosine metabolism, oxidative phosphorylation, and alanine, aspartate, and glutamate metabolism. The differentially expressed genes (DEGs) identified by transcriptome analysis were annotated in KEGG. Association analysis showed that the metabolic pathways of different silkworm varieties are affected differently by BmNPV infection, triggering a series of complex physiological and biochemical changes in the organism. In particular, oxidative phosphorylation might be an essential pathway involved in regulation of disease resistance.
Collapse
Affiliation(s)
- Heying Qian
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China. .,The key Laboratory of silkworm and mulberry genetic improvement, Ministry of Agriculture, Chinese Academy of Agricultural Science, Zhenjiang, 212018, China.
| | - Huimin Guo
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Xiao Zhang
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Mingzhu Liu
- The key Laboratory of silkworm and mulberry genetic improvement, Ministry of Agriculture, Chinese Academy of Agricultural Science, Zhenjiang, 212018, China
| | - Guodong Zhao
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.,The key Laboratory of silkworm and mulberry genetic improvement, Ministry of Agriculture, Chinese Academy of Agricultural Science, Zhenjiang, 212018, China
| | - Anying Xu
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.,The key Laboratory of silkworm and mulberry genetic improvement, Ministry of Agriculture, Chinese Academy of Agricultural Science, Zhenjiang, 212018, China
| | - Gang Li
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China. .,The key Laboratory of silkworm and mulberry genetic improvement, Ministry of Agriculture, Chinese Academy of Agricultural Science, Zhenjiang, 212018, China.
| |
Collapse
|
11
|
Hua X, Zhang Q, Xu W, Wang X, Wang F, Zhao P, Xia Q. The Antiviral Molecule 5-Pyridoxolactone Identified Post BmNPV Infection of the Silkworm, Bombyx mori. Int J Mol Sci 2021; 22:7423. [PMID: 34299043 PMCID: PMC8307608 DOI: 10.3390/ijms22147423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a pathogen that causes great economic losses in sericulture. Many genes play a role in viral infection of silkworms, but silkworm metabolism in response to BmNPV infection is unknown. We studied BmE cells infected with BmNPV. We performed liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based non-targeted metabolomics analysis of the cytosolic extract and identified 36, 76, 138, 101, 189, and 166 different molecules at 3, 6, 12, 24, 48, and 72 h post BmNPV infection (hpi) compared with 0 hpi. Compounds representing different areas of metabolism were increased in cells post BmNPV infection. These areas included purine metabolism, aminoacyl-tRNA biosynthesis, and ABC transporters. Glycerophosphocholine (GPC), 2-hydroxyadenine (2-OH-Ade), gamma-glutamylcysteine (γ-Glu-Cys), hydroxytolbutamide, and 5-pyridoxolactone glycerophosphocholine were continuously upregulated in BmE cells post BmNPV infection by heat map analysis. Only 5-pyridoxolactone was found to strongly inhibit the proliferation of BmNPV when it was used to treat BmE cells. Fewer infected cells were detected and the level of BmNPV DNA decreased with increasing 5-pyridoxolactone in a dose-dependent manner. The expression of BmNPV genes ie1, helicase, GP64, and VP39 in BmE cells treated with 5-pyridoxolactone were strongly inhibited in the BmNPV infection stage. This suggested that 5-pyridoxolactone may suppress the entry of BmNPV. The data in this study characterize the metabolism changes in BmNPV-infected cells. Further analysis of 5-pyridoxolactone, which is a robust antiviral molecule, may increase our understanding of antiviral immunity.
Collapse
Affiliation(s)
- Xiaoting Hua
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (X.H.); (Q.Z.); (W.X.); (F.W.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Quan Zhang
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (X.H.); (Q.Z.); (W.X.); (F.W.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Wei Xu
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (X.H.); (Q.Z.); (W.X.); (F.W.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Xiaogang Wang
- China Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academay of Chinese Materia Medica, Chongqing 400065, China;
| | - Fei Wang
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (X.H.); (Q.Z.); (W.X.); (F.W.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (X.H.); (Q.Z.); (W.X.); (F.W.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (X.H.); (Q.Z.); (W.X.); (F.W.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Wang X, Zhao ZQ, Huang XM, Ding XY, Zhao CX, Li MW, Wu YC, Liu QN, Wang XY. Bmcas-1 plays an important role in response against BmNPV infection in vitro. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21793. [PMID: 33949719 DOI: 10.1002/arch.21793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/19/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Apoptosis, as one kind of innate immune system, is involved in host response against pathogens innovation. Caspases play a vital role in the execution stage of host cell apoptosis. It has been reported that Bmcaspase-1 (Bmcas-1) has a close relationship with Bombyx mori nucleopolyhedrovirus (BmNPV) infection for its differentially expressed patterns after viral infection. However, its underlying response mechanism is still unclear. The significant differential expression of Bmcas-1 in different tissues of differentially resistant strains revealed its vital role in BmNPV infection. To further validate its role in BmNPV infection, budded virus (BV)-eGFP was analyzed after knockdown and overexpression of Bmcas-1 by small interfering RNA and the pIZT-mCherry vector, respectively. The reproduction of BV-eGFP obviously increased at 72 h after knockdown of Bmcas-1, and decreased after overexpression in BmN cells. Moreover, the conserved functional domain of Cas-1 among different species and the closed evolutionary relationship of Cas-1 in Lepidoptera hinted that Bmcas-1 might be associated with apoptosis, and this was also validated by the apoptosis inducer, Silvestrol, and the inhibitor, Z-DEVD-FMK. Therefore, Bmcas-1 plays an essential antiviral role by activating apoptosis, and this result lays a fundament for clarifying the molecular mechanism of silkworm in response against BmNPV infection and breeding of resistant strains.
Collapse
Affiliation(s)
- Xin Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zi-Qin Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xin-Ming Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xin-Yi Ding
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Chun-Xiao Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Yang-Chun Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng, Jiangsu, China
| | - Xue-Yang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| |
Collapse
|
13
|
Zhao Q, Zhao C, Shi Y, Wei G, Yang K, Wang X, Huang A. Proteomics analysis of the bio-functions of Dregea sinensis stems provides insights regarding milk-clotting enzyme. Food Res Int 2021; 144:110340. [PMID: 34053536 DOI: 10.1016/j.foodres.2021.110340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Dregea sinensis (D. sinensis) stems have traditionally been used as milk coagulant in Dali of Yunnan Province, China. In this study, proteomics was used to investigate the bio-functions of D. sinensis stem proteins, leading to the purification and identification of the milk-clotting enzyme. A total of 205 proteins mainly involved in the catalytic and metabolic processes were identified, of which 28 proteins exhibited hydrolase activity. Among the 28 proteins, we focused on two enzymes (M9QMC9 and B7VF65). Based on proteomics, a cysteine protease (M9QMC9) with a molecular weight of 25.8 kDa and milk-clotting activity was purified from D. sinensis stems using double ammonium sulfate precipitation and was confirmed using liquid chromatography-mass spectrometry (LC-MS/MS). The milk-clotting temperature using the purified enzyme was around 80 °C (specific activity at 314.38 U/mg), and it was found to be stable in the pH range of 6-9 in NaCl concentration of <0.8 mol/L. These findings indicated that the enzyme isolated from D. sinensis stems has potential in the dairy and food sectors, especially in the cheese-making industry.
Collapse
Affiliation(s)
- Qiong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Cunchao Zhao
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guangqiang Wei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Kun Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuefeng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
14
|
Wang XY, Zhao CX, Wang X, Zhao ZQ, Su ZH, Xu PZ, Li MW, Wu YC. The validation of the role of several genes related to Bombyx mori nucleopolyhedrovirus infection in vivo. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21762. [PMID: 33415772 DOI: 10.1002/arch.21762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of primary silkworm pathogens and causes a serious damage of cocoon losses every year. Recent years, many works have been done to clarify the silkworm anti-BmNPV mechanism, and a significant progress has been made in screening and studying of genes and proteins related to BmNPV infection, but several of them lacked the proofs in vivo. In this study, to further validate the function of seven newly reported genes in vivo, including BmAtlatin-n, Bmferritin-heavy chain (BmFerHCH), Bmthymosin (BmTHY), Bmseroin1, Bmseroin2, Bmnuclear hormone receptors 96 (BmNHR96), and BmE3 ubiquitin-protein ligase SINA-like 10 (BmSINAL10), the response of them in the midgut, fat body, and hemolymph of differentially resistant strains (resistant strain YeA and susceptible strain YeB) at 48 h following BmNPV infection were analyzed. The results showed that the relative stable or upregulated expression level of BmAtlatin-n, BmTHY, Bmseroin1, and Bmseroin2 in YeA resistant strain following BmNPV infection further indicated their antiviral role in vivo, compared with susceptible YeB strain. Moreover, the significant downregulation of BmFerHCH, BmNHR96, and BmSINAL10 in both strains following BmNPV infection revealed their role in benefiting virus infection, as well as the upregulation of BmFerHCH in YeB midgut and BmSINAL10 in YeB hemolymph. These data could be used to complementary the proofs of the function of these genes in response to BmNPV infection.
Collapse
Affiliation(s)
- Xue-Yang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Chun-Xiao Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xin Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zi-Qin Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zhi-Hao Su
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Ping-Zhen Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Yang-Chun Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| |
Collapse
|
15
|
Immune mechanism in silkworm Bombyx mori L. METHODS IN MICROBIOLOGY 2021. [DOI: 10.1016/bs.mim.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Zhu F, Song D, Chen H, Tang Q, Huo S, Liu X, Chen K. A Lipidome Map of the Silkworm Bombyx mori: Influences of Viral Infection. J Proteome Res 2020; 20:695-703. [PMID: 33175548 DOI: 10.1021/acs.jproteome.0c00608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipids have been recently proposed as key molecules for virus entry and egress, and lipid biosynthesis and signaling were reported necessary for some viruses during replication and infection. The silkworm Bombyx mori is an important economic insect and a model organism, but its lipid profiles have not been systematically investigated. Most silkworm strains are susceptible to the B. mori nuclear polyhedrovirus (BmNPV), a baculovirus that causes serious loss to the sericulture industry. Previously, our lab has screened a natural mutant of B. mori that is highly resistant to BmNPV. In this study, a comprehensive lipidomic analysis by ultrahigh pressure liquid chromatography-mass spectrometry (UPLC-MS) was carried out on the BmNPV-susceptible strain 306 and resistant strain NB (data deposited in MetaboLight MTBLS2142). Comparisons of the lipid profiles between the two strains reveal that phosphosphingolipids, diacylglycerolipids, ceramides, and quinones were present at notably higher levels in the susceptible strain, while lysophosphocholines were found at a higher level in the resistant strain. BmNPV administration changed the lipid profiles in both strains, revealing key lipids involved in virus infection and immune response. Some key enzymes in the lipid biosynthesis pathway were analyzed for their activities in the two silkworm strains and their virus-administered counterparts, underlining the relation among lipid biosynthesis, viral resistance, and immune response in the host.
Collapse
|
17
|
Zhang SZ, Zhu LB, Yu D, You LL, Wang J, Cao HH, Liu YX, Wang YL, Kong X, Toufeeq S, Xu JP. Identification and Functional Analysis of BmNPV-Interacting Proteins From Bombyx mori (Lepidoptera) Larval Midgut Based on Subcellular Protein Levels. Front Microbiol 2020; 11:1481. [PMID: 32695093 PMCID: PMC7338592 DOI: 10.3389/fmicb.2020.01481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/08/2020] [Indexed: 11/30/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen causing severe economic loss. However, the molecular mechanism of silkworm resistance to BmNPV and the interactions of this virus with the host during infection remain largely unclear. To explore the virus-binding proteins of silkworms, the midgut subcellular component proteins that may interact with BmNPV were analyzed in vitro based on one- and two-dimensional electrophoresis and far-western blotting combined with mass spectrometry (MS). A total of 24 proteins were determined to be specifically bound to budded viruses (BVs) in two subcellular fractions (mitochondria and microsomes). These proteins were involved in viral transportation, energy metabolism, apoptosis and viral propagation, and they responded to BmNPV infection with different expression profiles in different resistant strains. In particular, almost all the identified proteins were downregulated in the A35 strain following BmNPV infection. Interestingly, there were no virus-binding proteins identified in the cytosolic fraction of the silkworm midgut. Two candidate proteins, RACK1 and VDAC2, interacted with BVs, as determined with far-western blotting and reverse far-western blotting. We speculated that the proteins interacting with the virus could either enhance or inhibit the infection of the virus. The data provide comprehensive useful information for further research on the interaction of the host with BmNPV.
Collapse
Affiliation(s)
- Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Dong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Ling-Ling You
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Hui-Hua Cao
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Ying-Xue Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Yu-Ling Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Xue Kong
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shahzad Toufeeq
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| |
Collapse
|
18
|
Increased expression of Suppressor of cytokine signaling 2 (BmSOCS2) is correlated with suppression of Bombyx mori nucleopolyhedrovirus replication in silkworm larval tissues and cells. J Invertebr Pathol 2020; 174:107419. [PMID: 32535001 DOI: 10.1016/j.jip.2020.107419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
The resistance of silkworm to infection by Bombyx mori nuclear polyhedrosis virus (BmNPV) is a main focus of sericultural research. Previously, a BmNPV-resistant strain, NB, was identified among a collection of Chinese silkworm strains in our lab. To better understand the molecular mechanism of NB strain resistance, the patterns of host immune response gene transcription in resistant (NB) and susceptible (306) strains were examined. Quantative real-time PCR (qRT-PCR) revealed that multiple insect innate immune signaling pathways (Toll, Imd and JAK/STAT) were strongly activated upon infection with BmNPV. Notably, Suppressor of cytokine signaling 2 (BmSOCS2) mRNA expression was significantly up-regulated in midgut tissues of the resistant NB strain, suggesting that the BmSOCS2 gene product may be involved in host immune defense against BmNPV infection. A significant inhibition of BmNPV replication was also observed in BmN cells transfected with a vector encoding BmSOCS2. The results suggest that BmSOCS2 is a key gene involved in the resistance of the NB silkworm strain to BmNPV infection.
Collapse
|
19
|
Li G, Qi X, Chen H, Hu Z, Chen F, Deng L, Guo Z, Chen K, Tang Q. The Motif of 76KRKCSK in Bm65 Is an Efficient Nuclear Localization Signal Involved in Production of Infectious Virions. Front Microbiol 2020; 10:2739. [PMID: 32038506 PMCID: PMC6988788 DOI: 10.3389/fmicb.2019.02739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022] Open
Abstract
orf65 (Bm65) of Bombyx mori nucleopolyhedrovirus (BmNPV) codes for a putative 104-amino-acid protein containing three cysteine residues with a putative molecular mass of 12.2 kDa. Previous studies have showed that Bm65 accumulates mainly in nucleus and involved in the repair of UV-damaged DNA. However, the mechanism of nuclear import of Bm65 remains unclear. In this study, a SDS-stable Bm65 tetramer was found in BmNPV-infected BmN cells, and alanine substitutions for the three cysteine residues did not affect the formation of Bm65 tetramer. Additionally, a basic amino acid cluster of the Bm65 protein was identified as an efficient nuclear localization signal (NLS). Firstly, transient expression of GFP-fused truncated Bm65 variants revealed that the 76KRKCSK motif functions as the NLS. This was also confirmed by alanine substitution in the 76KRKCSK motif, which caused attenuated nuclear localization of Bm65. Next, the 76KRKCSK motif-mutated bacmid was generated and the 76KRKCSK motif was also found to be important for nuclear localization of Bm65 in BmNPV-infected conditions. Lastly, analyses of flag-tagged Bm65 expressing bacmids revealed that the mutations in 76KRKCSK motif did not affect the synthesis of Bm65 tetramer, but severely impaired production levels of infectious virions. In conclusion, Bm65 exists in mainly a tetrameric form in virus-infected cells, which may be involved with production levels of infectious virions.
Collapse
Affiliation(s)
- Guohui Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xinyu Qi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Huiqing Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhaoyang Hu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Fangying Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Liang Deng
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhongjian Guo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qi Tang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Santorum M, Costa RM, Dos Reis GH, Carvalho Dos Santos D. Novaluron impairs the silk gland and productive performance of silkworm Bombyx mori (Lepidoptera: Bombycidae) larvae. CHEMOSPHERE 2020; 239:124697. [PMID: 31499307 DOI: 10.1016/j.chemosphere.2019.124697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
This study investigates the effects of the insect growth regulator Novaluron on the silk gland (SG) and silk cocoon production in a nontarget insect, the silkworm Bombyx mori, which is a model research insect among Lepidoptera and of great economic importance for the commercial production of silk threads. Larvae were segregated into experimental groups: the control group (CG) and the treatment group (TG), which was exposed to a Novaluron concentration of 0.15 mL/L. Following exposure, we analyzed the cytotoxic effects on the epithelial cells of the anterior, middle and posterior regions of the SG of B. mori larvae in the 3rd, 4th, and 5th instars, as well as the quality of the cocoons from larvae in the 5th instar. Cytotoxic effects were observed in the TG, such as the dilation of cells, emission of cytoplasmic protrusions, extreme rarefaction of the cytoplasm and nuclei, dilation of the endoplasmic reticulum, intracellular and intercellular spaces, spacing between the epithelial cells and the basal lamina and detachment of some cells towards the lumen of the SG, and decreased protein in the lumen, with faults in its composition. In addition, we verified ultrastructural changes in the production of fibers and silk cocoons, including a reduction in the weight of the cocoons constructed by both males and females in the TG and the construction of defective cocoons. Novaluron exposure impairs the SG and may affect the physiological functions of this organ; additionally, it compromises the quality of silk cocoons, potentially causing serious damage to sericulture.
Collapse
Affiliation(s)
- Marilucia Santorum
- Laboratory of Insects, Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Rose Meire Costa
- Center of Biological Sciences and Health, State University of Western Paraná (UNIOESTE), Cascavel, PR, Brazil
| | | | - Daniela Carvalho Dos Santos
- Laboratory of Insects, Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil; Electron Microscopy Center of the Institute of Biosciences of Botucatu, UNESP, SP, Brazil.
| |
Collapse
|
21
|
Zhu F, Li D, Song D, Xia H, Liu X, Yao Q, Chen K. Precision mapping of N- and O-glycoproteins in viral resistant and susceptible strains of Bombyx mori. J Invertebr Pathol 2019; 167:107250. [DOI: 10.1016/j.jip.2019.107250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 10/26/2022]
|
22
|
Xia H, Chen L, Shao D, Liu X, Wang Q, Zhu F, Guo Z, Gao L, Chen K. Vacuolar protein sorting 4 is required for silkworm metamorphosis. INSECT MOLECULAR BIOLOGY 2019; 28:728-738. [PMID: 30955208 DOI: 10.1111/imb.12586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vacuolar protein sorting 4 (Vps4) not only functions with its positive regulator vacuolar protein sorting 20-associated 1 (Vta1) in the multivesicular body (MVB) pathway but also participates alone in MVB-unrelated cellular processes. However, its physiological roles at the organism level remain rarely explored. We previously identified their respective homologues Bombyx mori Vps4 (BmVps4) and BmVta1 from the silkworm, a model organism for insect research. In this study, we performed fluorescence quantitative real-time PCR and Western blot to globally characterize the transcription and protein expression profiles of BmVps4 and BmVta1 during silkworm development and in different silkworm tissues and organs. The results showed that they were significantly up-regulated in metamorphosis, adulthood and embryogenesis relative to larval stages, and displayed a roughly similar tissue-and-organ specificity for transcriptions in silkworm larvae. Importantly, BmVps4 was down-regulated during the early period of the fifth instar, reaching the lowest level of transcription on Day 6, then up-regulated from Day 7 to the wandering, spinning and pupal stages, and down-regulated again in adulthood. Moreover, knocking down BmVps4 by RNA interference significantly inhibited silk gland growth, shortened spinning time, prolonged pupation, reduced pupal size and weight, and increased moth wing defects. Together, our data demonstrate the critical and broad requirements for BmVps4 in silkworm metamorphosis.
Collapse
Affiliation(s)
- H Xia
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - L Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - D Shao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - X Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Q Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - F Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Z Guo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - L Gao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - K Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
23
|
Lü D, Xu P, Hou C, Gao K, Guo X. Label-free LC-MS/MS proteomic analysis of the hemolymph of silkworm larvae infected with Beauveria bassiana. J Invertebr Pathol 2019; 166:107227. [PMID: 31386830 DOI: 10.1016/j.jip.2019.107227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022]
Abstract
Beauveria bassiana, a pathogen of the economically important silkworm (Bombyx mori), causes serious losses in the sericulture industry; however, the mechanisms underlying B. bassiana infection and the silkworm response are not fully understood. To obtain new insights into the interaction between B. bassiana and its host, hemolymph samples from fifth instar silkworm larvae infected with B. bassiana were analyzed at 36-h post-inoculation using a label-free LC-MS/MS proteomic technique. In total, 671 proteins were identified in the hemolymph, including 87 differentially expressed proteins, 42 up-regulated and 45 down-regulated in infected larvae. Six were detected only in infected larvae, and five were detected only in uninfected larvae. Based on GO annotations, 48 of the differentially expressed proteins were involved in molecular functions, 42 were involved in biological processes, and 39 were involved in cell components. A KEGG pathway analysis indicated that these differentially expressed proteins participate in 85 signal transduction pathways, including the amoebiasis, MAPK signaling, Hippo signaling, Toll and Imd signaling, and lysosome pathways. The silkworm hemolymph is the main site for B. bassiana replication. We identified differentially expressed proteins involved in the regulation of the host response to B. bassiana infection, providing important experimental data for the identification of key factors contributing to the interaction between the pathogenic fungus and its host.
Collapse
Affiliation(s)
| | - Ping Xu
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Chengxiang Hou
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Kun Gao
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Xijie Guo
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
| |
Collapse
|
24
|
Santorum M, Brancalhão RMC, Guimarães ATB, Padovani CR, Tettamanti G, Dos Santos DC. Negative impact of Novaluron on the nontarget insect Bombyx mori (Lepidoptera: Bombycidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:82-90. [PMID: 30878865 DOI: 10.1016/j.envpol.2019.02.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/31/2019] [Accepted: 02/26/2019] [Indexed: 05/28/2023]
Abstract
Due to increased use of agrochemicals and growing concerns about ecotoxicology, the development of new insecticides, moving away from those with neurotoxic and broad spectrum effects towards insecticides that are safer for the environment and nontarget beneficial species, has been a research priority. Novaluron stands out among these newer insecticides, is an insect growth regulator that is used for the control of insect pests in crops grown close to mulberry plantations. Mulberry serves as food for the silkworm Bombyx mori, which is a nontarget insect of great economic importance to silk production. We investigated the lethal and sublethal effects of Novaluron on the development of B. mori. Larvae were segregated into experimental groups: the control groups (CGs) and the treatment groups (TGs), which were treated with the Novaluron concentration of 0.15 mL/L. Following exposure, we analyzed: larval mortality, changes in the insect life cicle and cytotoxic effects on the midgut cells. This is the first report about the Novaluron's effects on B.mori. We detected rupture in the integument, complete cessation of feeding, late development, incomplete ecdysis and production of defective cocoons. After 240 h of exposure, there was 100% mortality in TG larvae exposed in the 3rd instar and 20% mortality from larvae exposed in the 5th instar. Cytotoxic effects was observed, such as dilation of cells, emission of cytoplasmic protrusions, extreme rarefaction of the cytoplasm and nuclei, dilation of the endoplasmic reticulum in addition to changes in mitochondria, the presence of large digestive vacuoles and intercellular spaces and the presence of active caspase. Novaluron exposure impairs the midgut and may affect the physiological functions of this organ. Novaluron additionally compromises several phases of insect development, indicating the importance of toxicology studies that utilize different life stages of nontarget species to evaluate the safe use of insecticides.
Collapse
Affiliation(s)
- Marilucia Santorum
- Laboratory of Insects, Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Rose Meire Costa Brancalhão
- Center of Biological Sciences and Health, State University of Western Paraná, UNIOESTE, Cascavel, PR, Brazil
| | | | - Carlos Roberto Padovani
- Department of Biostatistics, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Daniela Carvalho Dos Santos
- Laboratory of Insects, Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil; Electron Microscopy Center of the Institute of Biosciences of Botucatu, UNESP, SP, Brazil.
| |
Collapse
|
25
|
Chen L, Meng X, Gu J, Fan W, Abdlli N, Peprah FA, Wang N, Zhu F, Lü P, Ma S, Chen K. Silver nanoparticle toxicity in silkworms: Omics technologies for a mechanistic understanding. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:388-395. [PMID: 30731270 DOI: 10.1016/j.ecoenv.2019.01.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
The widespread use of silver nanoparticles (AgNPs) has raised public concern due to their potential toxic effects on humans and the environment. Although some studies have evaluated the toxicity of nanomaterials in vertebrates, studies on their hazardous effects on insects are limited. Here we focused on different concentrations of AgNPs to silkworms, a promising model organism, to evaluate their toxic effects by omics analysis. After the silkworms were fed with 100 mg L-1 AgNPs, transcriptomics analysis showed differential expression of 43 genes: 39 upregulated and 4 downregulated. These differentially expressed genes (DEGs) were involved in the digestion process, various metabolic pathways, transmembrane transport and energy synthesis. Proteomic results for silkworms fed with 400 mg L-1 AgNPs revealed 14 significantly differentially expressed proteins: 11 downregulated and 3 upregulated. Reverse transcription-polymerase chain reaction (RT-PCR) results showed that the expression levels of eight proteins were similar to the transcription levels of their corresponding genes. As the AgNPs concentration was increased, the expression of digestive enzymes was downregulated, which damaged the silkworm tissue and suppressed the activity of the enzyme superoxide dismutase and the protein HSP 1, causing oxidative stress and the production of reactive oxygen species, which had toxic effects on the silkworm digestive system. Histopathological results showed that treatment with 400 mg L-1 AgNPs destroyed the basal lamina and the columnar cells, caused adverse effects on tissues and had the potential to induce harmful effects on the digestive system. The data presented herein provide valuable information on the hazards and risks of nanoparticle contamination. Main finding: AgNPs would downregulate some digestive enzymes, damage the tissue of midgut in silkworm, meantime induce the accumulation of reactive oxygen species which may cause oxidative stress.
Collapse
Affiliation(s)
- Liang Chen
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Xu Meng
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Weiqiang Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China.
| | - Nouara Abdlli
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Frank Addai Peprah
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Niannian Wang
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Feifei Zhu
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Peng Lü
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Shangshang Ma
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| |
Collapse
|
26
|
Li G, Zhou K, Zhao G, Qian H, Xu A. Transcriptome-wide analysis of the difference of alternative splicing in susceptible and resistant silkworm strains after BmNPV infection. 3 Biotech 2019; 9:152. [PMID: 30944799 DOI: 10.1007/s13205-019-1669-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 03/05/2019] [Indexed: 10/27/2022] Open
Abstract
Novel alternative splicing events were identified from BmNPV-susceptible and -resistant silkworm strains after BmNPV infection using high-throughput RNA-sequencing strategy. In total, 12.82 Gb clean RNA-seq data were generated for the two midgut samples from BmNPV-susceptible and -resistant silkworm strains, and 14.78 Gb clean data for the two fat body samples. The number of alternative splicing events and isoforms in the BmNPV-susceptible silkworm strain was more than that in the BmNPV-resistant silkworm strain. Furthermore, alternative splicing genes uniquely present in BmNPV-resistant silkworm strain were involved in functions about ribosome, whereas, alternative splicing genes uniquely present in BmNPV-susceptible silkworm strain were implicated in functions like DNA helicase activity and signal transduction. Additionally, 33 expressed SR or SR-like proteins were identified, and three genes encoding SR or SR-like proteins (tetratricopeptide repeat protein 14 homolog, ubiquitin carboxyl-terminal hydrolase 32 and zinc finger CCCH domain-containing protein 18) have a higher number of different alternative splicing events between two silkworm strains. The present study suggested BmNPV treatment may have a smaller effect on the mRNA transcription in BmNPV-resistant silkworms than that in BmNPV-susceptible silkworms, and functions of alternative splicing genes are different between the two silkworm strains.
Collapse
|
27
|
Targeting Heat Shock Protein 70 as an antiviral strategy against grass carp reovirus infection. Virus Res 2018; 247:1-9. [DOI: 10.1016/j.virusres.2018.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/08/2017] [Accepted: 01/12/2018] [Indexed: 01/08/2023]
|
28
|
Discovery of anti-viral molecules and their vital functions in Bombyx mori. J Invertebr Pathol 2018; 154:12-18. [PMID: 29453967 DOI: 10.1016/j.jip.2018.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/03/2018] [Accepted: 02/13/2018] [Indexed: 12/17/2022]
Abstract
The silkworm Bombyx mori (B. mori), a lepidopteran model organism, has become an important model for molecular biology researches with its genome completely sequenced. Silkworms confront different types of virus diseases, mainly including those caused by Bombyx mori nucleopolyhedrovirus (BmNPV), Bombyx mori densovirus type 1 (BmDNV-1), Bombyx mori bidesovirus (BmBDV) which was termed as Bombyx mori densovirus type 2 (BmDNV-2) or Bombyx mori parvo-like virus (BmPLV) before in sericulture. B. mori offers excellent models to study the molecular mechanisms of insect innate immune responses to viruses. A variety of molecules and pathways have been identified to be involved in the immune responses in the silkworm to viruses, such as the antimicrobial peptides, prophenoloxidase-activating system, apoptosis, ROS, small RNA and related molecules. Here in this review, we summarize the current research advances in molecules involved in silkworm anti-virus pathways. Moreover, taking BmNPV as an example, we proposed a schematic model of molecules and pathways involved in silkworm immune responses against virus infection. We hope this review can facilitate further study of antiviral mechanisms in silkworm, and provide a reference for virus diseases in other organisms.
Collapse
|
29
|
Wang Q, Ju X, Chen L, Chen K. Caspase-1 from the silkworm, Bombyx mori, is involved in Bombyx mori nucleopolyhedrovirus infection. ACTA ACUST UNITED AC 2017; 72:147-153. [PMID: 27701142 DOI: 10.1515/znc-2016-0133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/28/2016] [Indexed: 11/15/2022]
Abstract
Caspase-1 is one of the effector caspases in mammals that plays a central role in apoptosis. However, the lepidopteran caspase-1, especially the Bombyx mori caspase-1 (Bm-caspase-1), has not been investigated in detail. In this study, Bm-caspase-1 was identified from an expressed sequence tag database in B. mori by BLAST search. The open reading frame of Bm-caspase-1 contained 879 nucleotides and encoded 293 amino acids with a predicted molecular mass of 33 kDa. Bm-caspase-1 contained two consensus amino acid motifs of caspase cleavage sites, DEGDA and TETDG. Caspase activity assays revealed significant proteolytic activity of the Ac-DEVD-pNA substrate. Bm-caspase-1 can be detected in all tissues and developmental stages by a semi quantitative polymerase chain reaction assay. More importantly, the expression level of Bm-caspase-1 is increased upon baculovirus infection and up-regulated in BmNPV-resistant silkworms. Taken together, these results indicate that Bm-caspase-1 plays an important role during baculovirus infection.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, PR China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| |
Collapse
|
30
|
In vivo RNA interference of BmNHR96 enhances the resistance of transgenic silkworm to BmNPV. Biochem Biophys Res Commun 2017; 493:332-339. [DOI: 10.1016/j.bbrc.2017.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 11/18/2022]
|
31
|
Hu J, Zhu W, Li Y, Guan Q, Yan H, Yu J, Fu Z, Lu X, Tian J. SWATH-based quantitative proteomics reveals the mechanism of enhanced Bombyx mori nucleopolyhedrovirus-resistance in silkworm reared on UV-B treated mulberry leaves. Proteomics 2017; 17. [PMID: 28556443 DOI: 10.1002/pmic.201600383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/29/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the most acute infectious diseases in silkworm, which has led to great economic loss in sericulture. Previous study showed that the content of secondary metabolites in mulberry leaves, particularly for moracin N, was increased after UV-B irradiation. In this study, the BmNPV resistance of silkworms reared on UV-B treated and moracin N spread mulberry leaves was improved. To uncover the mechanism of enhanced BmNPV resistance, silkworm midguts from UV-B treated mulberry leaves (BUM) and moracin N (BNM) groups were analyzed by SWATH-based proteomic technique. Of note, the abundance of ribosomal proteins in BUM and BNM groups was significantly changed to maintain the synthesis of total protein levels and cell survival. While, cytochrome c oxidase subunit II, calcium ATPase and programmed cell death 4 involved in apoptotic process were up-regulated in BNM group. Expressions of lipase-1, serine protease precursor, Rab1 protein, and histone genes were increased significantly in BNM group. These results suggest that moracin N might be the main active component in UV-B treated mulberry leaves which could improve the BmNPV-resistance of silkworm through promoting apoptotic cell death, enhancing the organism immunity, and regulating the intercellular environment of cells in silkworm. It also presents an innovative process to reduce the mortality rate of silkworms infected with BmNPV.
Collapse
Affiliation(s)
- Jin Hu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Yaohan Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Qijie Guan
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Haijian Yan
- Chun'an Country Cocoon & Silk Company, Hangzhou, P. R. China
| | - Jiaojiao Yu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Zhirong Fu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Xingmeng Lu
- College of Animal Science, Zhejiang University, Hangzhou, P. R. China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
32
|
iTRAQ-based quantitative proteomics analysis of molecular mechanisms associated with Bombyx mori (Lepidoptera) larval midgut response to BmNPV in susceptible and near-isogenic strains. J Proteomics 2017. [PMID: 28624519 DOI: 10.1016/j.jprot.2017.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) has been identified as a major pathogen responsible for severe economic loss. Most silkworm strains are susceptible to BmNPV, with only a few highly resistant strains thus far identified. Here we investigated the molecular basis of silkworm resistance to BmNPV using susceptible (the recurrent parent P50) and resistant (near-isogenic line BC9) strains and a combination of iTRAQ-based quantitative proteomics, reverse-transcription quantitative PCR and Western blotting. By comparing the proteomes of infected and non-infected P50 and BC9 silkworms, we identified 793 differentially expressed proteins (DEPs). By gene ontology and KEGG enrichment analyses, we found that these DEPs are preferentially involved in metabolism, catalytic activity, amino sugar and nucleotide sugar metabolism and carbon metabolism. 114 (14.38%) DEPs were associated with the cytoskeleton, immune response, apoptosis, ubiquitination, translation, ion transport, endocytosis and endopeptidase activity. After removing the genetic background and individual immune stress response proteins, we identified 84 DEPs were found that are potentially involved in resistance to BmNPV. Further studies showed that a serine protease was down-regulated in P50 and up-regulated in BC9 after BmNPV infection. Taken together, these results provide insights into the molecular mechanism of silkworm response to BmNPV. BIOLOGICAL SIGNIFICANCE Bombyx mori nucleopolyhedrovirus (BmNPV) is highly pathogenic, causing serious losses in sericulture every year. However, the molecular mechanisms of BmNPV infection and host defence remain unclear. Here we combined quantitative proteomic, bioinformatics, RT-qPCR and Western blotting analyses and found that BmNPV invasion causes complex protein alterations in the larval midgut, and that these changes are related to cytoskeleton, immune response, apoptosis, ubiquitination, translation, ion transport, endocytosis and endopeptidase activity. Five important differentially expression proteins were validation by independent approaches. These finding will help address the molecular mechanisms of silkworm resistance to BmNPV and provide a molecular target for resisting BmNPV.
Collapse
|
33
|
Xia H, Shao D, Liu X, Wang Q, Zhou Y, Chen K. Identification and Characterization of BmVta1, a Bombyx mori (Lepidoptera: Bombycidae) Homologue for Vta1 That is Up-Regulated in Development. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3883618. [PMID: 28973578 PMCID: PMC5538328 DOI: 10.1093/jisesa/iex055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Vps20-associated 1 (Vta1) positively regulates Vacuolar protein sorting 4 (Vps4) to disassemble endosomal sorting complex required for transport III (ESCRT-III) for repeated uses in multivesicular body (MVB) pathway, virus budding and other processes. Currently, these proteins have mainly been studied in yeast and mammalian cells, while identities of them in insects remain largely unknown. We previously identified BmVps4, a Vps4 homologue from Bombyx mori. Here, we report the identification of a homologue for Vta1, designated as BmVta1. The BmVta1 cDNA contains an open reading frame of 933 bp and encodes a protein of 311 amino acid residues. We cloned BmVta1, expressed it in Escherichia coli, and prepared mouse polyclonal antibodies. Like BmVps4, BmVta1 is well conserved as shown by sequence analysis. Both proteins are localized in cytoplasm as revealed by subcellular location analysis. Interestingly, as revealed by semi-quantitative reverse transcription polymerase chain reaction (sqRT-PCR), transcriptions of BmVta1 and BmVps4 are highly up-regulated during silkworm metamorphosis and embryogenesis but down-regulated during larva stages, and are of higher levels in head, silk gland and testis than in Malpighian tube, fat body and ganglion, indicating important and similar roles of them in silkworm development and in silkworm tissues and organs. However, compared to BmVps4, the transcription of BmVta1 changes less drastically during development and is of much higher levels in midgut, ovary and hemolymph, suggesting the existence of distinct requirements of them in silkworm development and in certain tissues and organs.
Collapse
Affiliation(s)
- Hengchuan Xia
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, P. R. China (; ; ; ; ; )
| | - Dandan Shao
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, P. R. China (; ; ; ; ; )
| | - Xiaoyong Liu
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, P. R. China (; ; ; ; ; )
| | - Qiang Wang
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, P. R. China (; ; ; ; ; )
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, P. R. China (; ; ; ; ; )
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, P. R. China (; ; ; ; ; )
| |
Collapse
|
34
|
Li G, Zhou Q, Qiu L, Yao Q, Chen K, Tang Q, Hu Z. Serine protease Bm-SP142 was differentially expressed in resistant and susceptible Bombyx mori strains, involving in the defence response to viral infection. PLoS One 2017; 12:e0175518. [PMID: 28414724 PMCID: PMC5393580 DOI: 10.1371/journal.pone.0175518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
Bm-SP142 is a 35 kDa protease in the silkworm, but its exact functions remain unknown. In this study, sequence alignment revealed that the His-Asp-Ser catalytic triad is embedded in the TAAHC-DIAL-GDSGGP sequence motif, establishing Bm-SP142 as a serine protease. Soluble recombinant GST-BmSP142 was expressed and purified, and serine protease activity was confirmed in vitro. RT-qPCR results indicated that Bm-SP142 was mainly expressed in the middle part of the silkworm midgut, and Bm-SP142 transcripts were significantly up-regulated at 24 hours post infection (hpi) in BmBDV-resistant strains (798) inoculated with BmBDV and BmNPV-resistant strains (NB) inoculated with BmNPV, but not in BmBDV-susceptible strains (306). Surprisingly, transcripts were significantly down-regulated at 12 hpi in BmNPV-susceptible strains (HuaBa 35) inoculated with BmNPV, compared with healthy silkworms. Recombinant BmNPV treated with purified Bm-SP142 effectively impaired its ability to infect BmN cells, and Bm-SP142 decreases the efficiency of BmNPV and BmBDV propagation in silkworms. Furthermore, overexpression of Bm-SP142 in BmN cells inhibited viral propagation.
Collapse
Affiliation(s)
- Guohui Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qian Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qi Tang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- * E-mail: (ZH); (QT)
| | - Zhaoyang Hu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- * E-mail: (ZH); (QT)
| |
Collapse
|
35
|
Dong XL, Liu TH, Wang W, Pan CX, Du GY, Wu YF, Adur M, Zhang MJ, Pan MH, Lu C. Transgenic RNAi of BmREEPa in silkworms can enhance the resistance of silkworm to Bombyxmori Nucleopolyhedrovirus. Biochem Biophys Res Commun 2017; 483:855-859. [DOI: 10.1016/j.bbrc.2017.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 02/02/2023]
|
36
|
Wang L, Song J, Bao XY, Chen P, Yi HS, Pan MH, Lu C. BmDredd is an initiator caspase and participates in Emodin-induced apoptosis in the silkworm, Bombyx mori. Gene 2016; 591:362-8. [DOI: 10.1016/j.gene.2016.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 01/03/2023]
|
37
|
Bovilla VR, Padwal MK, Siripurapu P, Basu B, Mamillapalli A. Developmental proteome dynamics of silk glands in the 5th instar larval stage of Bombyx mori L (CSR2×CSR4). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:860-8. [PMID: 27032299 DOI: 10.1016/j.bbapap.2016.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/23/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED Bivoltine breed of Bombyx mori (B. mori), CSR2×CSR4 is an Indian high yielding silkworm strain. Silk gland proteome of this strain was not studied till now. Methods of improving silk production by chemical approaches have reached saturation and transgenic methods are needed in further to boost silk production. An understanding of proteomic changes during silk gland development helps in designing experiments to enhance silk production by transgenic approaches. The present study reports comprehensive developmental proteomic analysis of CSR2×CSR4, 5th instar whole silk glands. Eighty six unique protein IDs were obtained from the analysis of one hundred and twenty protein spots. Among the identified proteins, majority of the proteins were involved in metabolism (41%) followed by proteins involved in protein homeostasis (30%). Sixty percent of the identified proteins showed dynamic nature by expression analysis from day 1, day 3, day 5 and day 7 gels. In comparison to the published data till now on silk gland proteomics this study reports identification of 20 new proteins from the silk glands for the first time. SIGNIFICANCE The paper reports for the first time proteomic analysis of high yielding silkworm strain of India. The study analyzes whole silk glands to understand the tissue in total during 5th instar development. Lowering fibroin content made us to identify a large number of new proteins which were not reported till now in the silk gland proteome. Proteins which are involved in silk synthesis and release were found to be developmentally regulated. The study identified alanine, serine and glycine tRNA ligases for the first time and also showed their up-regulation on day 7 of 5th instar larval stage. The amino acid repeat of fibroin protein is enriched with the three amino acids, glycine, serine and alanine. The identified proteins could be studied further to understand their functional role in-depth.
Collapse
Affiliation(s)
- Venugopal Reddy Bovilla
- Department of Biotechnology, GITAM Institute of Science, GITAM University, Visakhapatnam 530045, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Prasanthi Siripurapu
- Department of Biotechnology, GITAM Institute of Science, GITAM University, Visakhapatnam 530045, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Anitha Mamillapalli
- Department of Biotechnology, GITAM Institute of Science, GITAM University, Visakhapatnam 530045, India.
| |
Collapse
|
38
|
Wang Q, Zhou Y, Chen K, Ju X. Suppression of Bm-Caspase-1 Expression in BmN Cells Enhances Recombinant Protein Production in a Baculovirus Expression Vector System. Mol Biotechnol 2016; 58:319-27. [DOI: 10.1007/s12033-016-9931-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Senem JV, Torquato EFB, de Fátima Chasko Ribeiro L, Brancalhão RMC. Cytopathology of the trachea of Bombyx mori (Lepidoptera: Bombycidae) to Bombyx mori nucleopolyhedrovirus. Micron 2016; 80:39-44. [DOI: 10.1016/j.micron.2015.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 11/28/2022]
|
40
|
Dong XL, Liu TH, Wang W, Pan CX, Wu YF, Du GY, Chen P, Lu C, Pan MH. BmREEPa Is a Novel Gene that Facilitates BmNPV Entry into Silkworm Cells. PLoS One 2015; 10:e0144575. [PMID: 26656276 PMCID: PMC4681539 DOI: 10.1371/journal.pone.0144575] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/22/2015] [Indexed: 11/26/2022] Open
Abstract
We previously established two silkworm cell lines, BmN-SWU1 and BmN-SWU2, from Bombyx mori ovaries. BmN-SWU1 cells are susceptible while BmN-SWU2 cells are highly resistant to BmNPV infection. Interestingly, we found that the entry of BmNPV into BmN-SWU2 cells was largely inhibited. To explore the mechanism of this inhibition, in this study we used isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative protein expression profiling and identified 629 differentially expressed proteins between the two cell lines. Among them, we identified a new membrane protein termed BmREEPa. The gene encoding BmREEPa transcribes two splice variants; a 573 bp long BmREEPa-L encoding a protein with 190 amino acids and a 501 bp long BmREEPa-S encoding a protein with 166 amino acids. BmREEPa contains a conserved TB2/DP, HVA22 domain and three transmembrane domains. It is localized in the plasma membrane with a cytoplasmic C-terminus and an extracellular N-terminus. We found that limiting the expression of BmREEPa in BmN-SWU1 cells inhibited BmNPV entry, whereas over-expression of BmREEPa in BmN-SWU2 cells promoted BmNPV entry. Our results also indicated that BmREEPa can interact with GP64, which is the key envelope fusion protein for BmNPV entry. Taken together, the findings of our study revealed that BmREEPa is required for BmNPV to gain entry into silkworm cells, and may provide insights for the identification of BmNPV receptors.
Collapse
Affiliation(s)
- Xiao-long Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Tai-hang Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Wei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cai-xia Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yun-fei Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guo-yu Du
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
- * E-mail: (M-HP); (CL)
| | - Min-hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
- * E-mail: (M-HP); (CL)
| |
Collapse
|
41
|
Yu HZ, Wen DF, Wang WL, Geng L, Zhang Y, Xu JP. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis) Larvae through Transcriptomic Analysis. Int J Mol Sci 2015; 16:21873-96. [PMID: 26378520 PMCID: PMC4613286 DOI: 10.3390/ijms160921873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/01/2015] [Accepted: 08/25/2015] [Indexed: 01/15/2023] Open
Abstract
The rice leaf roller (Cnaphalocrocis medinalis) is one of the most destructive agricultural pests. Due to its migratory behavior, it is difficult to control worldwide. To date, little is known about major genes of C. medinalis involved in chitin metabolism and insecticide detoxification. In order to obtain a comprehensive genome dataset of C. medinalis, we conducted de novo transcriptome sequencing which focused on the major feeding stage of fourth-instar larvae, and our work revealed useful information on chitin metabolism and insecticide detoxification and target genes of C. medinalis. We acquired 29,367,797 Illumina reads and assembled these reads into 63,174 unigenes with an average length of 753 bp. Among these unigenes, 31,810 were annotated against the National Center for Biotechnology Information non-redundant (NCBI nr) protein database, resulting in 24,246, 8669 and 18,176 assigned to Swiss-Prot, clusters of orthologous group (COG), and gene ontology (GO), respectively. We were able to map 10,043 unigenes into 285 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Specifically, 16 genes, including five chitin deacetylases, two chitin synthases, five chitinases and four other related enzymes, were identified to be putatively involved in chitin biosynthesis and degradation, whereas 360 genes, including cytochrome P450s, glutathione S-transferases, esterases, and acetylcholinesterases, were found to be potentially involved in insecticide detoxification or as insecticide targets. The reliability of the transcriptome data was determined by reverse transcription quantitative PCR (RT-qPCR) for the selected genes. Our data serves as a new and valuable sequence resource for genomic studies on C. medinalis. The findings should improve our understanding of C. medinalis genetics and contribute to management of this important agricultural pest.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - De-Fu Wen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Wan-Lin Wang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Lei Geng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yan Zhang
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei 230061, China.
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
42
|
Xu D, Song L, Wang H, Xu X, Wang T, Lu L. Proteomic analysis of cellular protein expression profiles in response to grass carp reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2015; 44:515-524. [PMID: 25783000 DOI: 10.1016/j.fsi.2015.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 06/04/2023]
Abstract
Grass carp (Ctenopharyngodon idella) hemorrhagic disease, caused by grass carp reovirus (GCRV), is emerging as a serious problem in grass carp aquaculture. To better understand the molecular responses to GCRV infection, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization tandem mass spectroscopy were performed to investigate altered proteins in C. idella kidney (CIK) cells. Differentially expressed proteins in mock infected CIK cells and GCRV-infected CIK cells were compared. Twenty-three differentially expressed spots were identified (22 upregulated spots and 1 downregulated spot), which included cytoskeleton proteins, macromolecular biosynthesis-associated proteins, stress response proteins, signal transduction proteins, energy metabolism-associated proteins and ubiquitin proteasome pathway-associated proteins. Moreover, 10 of the corresponding genes of the differentially expressed proteins were quantified by real-time reverse transcription polymerase chain reaction to examine their transcriptional profiles. The T cell internal antigen 1 (TIA1) and Ras-GTPase-activating SH3-domain-binding protein1 (G3BP1) of the cellular stress granule pathway from grass carp C. idella (designated as CiTIA1 and CiG3BP1) were upregulated and downregulated during GCRV infection, respectively. The full-length cDNA of CiTIA1 was 2753 bp, with an open reading frame (ORF) of 1155bp, which encodes a putative 385-amino acid protein. The 2271 bp full-length cDNA of CiG3BP1 comprised an ORF of 1455 bp that encodes a putative 485-amino acid protein. Phylogenetic analysis revealed that the complete ORFs of CiTIA1 and CiG3BP1 were very similar to zebrafish and well-characterized mammalian homologs. The expressions of the cellular proteins CiTIA1 and CiG3BP1 in response to GCRV were validated by western blotting, which indicated that the GCRV should unlink TIA1 aggregation and stress granule formation. This study provides useful information on the proteomic and cellular stress granule pathway's responses to GCRV infection, which adds to our understanding of viral pathogenesis.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Lang Song
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Hao Wang
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xiaoyan Xu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Tu Wang
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Liqun Lu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
43
|
Li Y, Zhang Y, Wang T, Podok P, Xu D, Lu L. Proteomic identification and characterization of Ctenopharyngodon idella tumor necrosis factor receptor-associated protein 1 (CiTrap1): an anti-apoptosis factor upregulated by grass carp reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2015; 43:449-459. [PMID: 25655331 DOI: 10.1016/j.fsi.2015.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/20/2015] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
Human tumor necrosis factor receptor-associated protein 1 (Trap1) is a mitochondrial protein identical to heat shock protein 75 (HSP75) that plays an important role in protecting cells from oxidative stress and apoptosis. In this study, grass carp (Ctenopharyngodon idella) tumor necrosis factor receptor-associated protein 1 (designated as CiTrap1) was identified through two-dimensional electrophoresis (2-DE) analysis and its pattern of expression was investigated in grass carp kidney (CIK) cells infected with grass carp reovirus (GCRV). The full length cDNA of CiTrap1 contained an opening reading frame of 2157 bp that encoded a peptide of 718 amino acids. Phylogenetic analyses indicated that the CiTrap1 shared 87% identity with its homologue from zebrafish (Danio rerio). The transcriptional level of CiTrap1 in CIK cells was upregulated post virus infection as well as poly (I: C) stimulation. Following virus infection, grass carp PTEN-induced putative kinase 1 (PINK1) and Sorcin, whose coding proteins interact with Trap1 in human, were simultaneously upregulated with CiTrap1. Typical characteristics of apoptosis were observed in CIK cells infected with GCRV by DAPI staining, DNA ladder electrophoresis, TUNEL assay and Annexin Ⅴ labeling. RNAi-mediated silencing of CiTrap1 in CIK cells resulted in the increased rate of virus-induced apoptotic cells. The results of this study suggest that CiTrap1 is involved in the host's innate immune response to viral infection possibly through protecting infected cells from apoptosis.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yanan Zhang
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Tu Wang
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Patarida Podok
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Dan Xu
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Liqun Lu
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
44
|
Xu K, Li F, Ma L, Wang B, Zhang H, Ni M, Hong F, Shen W, Li B. Mechanism of enhanced Bombyx mori nucleopolyhedrovirus-resistance by titanium dioxide nanoparticles in silkworm. PLoS One 2015; 10:e0118222. [PMID: 25692869 PMCID: PMC4333570 DOI: 10.1371/journal.pone.0118222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/11/2015] [Indexed: 02/07/2023] Open
Abstract
The infection of Bombyx mori nucleopolyhedrovirus (BmNPV) in silkworms is often lethal. It is difficult to prevent, and its lethality is correlated with both viral particle characteristics and silkworm strains. Low doses of titanium dioxide nanoparticles (TiO2 NPs) can promote silkworm growth and improve its resistance to organophosphate pesticides. In this study, TiO2 NPs' effect on BmNPV resistance was investigated by analyzing the characteristics of BmNPV proliferation and transcriptional differences in silkworm midgut and the transcriptional changes of immunity related genes after feeding with TiO2 NPs. We found that low doses of TiO2 NPs improved the resistance of silkworm against BmNPV by 14.88-fold, with the mortalities of the experimental group and control group being 0.56% and 8.33% at 144 h, respectively. The proliferation of BmNPV in the midgut was significantly increased 72 h after infection in both experimental and control groups; the control group reached the peak at 120 h, while the experimental group took 24 more hours to reach the maximal value that was 12.63 times lower than the control, indicating that TiO2 NPs can inhibit BmNPV proliferation in the midgut. Consistently, the expression of the BmNPV-resistant gene Bmlipase-1 had the same increase pattern as the proliferation changes. Immune signaling pathway analysis revealed that TiO2 NPs inhibited the proliferation of silkworm BmNPV to reduce the activation levels of janus kinase/signal transducer and activator of transcription (JAK/STAT) and phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, while promoting the expression of Bmakt to improve the immunity. Overall, our results demonstrate that TiO2 NPs increase silkworm resistance against BmNPV by inhibiting virus proliferation and improving immunity in silkworms.
Collapse
Affiliation(s)
- Kaizun Xu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lie Ma
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Binbin Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Hua Zhang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Min Ni
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Fashui Hong
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Weide Shen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
45
|
You C, Yang Y, Zhang L, Chen H, Chen Y, Chen K, Zhou Y. Comparative proteomics analysis of global cellular stress responses to hydroxyurea-induced DNA damage in HeLa cells. Cytotechnology 2014; 68:809-20. [PMID: 25519465 DOI: 10.1007/s10616-014-9832-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/29/2014] [Indexed: 10/24/2022] Open
Abstract
Both environmental agents and spontaneous cellular events cause serious DNA damage, threatening the integrity of the genome. In response to replication stress or genotoxic agents triggered DNA damage, degradation of p12 subunit of DNA polymerase delta (Pol δ) results in an inter-conversion between heterotetramer (Pol δ4) and heterotrimer (Pol δ3) forms and plays a significant role in DNA damage response in eukaryotic cells. In this work, we used mass spectrometry-based proteomic approach to identify those cellular stress response protein changes corresponding to the degradation of p12 in DNA-damaged HeLa cells by the treatment with hydroxyurea (HU). A total of 736 ± 13 proteins in non-treated control group and 741 ± 19 protein spots in HU-treated cells were detected, of which 34 proteins (17 up-regulated and 17 down-regulated) exhibited significantly altered protein expression levels. Their physiological roles are mainly associated with cellular components, molecular functions, and biological processes by gene ontology analysis, among which 21 proteins were mapped to KEGG pathways. They are involved in 5 primary pathways with the subsets involving 16 secondary pathways by further KEGG analysis. More interestingly, the up-regulation of translationally controlled tumor protein was further identified to be associated with p12 degradation by Western blot analysis. Our works may enlarge and broaden our view for deeply understanding how global cellular stress responds to DNA damage, which could contribute to the etiology of human cancer or other diseases that can result from loss of genomic stability.
Collapse
Affiliation(s)
- Chao You
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, China
| | - Lei Zhang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, China
| | - Huiqing Chen
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, China
| | - Yan Chen
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, China
| | - Yajing Zhou
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
46
|
Cheng Y, Wang XY, Du C, Gao J, Xu JP. Expression analysis of several antiviral related genes to BmNPV in different resistant strains of silkworm, Bombyx mori. JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:76. [PMID: 25373223 PMCID: PMC4212868 DOI: 10.1093/jis/14.1.76] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 07/06/2013] [Indexed: 06/04/2023]
Abstract
Bombyx mori L. (Lepidoptera: Bombycidae) nucleopolyhedrovirus (BmNPV) is a highly pathogenic virus in the sericultural industry, often causing severe damage leading to large economic losses. The immune mechanisms of B. mori against this virus remain obscure. Previous studies had demonstrated Bmlipase-1, BmNox and Bmserine protease-2 showing antiviral activity in vitro, but data on the transcription levels of these proteins in different resistant strains were not reported. In order to determine the resistance level of the four different strains (P50, A35, A40, A53) and gain a better understanding of the mechanism of resistance to BmNPV in B. mori, the relative expression level of the genes coding the three antiviral proteins in larval haemolymph and midgut of different B. mori strains resistant to BmNPV was determined. The results showed that these genes expressed significantly higher in the resistant strains compared to the susceptible strain, and the differential expression levels were consistent with the LC50 values in different strains. The transcription level of the target genes almost all up-regulated in the larvae midgut and down-regulated in the haemolymph. The results indicate the correlation of these genes to BmNPV resistance in B. mori.
Collapse
Affiliation(s)
- Yang Cheng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xue-yang Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chang Du
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Juan Gao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Jia-ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
47
|
Feng F, Chen L, Lian C, Xia H, Zhou Y, Yao Q, Chen K. Comparative proteomic analysis reveals the suppressive effects of dietary high glucose on the midgut growth of silkworm. J Proteomics 2014; 108:124-32. [PMID: 24878427 DOI: 10.1016/j.jprot.2014.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/16/2014] [Accepted: 05/18/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED The silkworm, Bombyx mori, is an important model of lepidoptera insect, and it has been used for several models of human diseases. In human being, long-term high-sugar diet can induce the occurrence of diabetes and other related diseases. Interestingly, our experiments revealed the high glucose diet also has a suppressive effect on the development of silkworms. To investigate the molecular mechanism by which high-glucose diet inhibited the midgut growth in silkworms, we employed comparative proteomic analysis to globally identify proteins differentially expressed in normal and high-glucose diet group silkworms. In all, 28 differently proteins were suppressed and 5 proteins induced in high-glucose diet group. Gene ontology analysis showed that most of these differently proteins are mainly involved in metabolic process, catalytic and cellular process. A development related protein, imaginal disk growth factor (IDGF), was further confirmed by western blot exclusively expressing in the normal diet group silkworms. Taken together, our data suggests that IDGF plays a critical role in impairing the development of silkworms by a high-glucose diet. BIOLOGICAL SIGNIFICANCE Glucose has been thought to play essential roles in growth and development of silkworm. In this paper, we certified firstly that high-glucose diet can suppress the growth of silkworm, and comparative proteomic was employed to reveal the inhibition mechanism. Moreover, an important regulation related protein (IDGF) was found to involve in this inhibition process. These results will help us get a deeper understanding of the relationship between diet and healthy. Furthermore, IDGF may be the critical protein for reducing the blood sugar in silkworm, and it may be used for screening human hypoglycemic drug. The work has not been submitted elsewhere for publication, in whole or in part, and all the authors have approved the manuscript.
Collapse
Affiliation(s)
- Fan Feng
- School of Food and Biological Engineering, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China; Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China
| | - Chaoqun Lian
- School of Food and Biological Engineering, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China
| | - Hengchuan Xia
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China
| | - Keping Chen
- School of Food and Biological Engineering, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China; Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China.
| |
Collapse
|
48
|
Jiang L, Xia Q. The progress and future of enhancing antiviral capacity by transgenic technology in the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 48:1-7. [PMID: 24561307 DOI: 10.1016/j.ibmb.2014.02.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 05/04/2023]
Abstract
Bombyx mori is a common lepidopteran model and an important economic insect for silk production. B. mori nucleopolyhedrovirus (BmNPV) is a typical pathogenic baculovirus that causes serious economic losses in sericulture. B. mori and BmNPV are a model of insect host and pathogen interaction including invasion of the host by the pathogen, host response, and enhancement of host resistance. The antiviral capacity of silkworms can be improved by transgenic technology such as overexpression of an endogenous or exogenous antiviral gene, RNA interference of the BmNPV gene, or regulation of the immune pathway to inhibit BmNPV at different stages of infection. Antiviral capacity could be further increased by combining different methods. We discuss the future of an antiviral strategy in silkworm, including possible improvement of anti-BmNPV, the feasibility of constructing transgenic silkworms with resistance to multiple viruses, and the safety of transgenic silkworms. The silkworm model could provide a reference for disease control in other organisms.
Collapse
Affiliation(s)
- Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
49
|
Qin L, Shi H, Xia H, Chen L, Yao Q, Chen K. Comparative proteomic analysis of midgut proteins from male and female Bombyx mori (Lepidoptera: Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:ieu088. [PMID: 25502033 PMCID: PMC5633941 DOI: 10.1093/jisesa/ieu088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Many biological phenotypes of male and female silkworms (Bombyx mori) are quite different, and one of the major differences is the growth rate at various larval stages. Nutrient utilization by midgut varies with sexes. However, the molecular basis of this variation is not clear. To understand the molecular mechanism, comparative proteomic approach was employed to investigate the variation of midgut proteomes between male and female silkworms. Totally, 32 proteins that were grouped into four categories were differentially expressed and subsequently identified by mass spectrometry. Gene ontology analysis revealed that these proteins were attributed with biological functions such as binding, catalytic, and transporter, and these proteins were involved in biological process such as cellular process, localization, and metabolic process. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that these proteins were involved in pathways such as glycolysis, gluconeogenesis, oxidative phosphorylation, and purine metabolism. At transcription level, the expressional variation was confirmed for six identified proteins including muscle glycogen phosphorylase, uridine 5'-monophosphate synthase, cone cGMP-specific 3',5'-cyclic phosphodiesterase subunit alpha, ATP synthase, thiol peroxiredoxin, and serpin-2. This study provides useful information for understanding the mechanisms of nutrient absorption and the protein-protein interaction in the silkworm.
Collapse
Affiliation(s)
- Lvgao Qin
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu Province, People's Republic of China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu Province, People's Republic of China
| | - Hengchuan Xia
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu Province, People's Republic of China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu Province, People's Republic of China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu Province, People's Republic of China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu Province, People's Republic of China
| |
Collapse
|
50
|
Liu L, Li Q, Lin L, Wang M, Lu Y, Wang W, Yuan J, Li L, Liu X. Proteomic analysis of epithelioma papulosum cyprini cells infected with spring viremia of carp virus. FISH & SHELLFISH IMMUNOLOGY 2013; 35:26-35. [PMID: 23583725 DOI: 10.1016/j.fsi.2013.03.367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 03/20/2013] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
Spring viremia of carp (SVC), caused by spring viremia of carp virus (SVCV) is an important disease due to its drastic effects on carp fisheries in many countries. To better understand molecular responses to SVCV infection, two dimensional electrophoresis (2-DE) and MALDI-TOF/TOF were performed to investigate altered proteins in epithelioma papulosum cyprini cells (EPCs). Differentially expressed proteins in mock-infected EPCs and SVCV-infected EPCs were compared. A total of 54 differentially expressed spots were successfully identified (33 up-regulated spots and 21 down-regulated spots) which include cytoskeleton proteins, macromolecular biosynthesis-associated proteins, stress response proteins, signal transduction proteins, energy metabolism, and ubiquitin proteasome pathway-associated proteins. Moreover, 7 corresponding genes of the differentially expressed proteins were quantified using real time RT-PCR to examine their transcriptional profiles. The presence of four selected cellular proteins (beta-actin, gamma1-actin, heat shock cognate 71 kDa protein and annexin A2) associated with the spring viremia of carp virus (SVCV) particles was validated by Western blot assay. This study provides dynamic and useful protein-related information to further understand the underlying pathogenesis of SVCV infection.
Collapse
Affiliation(s)
- Liyue Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|