1
|
Müller WH, Verdin A, De Pauw E, Malherbe C, Eppe G. Surface-assisted laser desorption/ionization mass spectrometry imaging: A review. MASS SPECTROMETRY REVIEWS 2022; 41:373-420. [PMID: 33174287 PMCID: PMC9292874 DOI: 10.1002/mas.21670] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 05/04/2023]
Abstract
In the last decades, surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) has attracted increasing interest due to its unique capabilities, achievable through the nanostructured substrates used to promote the analyte desorption/ionization. While the most widely recognized asset of SALDI-MS is the untargeted analysis of small molecules, this technique also offers the possibility of targeted approaches. In particular, the implementation of SALDI-MS imaging (SALDI-MSI), which is the focus of this review, opens up new opportunities. After a brief discussion of the nomenclature and the fundamental mechanisms associated with this technique, which are still highly controversial, the analytical strategies to perform SALDI-MSI are extensively discussed. Emphasis is placed on the sample preparation but also on the selection of the nanosubstrate (in terms of chemical composition and morphology) as well as its functionalization possibilities for the selective analysis of specific compounds in targeted approaches. Subsequently, some selected applications of SALDI-MSI in various fields (i.e., biomedical, biological, environmental, and forensic) are presented. The strengths and the remaining limitations of SALDI-MSI are finally summarized in the conclusion and some perspectives of this technique, which has a bright future, are proposed in this section.
Collapse
Affiliation(s)
- Wendy H. Müller
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| |
Collapse
|
2
|
Palermo A. Mass Spectrometry Imaging of Metabolites by Nanostructure Initiator Mass Spectrometry with Fluorinated Gold Nanoparticles. Methods Mol Biol 2022; 2437:117-125. [PMID: 34902144 DOI: 10.1007/978-1-0716-2030-4_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanostructure initiator mass spectrometry (NIMS) with fluorinated gold nanoparticles (f-AuNPs) enables the detection and spatial localization of a breath of polar metabolites and lipids with high spatial resolution and ultrasensitivity. Here we describe the methods and procedures for the synthesis and application of f-AuNPs for NIMS of small molecule metabolites and lipids in biological tissues, encompassing sample preparation, mass spectrometric detection, and data analysis and interpretation.
Collapse
Affiliation(s)
- Amelia Palermo
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Müller WH, De Pauw E, Far J, Malherbe C, Eppe G. Imaging lipids in biological samples with surface-assisted laser desorption/ionization mass spectrometry: A concise review of the last decade. Prog Lipid Res 2021; 83:101114. [PMID: 34217733 DOI: 10.1016/j.plipres.2021.101114] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Knowing the spatial location of the lipid species present in biological samples is of paramount importance for the elucidation of pathological and physiological processes. In this context, mass spectrometry imaging (MSI) has emerged as a powerful technology allowing the visualization of the spatial distributions of biomolecules, including lipids, in complex biological samples. Among the different ionization methods available, the emerging surface-assisted laser desorption/ionization (SALDI) MSI offers unique capabilities for the study of lipids. This review describes the specific advantages of SALDI-MSI for lipid analysis, including the ability to perform analyses in both ionization modes with the same nanosubstrate, the detection of lipids characterized by low ionization efficiency in MALDI-MS, and the possibilities of surface modification to improve the detection of lipids. The complementarity of SALDI and MALDI-MSI is also discussed. Finally, this review presents data processing strategies applied in SALDI-MSI of lipids, as well as examples of applications of SALDI-MSI in biomedical lipidomics.
Collapse
Affiliation(s)
- Wendy H Müller
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium.
| |
Collapse
|
4
|
Jiang X, Chen X, Wang T, Li Y, Pan A, Wu J. Perfluorinated polymer modified vertical silicon nanowires as ultra low noise laser desorption ionization substrate for salivary metabolites profiling. Talanta 2021; 225:122022. [DOI: 10.1016/j.talanta.2020.122022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
|
5
|
Palermo A. Charting Metabolism Heterogeneity by Nanostructure Imaging Mass Spectrometry: From Biological Systems to Subcellular Functions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2392-2400. [PMID: 33595331 DOI: 10.1021/jasms.0c00204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The study of metabolism heterogeneity is essential to understand the role of metabolites in supporting and regulating biological functions. To this end, several mass spectrometry imaging (MSI) approaches have been proposed for the detection of small molecule metabolites. However, high noise from the ionization matrix and low metabolome coverage hinder their applicability for untargeted metabolomics studies across space. In this context, nanostructure imaging (/initiator) mass spectrometry (NIMS) and NIMS with fluorinated gold nanoparticles (f-AuNPs) are attractive strategies for comprehensive MSI of metabolites in biological systems, which can provide heterogeneous metabolome coverage, ultrahigh sensitivity, and high lateral resolution. In particular, NIMS with f-AuNPs permits the simultaneous detection of polar metabolites and lipids in a single and cohesive analytical session, thus allowing the systems-level interpretation of metabolic changes. In this Perspective article, we discuss the use of NIMS and f-AuNPs in the exploration of metabolism heterogeneity and provide a critical outlook on future applications of this technology for revealing the metabolic architecture that supports biological functions in health and disease, from whole organisms to tissues, single cells, and subcellular compartments.
Collapse
Affiliation(s)
- Amelia Palermo
- Department of Medicine, School of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093-0412, United States
| |
Collapse
|
6
|
Abstract
Mass spectrometry (MS) is an ideal tool for analyzing multiple types of (bio)molecular information simultaneously in complex biological systems. In addition, MS provides structural information on targets, and can easily discriminate between true analytes and background. Therefore, imaging mass spectrometry (IMS) enables not only visualization of tissues to give positional information on targets but also allows for molecular analysis of targets by affording the molecular weights. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS is particularly effective and is generally used for IMS. However, the requirement for an organic matrix raises several limitations that get in the way of accurate and reliable images and hampers imaging of small molecules such as drugs and their metabolites. To overcome these problems, various organic matrix-free LDI IMS systems have been developed, mostly utilizing nanostructured surfaces and inorganic nanoparticles as an alternative to the organic matrix. This minireview highlights and focuses on the progress in organic matrix-free LDI IMS and briefly discusses the use of other IMS techniques such as desorption electrospray ionization, laser ablation electrospray ionization, and secondary ion mass spectrometry.
Collapse
Affiliation(s)
- Eunjin Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Jisu Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Inseong Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Jeongwook Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
7
|
Kuwata K, Itou K, Kotani M, Ohmura T, Naito Y. DIUTHAME enables matrix-free mass spectrometry imaging of frozen tissue sections. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8729. [PMID: 31951673 DOI: 10.1002/rcm.8729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE A recently developed matrix-free laser desorption/ionization method, DIUTHAME (desorption ionization using through-hole alumina membrane), was examined for the feasibility of mass spectrometry imaging (MSI) applied to frozen tissue sections. The permeation behavior of DIUTHAME is potentially useful for MSI as positional information may not be distorted during the extraction of analytes from a sample. METHODS The through-hole porous alumina membranes used in the DIUTHAME chips were fabricated by wet anodization, were 5 μm thick, and had the desired values of 200 nm through-hole diameter and 50% open aperture ratio. Mouse brain frozen tissue sections on indium tin oxide (ITO)-coated slides were covered using the DIUTHAME chips and were subjected to MSI experiments in commercial time-of-flight mass spectrometers equipped with solid-state UV lasers after thawing and drying without matrix application. RESULT Mass spectra and mass images were successfully obtained from the frozen tissue sections using DIUTHAME as the ionization method. The mass spectra contained rich peaks in the phospholipid mass range free from the chemical background owing to there being no matrix-derived peaks in that range. DIUTHAME-MSI delivered high-quality mass images that reflected the anatomy of the brain tissue. CONCLUSIONS Analytes can be extracted from frozen tissue by capillary action of the through-holes in DIUTHAME and moisture contained in the tissue without distorting positional information of the analytes. The sample preparation for frozen tissue sections in DIUTHAME-MSI is simple, requiring no specialized skills or dedicated apparatus for matrix application. DIUTHAME can facilitate MSI at a low mass, as there is no interference from matrix-derived peaks, and should provide high-quality, reproducible mass images more easily than MALDI-MSI.
Collapse
Affiliation(s)
- Keiko Kuwata
- Nagoya University Institute of Transformative Bio-Molecules (WPI-ITbM), Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Kayoko Itou
- Nagoya University Institute of Transformative Bio-Molecules (WPI-ITbM), Furo-cho, Chikusa-ku, Nagoya, Japan
| | | | | | - Yasuhide Naito
- The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu, Japan
| |
Collapse
|
8
|
Yin L, Zhang Z, Liu Y, Gao Y, Gu J. Recent advances in single-cell analysis by mass spectrometry. Analyst 2019; 144:824-845. [PMID: 30334031 DOI: 10.1039/c8an01190g] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells are the most basic structural units that play vital roles in the functioning of living organisms. Analysis of the chemical composition and content of a single cell plays a vital role in ensuring precise investigations of cellular metabolism, and is a crucial aspect of lipidomic and proteomic studies. In addition, structural knowledge provides a better understanding of cell behavior as well as the cellular and subcellular mechanisms. However, single-cell analysis can be very challenging due to the very small size of each cell as well as the large variety and extremely low concentrations of substances found in individual cells. On account of its high sensitivity and selectivity, mass spectrometry holds great promise as an effective technique for single-cell analysis. Numerous mass spectrometric techniques have been developed to elucidate the molecular profiles at the cellular level, including electrospray ionization mass spectrometry (ESI-MS), secondary ion mass spectrometry (SIMS), laser-based mass spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). In this review, the recent advances in single-cell analysis by mass spectrometry are summarized. The strategies of different ionization modes to achieve single-cell analysis are classified and discussed in detail.
Collapse
Affiliation(s)
- Lei Yin
- Research Institute of Translational Medicine, The First Hospital of Jilin University, Jilin University, Dongminzhu Street, Changchun 130061, PR China.
| | | | | | | | | |
Collapse
|
9
|
Ràfols P, Vilalta D, Brezmes J, Cañellas N, Del Castillo E, Yanes O, Ramírez N, Correig X. Signal preprocessing, multivariate analysis and software tools for MA(LDI)-TOF mass spectrometry imaging for biological applications. MASS SPECTROMETRY REVIEWS 2018; 37:281-306. [PMID: 27862147 DOI: 10.1002/mas.21527] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Mass spectrometry imaging (MSI) is a label-free analytical technique capable of molecularly characterizing biological samples, including tissues and cell lines. The constant development of analytical instrumentation and strategies over the previous decade makes MSI a key tool in clinical research. Nevertheless, most MSI studies are limited to targeted analysis or the mere visualization of a few molecular species (proteins, peptides, metabolites, or lipids) in a region of interest without fully exploiting the possibilities inherent in the MSI technique, such as tissue classification and segmentation or the identification of relevant biomarkers from an untargeted approach. MSI data processing is challenging due to several factors. The large volume of mass spectra involved in a MSI experiment makes choosing the correct computational strategies critical. Furthermore, pixel to pixel variation inherent in the technique makes choosing the correct preprocessing steps critical. The primary aim of this review was to provide an overview of the data-processing steps and tools that can be applied to an MSI experiment, from preprocessing the raw data to the more advanced strategies for image visualization and segmentation. This review is particularly aimed at researchers performing MSI experiments and who are interested in incorporating new data-processing features, improving their computational strategy, and/or desire access to data-processing tools currently available. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:281-306, 2018.
Collapse
Affiliation(s)
- Pere Ràfols
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
- Department of Electronic Engineering, Institute of Health Research Pere Virgili, Rovira i Virgili University, IISPV, Avinguda Països Catalans 26, Tarragona, 43007, Spain
| | - Dídac Vilalta
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
- Department of Electronic Engineering, Institute of Health Research Pere Virgili, Rovira i Virgili University, IISPV, Avinguda Països Catalans 26, Tarragona, 43007, Spain
| | - Jesús Brezmes
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
- Department of Electronic Engineering, Institute of Health Research Pere Virgili, Rovira i Virgili University, IISPV, Avinguda Països Catalans 26, Tarragona, 43007, Spain
| | - Nicolau Cañellas
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
- Department of Electronic Engineering, Institute of Health Research Pere Virgili, Rovira i Virgili University, IISPV, Avinguda Països Catalans 26, Tarragona, 43007, Spain
| | - Esteban Del Castillo
- Department of Electronic Engineering, Institute of Health Research Pere Virgili, Rovira i Virgili University, IISPV, Avinguda Països Catalans 26, Tarragona, 43007, Spain
| | - Oscar Yanes
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
- Department of Electronic Engineering, Institute of Health Research Pere Virgili, Rovira i Virgili University, IISPV, Avinguda Països Catalans 26, Tarragona, 43007, Spain
| | - Noelia Ramírez
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
- Department of Electronic Engineering, Institute of Health Research Pere Virgili, Rovira i Virgili University, IISPV, Avinguda Països Catalans 26, Tarragona, 43007, Spain
| | - Xavier Correig
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
- Department of Electronic Engineering, Institute of Health Research Pere Virgili, Rovira i Virgili University, IISPV, Avinguda Països Catalans 26, Tarragona, 43007, Spain
| |
Collapse
|
10
|
Gao J, Louie KB, Steinke P, Bowen BP, Raad MD, Zuckermann RN, Siuzdak G, Northen TR. Morphology-Driven Control of Metabolite Selectivity Using Nanostructure-Initiator Mass Spectrometry. Anal Chem 2017; 89:6521-6526. [PMID: 28520405 DOI: 10.1021/acs.analchem.7b00599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nanostructure-initiator mass spectrometry (NIMS) is a laser desorption/ionization analysis technique based on the vaporization of a nanostructure-trapped liquid "initiator" phase. Here we report an intriguing relationship between NIMS surface morphology and analyte selectivity. Scanning electron microscopy and spectroscopic ellipsometry were used to characterize the surface morphologies of a series of NIMS substrates generated by anodic electrochemical etching. Mass spectrometry imaging was applied to compare NIMS sensitivity of these various surfaces toward the analysis of diverse analytes. The porosity of NIMS surfaces was found to increase linearly with etching time where the pore size ranged from 4 to 12 nm with corresponding porosities estimated to be 7-70%. Surface morphology was found to significantly and selectively alter NIMS sensitivity. The small molecule (<2k Da) sensitivity was found to increase with increased porosity, whereas low porosity had the highest sensitivity for the largest molecules examined. Estimation of molecular sizes showed that this transition occurs when the pore size is <3× the maximum of molecular dimensions. While the origins of selectivity are unclear, increased signal from small molecules with increased surface area is consistent with a surface area restructuring-driven desorption/ionization process where signal intensity increases with porosity. In contrast, large molecules show highest signal for the low-porosity and small-pore-size surfaces. We attribute this to strong interactions between the initiator-coated pore structures and large molecules that hinder desorption/ionization by trapping large molecules. This finding may enable us to design NIMS surfaces with increased specificity to molecules of interest.
Collapse
Affiliation(s)
- Jian Gao
- Joint Genome Institute, Department of Energy , 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| | - Katherine B Louie
- Joint Genome Institute, Department of Energy , 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| | - Philipp Steinke
- Fraunhofer Institute for Photonic Microsystems IPMS - Center Nanoelectronic Technologies (CNT), Königsbrücker Strasse 178, 01099 Dresden, Germany
| | - Benjamin P Bowen
- Joint Genome Institute, Department of Energy , 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| | - Markus de Raad
- Joint Genome Institute, Department of Energy , 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| | | | - Gary Siuzdak
- Scripps Center for Metabolomics & Departments of Chemistry, Molecular and Computational Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Trent R Northen
- Joint Genome Institute, Department of Energy , 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| |
Collapse
|
11
|
Byliński H, Gębicki J, Dymerski T, Namieśnik J. Direct Analysis of Samples of Various Origin and Composition Using Specific Types of Mass Spectrometry. Crit Rev Anal Chem 2017; 47:340-358. [DOI: 10.1080/10408347.2017.1298986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hubert Byliński
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Gębicki
- Faculty of Chemistry, Department of Chemical and Process Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Tomasz Dymerski
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Namieśnik
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
12
|
O'Rourke MB, Padula MP. A new standard of visual data representation for imaging mass spectrometry. Proteomics Clin Appl 2016; 11. [PMID: 27730748 DOI: 10.1002/prca.201600098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/26/2016] [Accepted: 10/07/2016] [Indexed: 12/26/2022]
Abstract
PURPOSE MALDI imaging MS (IMS) is principally used for cancer diagnostics. In our own experience with publishing IMS data, we have been requested to modify our protocols with respect to the areas of the tissue that are imaged in order to comply with the wider literature. In light of this, we have determined that current methodologies lack effective controls and can potentially introduce bias by only imaging specific areas of the targeted tissue EXPERIMENTAL DESIGN: A previously imaged sample was selected and then cropped in different ways to show the potential effect of only imaging targeted areas. RESULTS By using a model sample, we were able to effectively show how selective imaging of samples can misinterpret tissue features and by changing the areas that are acquired, according to our new standard, an effective internal control can be introduced. CONCLUSIONS AND CLINICAL RELEVANCE Current IMS sampling convention relies on the assumption that sample preparation has been performed correctly. This prevents users from checking whether molecules have moved beyond borders of the tissue due to delocalization and consequentially products of improper sample preparation could be interpreted as biological features that are of critical importance when encountered in a visual diagnostic.
Collapse
Affiliation(s)
- Matthew B O'Rourke
- Proteomics Core Facility, University of Technology Sydney, Ultimo, NSW, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
13
|
Gao J, de Raad M, Bowen BP, Zuckermann RN, Northen TR. Application of Black Silicon for Nanostructure-Initiator Mass Spectrometry. Anal Chem 2016; 88:1625-30. [DOI: 10.1021/acs.analchem.5b03452] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jian Gao
- Life
Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
- Joint Genome Institute, Department of Energy, 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| | - Markus de Raad
- Life
Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
- Joint Genome Institute, Department of Energy, 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| | - Benjamin P. Bowen
- Life
Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
- Joint Genome Institute, Department of Energy, 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| | - Ronald N. Zuckermann
- The
Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - Trent R. Northen
- Life
Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
- Joint Genome Institute, Department of Energy, 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| |
Collapse
|
14
|
Multivalent aptamer/gold nanoparticle-modified graphene oxide for mass spectrometry-based tumor tissue imaging. Sci Rep 2015; 5:10292. [PMID: 25973571 PMCID: PMC4431351 DOI: 10.1038/srep10292] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/08/2015] [Indexed: 12/14/2022] Open
Abstract
The protein mucin1 (MUC1) is an attractive target for cancer biomarkers because it is overexpressed in most adenocarcinomas. In this study, we exploited a MUC1-binding aptamer (AptMUC1) as a targeting agent for nanoparticle-based imaging systems coupled with laser desorption/ionization mass spectrometry (LDI-MS). We found that AptMUC1-conjugated gold nanoparticles immobilized, through hydrophobic and π–π interactions, on graphene oxide (AptMUC1–Au NPs/GO) bound effectively to MUC1 units on tumor cell membranes. The ultrahigh density and high flexibility of AptMUC1 on the GO surface enhanced the platform’s cooperative and multivalent binding affinity for MUC1 on cell membranes. After we had labeled MUC1-overexpressing MCF-7 cells (human breast adenocarcinoma cell line) with AptMUC1–Au NPs/GO, we used LDI-MS to monitor Au cluster ions ([Aun]+; n = 1–3), resulting in the detection of as few as 100 MCF-7 cells. We also employed this AptMUC1–Au NPs/GO–LDI-MS system to analyze four different MUC1 expression cell lines. In addition, the AptMUC1–Au NPs/GO platform could be used further as a labeling agent for tumor tissue imaging when coupled with LDI-MS. Thus, Apt–Au NPs/GO can function as a highly amplified signal transducer through the formation of large Au clusters ions during LDI-MS analysis.
Collapse
|
15
|
Rudd D, Benkendorff K, Voelcker NH. Solvent separating secondary metabolites directly from biosynthetic tissue for surface-assisted laser desorption ionisation mass spectrometry. Mar Drugs 2015; 13:1410-31. [PMID: 25786067 PMCID: PMC4377991 DOI: 10.3390/md13031410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 11/16/2022] Open
Abstract
Marine bioactive metabolites are often heterogeneously expressed in tissues both spatially and over time. Therefore, traditional solvent extraction methods benefit from an understanding of the in situ sites of biosynthesis and storage to deal with heterogeneity and maximize yield. Recently, surface-assisted mass spectrometry (MS) methods namely nanostructure-assisted laser desorption ionisation (NALDI) and desorption ionisation on porous silicon (DIOS) surfaces have been developed to enable the direct detection of low molecular weight metabolites. Since direct tissue NALDI-MS or DIOS-MS produce complex spectra due to the wide variety of other metabolites and fragments present in the low mass range, we report here the use of "on surface" solvent separation directly from mollusc tissue onto nanostructured surfaces for MS analysis, as a mechanism for simplifying data annotation and detecting possible artefacts from compound delocalization during the preparative steps. Water, ethanol, chloroform and hexane selectively extracted a range of choline esters, brominated indoles and lipids from Dicathais orbita hypobranchial tissue imprints. These compounds could be quantified on the nanostructured surfaces by comparison to standard curves generated from the pure compounds. Surface-assisted MS could have broad utility for detecting a broad range of secondary metabolites in complex marine tissue samples.
Collapse
Affiliation(s)
- David Rudd
- Biological Sciences, Faculty of Science and Engineering, Flinders University of South Australia, PO Box 2100, Adelaide, SA 5001, Australia.
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
| | - Nicolas H Voelcker
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, GPO Box 2471, Adelaide, South Australia 5001, Australia.
| |
Collapse
|
16
|
Moening TN, Brown VL, He L. Nanostructure-initiator mass spectrometry (NIMS) for molecular mapping of animal tissues. Methods Mol Biol 2015; 1203:151-157. [PMID: 25361675 DOI: 10.1007/978-1-4939-1357-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanostructure-initiator mass spectrometry (NIMS) is an established method for sensitive detection of small molecules in complex samples. It is based on the optimal combination of a porous Si substrate and a carefully selected polymer coating to allow certain analytes of interest to be concentrated on the substrate for effective ionization with minimal background interference from conventional organic matrices. The previous chapter has detailed the history and current state of the art of the technique in small-molecule profiling and imaging applications. We describe here a simple step-by-step protocol for substrate fabrication and sample preparation that provides a starting point for the technique to be adapted and optimized for 2-D biological imaging applications.
Collapse
Affiliation(s)
- Tara N Moening
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, CB 8204, Raleigh, NC, 27695, USA
| | | | | |
Collapse
|
17
|
McInnes SJP, Lowe RD. Biomedical Uses of Porous Silicon. ELECTROCHEMICALLY ENGINEERED NANOPOROUS MATERIALS 2015. [DOI: 10.1007/978-3-319-20346-1_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Lin G, Chung YL. Current opportunities and challenges of magnetic resonance spectroscopy, positron emission tomography, and mass spectrometry imaging for mapping cancer metabolism in vivo. BIOMED RESEARCH INTERNATIONAL 2014; 2014:625095. [PMID: 24724090 PMCID: PMC3958648 DOI: 10.1155/2014/625095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/06/2014] [Accepted: 01/19/2014] [Indexed: 12/18/2022]
Abstract
Cancer is known to have unique metabolic features such as Warburg effect. Current cancer therapy has moved forward from cytotoxic treatment to personalized, targeted therapies, with some that could lead to specific metabolic changes, potentially monitored by imaging methods. In this paper we addressed the important aspects to study cancer metabolism by using image techniques, focusing on opportunities and challenges of magnetic resonance spectroscopy (MRS), dynamic nuclear polarization (DNP)-MRS, positron emission tomography (PET), and mass spectrometry imaging (MSI) for mapping cancer metabolism. Finally, we highlighted the future possibilities of an integrated in vivo PET/MR imaging systems, together with an in situ MSI tissue analytical platform, may become the ultimate technologies for unraveling and understanding the molecular complexities in some aspects of cancer metabolism. Such comprehensive imaging investigations might provide information on pharmacometabolomics, biomarker discovery, and disease diagnosis, prognosis, and treatment response monitoring for clinical medicine.
Collapse
Affiliation(s)
- Gigin Lin
- Department of Radiology, Chang Gung Memorial Hospital at Linkou, Chang Gung University, 5 Fuhsing Street, Guishan, Taoyuan 333, Taiwan
- Molecular Imaging Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University, 5 Fuhsing Street, Guishan, Taoyuan 333, Taiwan
- Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Chang Gung University, 5 Fuhsing Street, Guishan, Taoyuan 333, Taiwan
| | - Yuen-Li Chung
- The Institute of Cancer Research and Royal Marsden Hospital, CRUK Cancer Imaging Centre, Downs Road, Sutton, Surrey SM2 5PT, UK
| |
Collapse
|
19
|
Ibáñez C, García-Cañas V, Valdés A, Simó C. Direct Mass Spectrometry-Based Approaches in Metabolomics. FUNDAMENTALS OF ADVANCED OMICS TECHNOLOGIES: FROM GENES TO METABOLITES 2014. [DOI: 10.1016/b978-0-444-62651-6.00010-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
20
|
Ibáñez C, García-Cañas V, Valdés A, Simó C. Novel MS-based approaches and applications in food metabolomics. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.06.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Masyuko R, Lanni EJ, Sweedler JV, Bohn PW. Correlated imaging--a grand challenge in chemical analysis. Analyst 2013; 138:1924-39. [PMID: 23431559 PMCID: PMC3718397 DOI: 10.1039/c3an36416j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Correlated chemical imaging is an emerging strategy for acquisition of images by combining information from multiplexed measurement platforms to track, visualize, and interpret in situ changes in the structure, organization, and activities of interesting chemical systems, frequently spanning multiple decades in space and time. Acquiring and correlating information from complementary imaging experiments has the potential to expose complex chemical behavior in ways that are simply not available from single methods applied in isolation, thereby greatly amplifying the information gathering power of imaging experiments. However, in order to correlate image information across platforms, a number of issues must be addressed. First, signals are obtained from disparate experiments with fundamentally different figures of merit, including pixel size, spatial resolution, dynamic range, and acquisition rates. In addition, images are often acquired on different instruments in different locations, so the sample must be registered spatially so that the same area of the sample landscape is addressed. The signals acquired must be correlated in both spatial and temporal domains, and the resulting information has to be presented in a way that is readily understood. These requirements pose special challenges for image cross-correlation that go well beyond those posed in single technique imaging approaches. The special opportunities and challenges that attend correlated imaging are explored by specific reference to correlated mass spectrometric and Raman imaging, a topic of substantial and growing interest.
Collapse
Affiliation(s)
- Rachel Masyuko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
22
|
Silina YE, Volmer DA. Nanostructured solid substrates for efficient laser desorption/ionization mass spectrometry (LDI-MS) of low molecular weight compounds. Analyst 2013; 138:7053-65. [DOI: 10.1039/c3an01120h] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Sturm RM, Greer T, Chen R, Hensen B, Li L. Comparison of NIMS and MALDI platforms for neuropeptide and lipid mass spectrometric imaging in C. borealis brain tissue. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2013; 5:1623-1628. [PMID: 23544036 PMCID: PMC3609542 DOI: 10.1039/c3ay26067d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nanostructure-initiator mass spectrometry (NIMS) is a recently developed matrix-free laser desorption/ionization technique that has shown promise for peptide analyses. It is also useful in mass spectrometric imaging (MSI) studies of small molecule drugs, metabolites, and lipids, minimizing analyte diffusion caused by matrix application. In this study, NIMS and matrix-assisted laser desorption/ionization (MALDI) MSI of a crustacean model organism Cancer borealis brain were compared. MALDI was found to perform better than NIMS in these neuropeptide imaging experiments. Twelve neuropeptides were identified in MALDI MSI experiments whereas none were identified in NIMS MSI experiments. In addition, lipid profiles were compared using each ionization method. Both techniques provided similar lipid profiles in the m/z range 700 - 900.
Collapse
Affiliation(s)
- Robert M Sturm
- Department of Chemistry, University of Wisconsin-Madison
| | - Tyler Greer
- Department of Chemistry, University of Wisconsin-Madison
| | - Ruibing Chen
- Department of Chemistry, University of Wisconsin-Madison
| | | | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison
- School of Pharmacy, University of Wisconsin-Madison
- Address reprint requests to: Dr. Lingjun Li, School of Pharmacy & Department of Chemistry, University of Wisconsin, 777 Highland Ave, Madison, WI 53705. . Phone: (608)265-8491, Fax: (608)262-5345
| |
Collapse
|
24
|
Ronci M, Rudd D, Guinan T, Benkendorff K, Voelcker NH. Mass spectrometry imaging on porous silicon: investigating the distribution of bioactives in marine mollusc tissues. Anal Chem 2012; 84:8996-9001. [PMID: 23009618 DOI: 10.1021/ac3027433] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Desorption/ionization on porous silicon-mass spectrometry (DIOS-MS) is an attractive alternative to conventional matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the analysis of low molecular weight compounds. Porous silicon (pSi) chips are also suitable as support for mass spectrometry imaging (MSI). Here, we report an implementation of DIOS-MSI using the biosynthetic organs of a marine mollusc for proof of principle. The tissue section is stamped onto a fluorocarbon-functionalized pSi chip, which extracts and traps small hydrophobic molecules from the tissue under retention of their relative spatial distribution. The section is subsequently removed and the chip is imaged without any remaining tissue. We apply this novel tissue contact printing approach to investigate the distribution of biologically active brominated precursors to Tyrian purple in the hypobranchial gland of the marine mollusc, Dicathais orbita, using DIOS-MSI. The tissue contact printing is also compatible with other types of desorption/ionization surfaces, such as nanoassisted laser desorption/ionization (NALDI) targets.
Collapse
Affiliation(s)
- Maurizio Ronci
- Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | | | | | | | | |
Collapse
|
25
|
Milke-García MP. [Nutrigenomics, proteomics, and metabolomics in the prevention and treatment of gastrointestinal diseases]. REVISTA DE GASTROENTEROLOGIA DE MEXICO 2012; 77 Suppl 1:29-31. [PMID: 22939473 DOI: 10.1016/j.rgmx.2012.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- M P Milke-García
- Investigadora en Ciencias Médicas B del Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| |
Collapse
|