1
|
Li G, Feng J, Zhu X, Chai Y, Sun T, Jiang J. Expression and characterization of the complete cyanophage genome PP in the heterologous host Synechococcus elongatus PCC 7942. Int J Biol Macromol 2025; 301:140242. [PMID: 39863235 DOI: 10.1016/j.ijbiomac.2025.140242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
In this study, we successfully integrated the full-length genome of the cyanophage PP into the non-host cyanobacterium Synechococcus elongatus PCC 7942, facilitated by conjugation via Escherichia coli. To address the challenge posed by the toxic open reading frames (ORFs) of PP in E. coli, we first identified and characterized three toxic ORFs. The PP genome was subsequently rearranged, and the expression of these toxic ORFs was controlled using a tandem-induction switch system. The full-length PP genome was then successfully integrated into the genome of S. elongatus PCC 7942. Interestingly, the integration of the PP genome led to a reduction in photosynthesis and carbon fixation in S. elongatus PCC 7942, resembling the effects typically associated with cyanophage infection. Transcriptomic analysis showed that 32 of the 41 ORFs in the PP genome were actively transcribed in S. elongatus PCC 7942, significantly affecting energy metabolism and carbon fixation pathways. These effects were further confirmed by metabolomic analysis.
Collapse
Affiliation(s)
- Guorui Li
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
| | - Jia Feng
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, PR China
| | - Xiaofei Zhu
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, PR China
| | - Yujie Chai
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
| | - Tao Sun
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, PR China.
| | - Jianlan Jiang
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
2
|
Song X, Ju Y, Chen L, Zhang W. Strategies and tools to construct stable and efficient artificial coculture systems as biosynthetic platforms for biomass conversion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:148. [PMID: 39702246 DOI: 10.1186/s13068-024-02594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
Inspired by the natural symbiotic relationships between diverse microbial members, researchers recently focused on modifying microbial chassis to create artificial coculture systems using synthetic biology tools. An increasing number of scientists are now exploring these systems as innovative biosynthetic platforms for biomass conversion. While significant advancements have been achieved, challenges remain in maintaining the stability and productivity of these systems. Sustaining an optimal population ratio over a long time period and balancing anabolism and catabolism during cultivation have proven difficult. Key issues, such as competitive or antagonistic relationships between microbial members, as well as metabolic imbalances and maladaptation, are critical factors affecting the stability and productivity of artificial coculture systems. In this article, we critically review current strategies and methods for improving the stability and productivity of these systems, with a focus on recent progress in biomass conversion. We also provide insights into future research directions, laying the groundwork for further development of artificial coculture biosynthetic platforms.
Collapse
Affiliation(s)
- Xinyu Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yue Ju
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Lei Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Weiwen Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China.
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
3
|
Srivastava R, Singh N, Kanda T, Yadav S, Yadav S, Atri N. Cyanobacterial Proteomics: Diversity and Dynamics. J Proteome Res 2024; 23:2680-2699. [PMID: 38470568 DOI: 10.1021/acs.jproteome.3c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Cyanobacteria (oxygenic photoautrophs) comprise a diverse group holding significance both environmentally and for biotechnological applications. The utilization of proteomic techniques has significantly influenced investigations concerning cyanobacteria. Application of proteomics allows for large-scale analysis of protein expression and function within cyanobacterial systems. The cyanobacterial proteome exhibits tremendous functional, spatial, and temporal diversity regulated by multiple factors that continuously modify protein abundance, post-translational modifications, interactions, localization, and activity to meet the dynamic needs of these tiny blue greens. Modern mass spectrometry-based proteomics techniques enable system-wide examination of proteome complexity through global identification and high-throughput quantification of proteins. These powerful approaches have revolutionized our understanding of proteome dynamics and promise to provide novel insights into integrated cellular behavior at an unprecedented scale. In this Review, we present modern methods and cutting-edge technologies employed for unraveling the spatiotemporal diversity and dynamics of cyanobacterial proteomics with a specific focus on the methods used to analyze post-translational modifications (PTMs) and examples of dynamic changes in the cyanobacterial proteome investigated by proteomic approaches.
Collapse
Affiliation(s)
| | - Nidhi Singh
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Tripti Kanda
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Sadhana Yadav
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Shivam Yadav
- Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Neelam Atri
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
4
|
Wada K, Uebayashi K, Toya Y, Putri SP, Matsuda F, Fukusaki E, C Liao J, Shimizu H. Effects of n-butanol production on metabolism and the photosystem in Synecococcus elongatus PCC 7942 based on metabolic flux and target proteome analyses. J GEN APPL MICROBIOL 2024; 69:185-195. [PMID: 36935115 DOI: 10.2323/jgam.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Although n-butanol (BuOH) is an ideal fuel because of its superior physical properties, it has toxicity to microbes. Previously, a Synechococcus elongatus PCC 7942 derivative strain that produces BuOH from CO2 was developed by introducing six heterologous genes (BUOH-SE strain). To identify the bottleneck in BuOH production, the effects of BuOH production and its toxicity on central metabolism and the photosystem were investigated. Parental (WT) and BUOH-SE strains were cultured under autotrophic conditions. Consistent with the results of a previous study, BuOH production was observed only in the BUOH-SE strain. Isotopically non-stationary 13C-metabolic flux analysis revealed that the CO2 fixation rate was much larger than the BuOH production rate in the BUOH-SE strain (1.70 vs 0.03 mmol gDCW-1 h-1), implying that the carbon flow for BuOH biosynthesis was less affected by the entire flux distribution. No large difference was observed in the flux of metabolism between the WT and BUOH-SE strains. Contrastingly, in the photosystem, the chlorophyll content and maximum O2 evolution rate per dry cell weight of the BUOH-SE strain were decreased to 81% and 43% of the WT strain, respectively. Target proteome analysis revealed that the amounts of some proteins related to antennae (ApcA, ApcD, ApcE, and CpcC), photosystem II (PsbB, PsbU, and Psb28-2), and cytochrome b6f complex (PetB and PetC) in photosystems decreased in the BUOH-SE strain. The activation of photosynthesis would be a novel approach for further enhancing BuOH production in S. elongatus PCC 7942.
Collapse
Affiliation(s)
- Keisuke Wada
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
| | - Kiyoka Uebayashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - James C Liao
- Department of Chemical and Biomolocular Engineering, University of California
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
| |
Collapse
|
5
|
Zhang H, Liu Q, Liang Q, Wang B, Chen Z, Wang J. Expression of tardigrade disordered proteins impacts the tolerance to biofuels in a model cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2023; 13:1091502. [PMID: 36687595 PMCID: PMC9845703 DOI: 10.3389/fmicb.2022.1091502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Tardigrades, known colloquially as water bears or moss piglets, are diminutive animals capable of surviving many extreme environments, even been exposed to space in low Earth orbit. Recently termed tardigrade disordered proteins (TDPs) include three families as cytoplasmic-(CAHS), secreted-(SAHS), and mitochondrial-abundant heat soluble (MAHS) proteins. How these tiny animals survive these stresses has remained relatively mysterious. Cyanobacteria cast attention as a "microbial factory" to produce biofuels and high-value-added chemicals due to their ability to photosynthesis and CO2 sequestration. We explored a lot about biofuel stress and related mechanisms in Synechocystis sp. PCC 6803. The previous studies show that CAHS protein heterogenous expression in bacteria, yeast, and human cells increases desiccation tolerance in these hosts. In this study, the expression of three CAHS proteins in cyanobacterium was found to affect the tolerance to biofuels, while the tolerance to Cd2+ and Zn2+ were slightly affected in several mutants. A quantitative transcriptomics approach was applied to decipher response mechanisms at the transcriptional level further.
Collapse
Affiliation(s)
- Heao Zhang
- Whittle School and Studios, Shenzhen, Guangdong, China
| | - Qingyang Liu
- Whittle School and Studios, Shenzhen, Guangdong, China
| | - Qing Liang
- Shenzhen Link Spider Technology Co., Ltd., Shenzhen, China
| | - Boxiang Wang
- Shenzhen Link Spider Technology Co., Ltd., Shenzhen, China,*Correspondence: Boxiang Wang, Zixi Chen
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,*Correspondence: Boxiang Wang, Zixi Chen
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
6
|
Towards understanding the mechanism of n-hexane tolerance in Synechocystis sp. PCC 6803. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Mechanisms of Stress Tolerance in Cyanobacteria under Extreme Conditions. STRESSES 2022. [DOI: 10.3390/stresses2040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyanobacteria are oxygen-evolving photoautotrophs with worldwide distribution in every possible habitat, and they account for half of the global primary productivity. Because of their ability to thrive in a hostile environment, cyanobacteria are categorized as “extremophiles”. They have evolved a fascinating repository of distinct secondary metabolites and biomolecules to promote their development and survival in various habitats, including severe conditions. However, developing new proteins/enzymes and metabolites is mostly directed by an appropriate gene regulation system that results in stress adaptations. However, only few proteins have been characterized to date that have the potential to improve resistance against abiotic stresses. As a result, studying environmental stress responses to post-genomic analysis, such as proteome changes using latest structural proteomics and synthetic biology techniques, is critical. In this regard, scientists working on these topics will benefit greatly from the stress of proteomics research. Progress in these disciplines will aid in understanding cyanobacteria’s physiology, biochemical, and metabolic systems. This review summarizes the most recent key findings of cyanobacterial proteome study under various abiotic stresses and the application of secondary metabolites formed during different abiotic conditions.
Collapse
|
8
|
Re A, Mazzoli R. Current progress on engineering microbial strains and consortia for production of cellulosic butanol through consolidated bioprocessing. Microb Biotechnol 2022; 16:238-261. [PMID: 36168663 PMCID: PMC9871528 DOI: 10.1111/1751-7915.14148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023] Open
Abstract
In the last decades, fermentative production of n-butanol has regained substantial interest mainly owing to its use as drop-in-fuel. The use of lignocellulose as an alternative to traditional acetone-butanol-ethanol fermentation feedstocks (starchy biomass and molasses) can significantly increase the economic competitiveness of biobutanol over production from non-renewable sources (petroleum). However, the low cost of lignocellulose is offset by its high recalcitrance to biodegradation which generally requires chemical-physical pre-treatment and multiple bioreactor-based processes. The development of consolidated processing (i.e., single-pot fermentation) can dramatically reduce lignocellulose fermentation costs and promote its industrial application. Here, strategies for developing microbial strains and consortia that feature both efficient (hemi)cellulose depolymerization and butanol production will be depicted, that is, rational metabolic engineering of native (hemi)cellulolytic or native butanol-producing or other suitable microorganisms; protoplast fusion of (hemi)cellulolytic and butanol-producing strains; and co-culture of (hemi)cellulolytic and butanol-producing microbes. Irrespective of the fermentation feedstock, biobutanol production is inherently limited by the severe toxicity of this solvent that challenges process economic viability. Hence, an overview of strategies for developing butanol hypertolerant strains will be provided.
Collapse
Affiliation(s)
- Angela Re
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTorinoItaly,Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| |
Collapse
|
9
|
Vachiranuvathin P, Tharasirivat V, Hemnusornnanon T, Jantaro S. Native SodB Overexpression of Synechocystis sp. PCC 6803 Improves Cell Growth Under Alcohol Stresses Whereas Its Gpx2 Overexpression Impacts on Growth Recovery from Alcohol Stressors. Appl Biochem Biotechnol 2022; 194:5748-5766. [PMID: 35819692 DOI: 10.1007/s12010-022-04061-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
To overcome the limited resistance to alcohol stress, genetically engineered Synechocystis sp. PCC 6803 strains with overexpressions of genes related with the ROS detoxification system (sodB and gpx2, which encode superoxide dismutase and glutathione peroxidase, respectively) were developed. Three engineered strains including a sodB-overexpressing strain (OE + S), a gpx2-overexpressing strain (OE + G), and a sodB/gpx2-overexpressing strain (OE + SG) grew similarly as wild-type control under normal condition. When compared to wild-type control, OE + S and OE + SG strains grew faster for 4 days under 2.0% (v/v) ethanol and 0.3% (v/v) n-butanol conditions, as well as having higher chlorophyll a levels. On the other hand, the prominent growth recovery of OE + G and OE + SG was noted within 4 days in normal BG11 medium after treating cells with high alcohol stresses for 1 h, in particular 15% ethanol and 2.5% n-butanol. Under 4 days of recovery from butanol stress, specific levels of intracellular pigments including chlorophyll a and carotenoids were dramatically increased in all modified strains. The overexpression of antioxidant genes then revealed a significant improvement of alcohol tolerance in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Phuwanet Vachiranuvathin
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vetaka Tharasirivat
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thitaporn Hemnusornnanon
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
Velmurugan R, Incharoensakdi A. Metabolic transformation of cyanobacteria for biofuel production. CHEMOSPHERE 2022; 299:134342. [PMID: 35307390 DOI: 10.1016/j.chemosphere.2022.134342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
World-wide, an emerging demand is moving towards the biofuels to replace the fossil fuels. In alternative biofuel production strategies, cyanobacteria have unique characteristic of accumulating glycogen, lipid, and fuel molecules through natural mechanisms. Moreover, the cyanobacteria can be easily engineered to synthesis a plenty of fuel molecules from CO2. To obtain the fuel molecule from cyanobacteria, various techniques were invented in which the metabolic engineering is found to be a prerequisite to develop an economically feasible process. The expression of indigenous or heterologous pathways plays an important role in developing successful production process. In addition, the engineering of photosynthetic apparatus, destruction of competitive pathways and improvement of tolerance were also proven to improve the product specific synthesis. Although various metabolic engineering approaches have been developed, there are certain obstacles when it comes to implementation for the production. In this review, the important biosynthetic pathways for biofuels, alteration of other genes to improve the actual pathway and possibilities of developing cyanobacterial fuel production have been elaborated.
Collapse
Affiliation(s)
- Rajendran Velmurugan
- Cyanobacterial Biotechnology Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aran Incharoensakdi
- Cyanobacterial Biotechnology Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand.
| |
Collapse
|
11
|
Bioconversion of Lignocellulosic Biomass into Value Added Products under Anaerobic Conditions: Insight into Proteomic Studies. Int J Mol Sci 2021; 22:ijms222212249. [PMID: 34830131 PMCID: PMC8624197 DOI: 10.3390/ijms222212249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 01/14/2023] Open
Abstract
Production of biofuels and other value-added products from lignocellulose breakdown requires the coordinated metabolic activity of varied microorganisms. The increasing global demand for biofuels encourages the development and optimization of production strategies. Optimization in turn requires a thorough understanding of the microbial mechanisms and metabolic pathways behind the formation of each product of interest. Hydrolysis of lignocellulosic biomass is a bottleneck in its industrial use and often affects yield efficiency. The accessibility of the biomass to the microorganisms is the key to the release of sugars that are then taken up as substrates and subsequently transformed into the desired products. While the effects of different metabolic intermediates in the overall production of biofuel and other relevant products have been studied, the role of proteins and their activity under anaerobic conditions has not been widely explored. Shifts in enzyme production may inform the state of the microorganisms involved; thus, acquiring insights into the protein production and enzyme activity could be an effective resource to optimize production strategies. The application of proteomic analysis is currently a promising strategy in this area. This review deals on the aspects of enzymes and proteomics of bioprocesses of biofuels production using lignocellulosic biomass as substrate.
Collapse
|
12
|
Zhou P, Wang L, Liu H, Li C, Li Z, Wang J, Tan X. CyanoOmicsDB: an integrated omics database for functional genomic analysis of cyanobacteria. Nucleic Acids Res 2021; 50:D758-D764. [PMID: 34614159 PMCID: PMC8728175 DOI: 10.1093/nar/gkab891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/14/2022] Open
Abstract
With their photosynthetic ability and established genetic modification systems, cyanobacteria are essential for fundamental and biotechnological research. Till now, hundreds of cyanobacterial genomes have been sequenced, and transcriptomic analysis has been frequently applied in the functional genomics of cyanobacteria. However, the massive omics data have not been extensively mined and integrated. Here, we describe CyanoOmicsDB (http://www.cyanoomics.cn/), a database aiming to provide comprehensive functional information for each cyanobacterial gene. CyanoOmicsDB consists of 8 335 261 entries of cyanobacterial genes from 928 genomes. It provides multiple gene identifiers, visualized genomic location, and DNA sequences for each gene entry. For protein-encoding genes, CyanoOmicsDB can provide predicted gene function, amino acid sequences, homologs, protein-domain super-families, and accession numbers for various public protein function databases. CyanoOmicsDB integrates both transcriptional and translational profiles of Synechocystis sp. PCC 6803 under various environmental culture coditions and genetic backgrounds. Moreover, CyanoOmicsDB includes 23 689 gene transcriptional start sites, 94 644 identified peptides, and 16 778 post-translation modification sites obtained from transcriptomes or proteomes of several model cyanobacteria. Compared with other existing cyanobacterial databases, CyanoOmicsDB comprises more datasets and more comprehensive functional information. CyanoOmicsDB will provide researchers in this field with a convenient way to retrieve functional information on cyanobacterial genes.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan430062, China
| | - Li Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan430062, China
| | - Hai Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan430062, China
| | - Chunyan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan430062, China
| | - Zhimin Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan430062, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang330045, China
| | - Jinxiang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan430062, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan430062, China
| |
Collapse
|
13
|
Sengupta S, Sahasrabuddhe D, Wangikar PP. Transporter engineering for the development of cyanobacteria as cell factories: A text analytics guided survey. Biotechnol Adv 2021; 54:107816. [PMID: 34411662 DOI: 10.1016/j.biotechadv.2021.107816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are attractive candidates for photoautotrophic production of platform chemicals due to their inherent ability to utilize carbon dioxide as the sole carbon source. Metabolic pathways can be engineered more readily in cyanobacteria compared to higher photosynthetic organisms. Although significant progress has been made in pathway engineering, intracellular accumulation of the product is a potential bottleneck in large-scale production. Likewise, substrate uptake is known to limit growth and product formation. These limitations can potentially be addressed by targeted and controlled expression of transporter proteins in the metabolically engineered strains. This review focuses on the transporters that have been explored in cyanobacteria. To highlight the progress on characterization and application of cyanobacterial transporters, we applied text analytics to extract relevant information from over 1000 publications. We have categorized the transporters based on their source, their function and the solute they transport. Further, the review provides insights into the potential of transporters in the metabolic engineering of cyanobacteria for improved product titer.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Deepti Sahasrabuddhe
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
14
|
Costa P, Usai G, Re A, Manfredi M, Mannino G, Bertea CM, Pessione E, Mazzoli R. Clostridium cellulovorans Proteomic Responses to Butanol Stress. Front Microbiol 2021; 12:674639. [PMID: 34367082 PMCID: PMC8336468 DOI: 10.3389/fmicb.2021.674639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Combination of butanol-hyperproducing and hypertolerant phenotypes is essential for developing microbial strains suitable for industrial production of bio-butanol, one of the most promising liquid biofuels. Clostridium cellulovorans is among the microbial strains with the highest potential for direct production of n-butanol from lignocellulosic wastes, a process that would significantly reduce the cost of bio-butanol. However, butanol exhibits higher toxicity compared to ethanol and C. cellulovorans tolerance to this solvent is low. In the present investigation, comparative gel-free proteomics was used to study the response of C. cellulovorans to butanol challenge and understand the tolerance mechanisms activated in this condition. Sequential Window Acquisition of all Theoretical fragment ion spectra Mass Spectrometry (SWATH-MS) analysis allowed identification and quantification of differentially expressed soluble proteins. The study data are available via ProteomeXchange with the identifier PXD024183. The most important response concerned modulation of protein biosynthesis, folding and degradation. Coherent with previous studies on other bacteria, several heat shock proteins (HSPs), involved in protein quality control, were up-regulated such as the chaperones GroES (Cpn10), Hsp90, and DnaJ. Globally, our data indicate that protein biosynthesis is reduced, likely not to overload HSPs. Several additional metabolic adaptations were triggered by butanol exposure such as the up-regulation of V- and F-type ATPases (involved in ATP synthesis/generation of proton motive force), enzymes involved in amino acid (e.g., arginine, lysine, methionine, and branched chain amino acids) biosynthesis and proteins involved in cell envelope re-arrangement (e.g., the products of Clocel_4136, Clocel_4137, Clocel_4144, Clocel_4162 and Clocel_4352, involved in the biosynthesis of saturated fatty acids) and a redistribution of carbon flux through fermentative pathways (acetate and formate yields were increased and decreased, respectively). Based on these experimental findings, several potential gene targets for metabolic engineering strategies aimed at improving butanol tolerance in C. cellulovorans are suggested. This includes overexpression of HSPs (e.g., GroES, Hsp90, DnaJ, ClpC), RNA chaperone Hfq, V- and F-type ATPases and a number of genes whose function in C. cellulovorans is currently unknown.
Collapse
Affiliation(s)
- Paolo Costa
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giulia Usai
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.,Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy.,Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Angela Re
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, Università del Piemonte Orientale, Novara, Italy.,Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Cinzia Margherita Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Enrica Pessione
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv 2021; 54:107795. [PMID: 34246744 DOI: 10.1016/j.biotechadv.2021.107795] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
Adaptive laboratory evolution (ALE) is an innovative approach for the generation of evolved microbial strains with desired characteristics, by implementing the rules of natural selection as presented in the Darwinian Theory, on the laboratory bench. New as it might be, it has already been used by several researchers for the amelioration of a variety of characteristics of widely used microorganisms in biotechnology. ALE is used as a tool for the deeper understanding of the genetic and/or metabolic pathways of evolution. Another important field targeted by ALE is the manufacturing of products of (high) added value, such as ethanol, butanol and lipids. In the current review, we discuss the basic principles and techniques of ALE, and then we focus on studies where it has been applied to bacteria, fungi and microalgae, aiming to improve their performance to biotechnological procedures and/or inspect the genetic background of evolution. We conclude that ALE is a promising and efficacious method that has already led to the acquisition of useful new microbiological strains in biotechnology and could possibly offer even more interesting results in the future.
Collapse
Affiliation(s)
- Maria Mavrommati
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece; Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Alexandra Daskalaki
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - George Aggelis
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
16
|
Wang R, Yang Y, Jing Y, Segar ST, Zhang Y, Wang G, Chen J, Liu QF, Chen S, Chen Y, Cruaud A, Ding YY, Dunn DW, Gao Q, Gilmartin PM, Jiang K, Kjellberg F, Li HQ, Li YY, Liu JQ, Liu M, Machado CA, Ming R, Rasplus JY, Tong X, Wen P, Yang HM, Yang JJ, Yin Y, Zhang XT, Zhang YY, Yu H, Yue Z, Compton SG, Chen XY. Molecular mechanisms of mutualistic and antagonistic interactions in a plant-pollinator association. Nat Ecol Evol 2021; 5:974-986. [PMID: 34002050 DOI: 10.1038/s41559-021-01469-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Many insects metamorphose from antagonistic larvae into mutualistic adult pollinators, with reciprocal adaptation leading to specialized insect-plant associations. It remains unknown how such interactions are established at molecular level. Here we assemble high-quality genomes of a fig species, Ficus pumila var. pumila, and its specific pollinating wasp, Wiebesia pumilae. We combine multi-omics with validation experiments to reveal molecular mechanisms underlying this specialized interaction. In the plant, we identify the specific compound attracting pollinators and validate the function of several key genes regulating its biosynthesis. In the pollinator, we find a highly reduced number of odorant-binding protein genes and an odorant-binding protein mainly binding the attractant. During antagonistic interaction, we find similar chemical profiles and turnovers throughout the development of galled ovules and seeds, and a significant contraction of detoxification-related gene families in the pollinator. Our study identifies some key genes bridging coevolved mutualists, establishing expectations for more diffuse insect-pollinator systems.
Collapse
Affiliation(s)
- Rong Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Yang Yang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yi Jing
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Simon T Segar
- Agriculture and Environment Department, Harper Adams University, Newport, UK
| | - Yu Zhang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Gang Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jin Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | | | - Shan Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yan Chen
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | | | - Yuan-Yuan Ding
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Derek W Dunn
- College of Life Sciences, Northwest University, Xi'an, China
| | - Qiang Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Philip M Gilmartin
- Department of Biological and Marine Science, University of Hull, Hull, UK
| | - Kai Jiang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Finn Kjellberg
- CEFE, CNRS, University of Montpellier, Paul Valéry University Montpellier, EPHE, IRD, Montpellier, France
| | - Hong-Qing Li
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan-Yuan Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jian-Quan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Min Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Carlos A Machado
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Xin Tong
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ping Wen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | | | - Jing-Jun Yang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ye Yin
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Xing-Tan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hui Yu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China. .,School of Life Sciences, Qufu Normal University, Qufu, China.
| | - Zhen Yue
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.
| | | | - Xiao-Yong Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China. .,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
17
|
Li KT, Yang Y, Cheng X. Revealing the promoting effect of betaine on vitamin B12 biosynthetic pathway of Pseudomonas denitrificans by using a proteomics analysis. Curr Pharm Biotechnol 2021; 23:466-475. [PMID: 34061014 DOI: 10.2174/1389201022666210531120935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/12/2020] [Accepted: 03/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Our previous comparative metabolomics research revealed that betaine (N,N,N-trimethylglycine, a typically essential methyl-group donor for vitamin B12 biosynthesis) had a powerful promoting effect on the generation of vitamin B12 precursors and intermediates in vitamin B12-producing Pseudomonas denitrificans. However, the integral effect of betaine on the vitamin B12 biosynthetic pathway is still unclear. OBJECTIVE Considering the vitamin B12 biosynthetic pathway of P. denitrificans as a whole, this work aimed to reveal the biological function of betaine on the vitamin B12 biosynthetic pathway in P. denitrificans, which would sharpen and expand the understanding of betaine as the methyl-group donor for vitamin B12 biosynthesis. MATERIALS AND METHODS By using a proteomics method based on the iTRAQ technique, the present study compared and analyzed the differential expression of proteins involved in vitamin B12 biosynthetic pathway under 10 g/L betaine addition to P. denitrificans fermentation medium. RESULTS The results showed that betaine could significantly up-regulate the expression of proteins related to the vitamin B12 biosynthetic pathway, which was mainly reflected in the following three aspects: 1) the δ-aminolevulinic acid (ALA) synthase and porphobilinogen synthase that were responsible for the formation of the committed precursors for tetrapyrrole-derived macrocycle in vitamin B12 molecule; 2) the C-methylation-related enzymes (such as precorrin-4 C(11)-methyltransferase, Precorrin-2 C(20)-methyltransferase, Precorrin-8X methylmutase, and Precorrin-6Y C5,15-methyltransferase) and methionine synthase that were crucial to the C-methylation reactions for vitamin B12 biosynthesis; 3) the late-stage key enzymes (Cobaltochelatase, and Cob(I)yrinic acid a,c-diamide adenosyltransferase) that were related to cobalt chelation of vitamin B12 molecule. CONCLUSIONS The present study clearly demonstrated that betaine could significantly promote the expression of the integral enzymes involved in the vitamin B12 biosynthetic pathway of P. denitrificans, thus promoting vitamin B12 biosynthesis.
Collapse
Affiliation(s)
- Kun-Tai Li
- College of Food Science and Technology, Guangdong Provincial Key Labotatory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yong Yang
- University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Microbiology, Shanghai 200093, China
| | - Xin Cheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
18
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
19
|
Adaptive laboratory evolution of the fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for improved solvent tolerance. J Biosci Bioeng 2021; 131:491-500. [PMID: 33610455 DOI: 10.1016/j.jbiosc.2020.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/09/2023]
Abstract
Cyanobacteria hold promise as cell factories for the photoautotrophic conversion of carbon dioxide to useful chemicals. For the eventual commercial viability of such processes, cyanobacteria need to be engineered for (i) efficient channeling of carbon flux toward the product of interest and (ii) improved product tolerance, the latter being the focus of this study. We chose the recently reported, fast-growing, high light and CO2 tolerant cyanobacterium Synechococcus elongatus PCC 11801 for adaptive laboratory evolution. In two parallel experiments that lasted over 8400 h of culturing and 100 serial passages, S. elongatus PCC 11801 was evolved to tolerate 5 g/L n-butanol or 30 g/L 2,3-butanediol representing a 100% improvement in concentrations tolerated. The evolved strains retained alcohol tolerance even after being passaged several times without the alcohol stress suggesting that the changes were permanent. Whole genome sequencing of the n-butanol evolved strains revealed mutations in a number of stress responsive genes encoding translation initiation factors, RpoB and an ABC transporter. In 2,3-butanediol evolved strains, genes for ClpC, a different ABC transporter, glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase were found to be mutated. Furthermore, the evolved strains showed significant improvement in tolerance toward several other alcohols. Notably, the n-butanol evolved strain could tolerate up to 32 g/L ethanol, thereby making it a promising host for photosynthetic production of biofuels via metabolic engineering.
Collapse
|
20
|
Comparative Proteomic Profiling of Marine and Freshwater Synechocystis Strains Using Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Freshwater Synechocystis sp. PCC 6803 has been considered to be a platform for the production of the next generation of biofuels and is used as a model organism in various fields. Various genomics, transcriptomics, metabolomics, and proteomics studies have been performed on this strain, whereas marine Synechocystis sp. PCC 7338 has not been widely studied despite its wide distribution. This study analyzed the proteome profiles of two Synechocystis strains using a liquid chromatography–tandem mass spectrometry-based bottom-up proteomic approach. Proteomic profiling of Synechocystis sp. PCC 7338 was performed for the first time with a data-dependent acquisition method, revealing 18,779 unique peptides and 1794 protein groups. A data-independent acquisition method was carried out for the comparative quantitation of Synechocystis sp. PCC 6803 and 7338. Among 2049 quantified proteins, 185 up- and 211 down-regulated proteins were defined in Synechocystis sp. PCC 7338. Some characteristics in the proteome of Synechocystis sp. PCC 7338 were revealed, such as its adaptation to living conditions, including the down-regulation of some photosynthesis proteins, the up-regulation of kdpB, and the use of osmolyte glycine as a substrate in C1 metabolism for the regulation of carbon flow. This study will facilitate further studies on Synechocystis 7338 to define in depth the proteomic differences between it and other Synechocystis strains.
Collapse
|
21
|
Shi M, Chen L, Zhang W. Regulatory Diversity and Functional Analysis of Two-Component Systems in Cyanobacterium Synechocystis sp. PCC 6803 by GC-MS Based Metabolomics. Front Microbiol 2020; 11:403. [PMID: 32256471 PMCID: PMC7090099 DOI: 10.3389/fmicb.2020.00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/26/2020] [Indexed: 12/02/2022] Open
Abstract
Two-component signal transduction systems are still poorly functionally characterized in the model cyanobacterium Synechocystis sp. PCC 6803. To address the issue, a GC-MS based comparative metabolomic analysis was conducted on a library of 44 knockout mutants for the response regulators (RRs) in Synechocystis. The metabolomic profiling analysis showed that 7 RRs mutants, namely Δslr1909, Δsll1291, Δslr6040, Δsll1330, Δslr2024, Δslr1584, and Δslr1693, were significantly different at metabolomic level, although their growth patterns are similar to the wild type under the normal autotrophic growth condition, suggesting regulatory diversity of RRs at metabolite level in Synechocystis. Additionally, a detailed metabolomic analysis coupled with RT-PCR verification led to useful clues for possible function of these 7 RRs, which were found involved in regulation of multiple aspects of cellular metabolisms in Synechocystis. Moreover, an integrative metabolomic and evolutionary analysis of all RR showed that four groups of RR genes clustered together in both metabolomic and evolutionary trees, suggesting of possible functional conservation of these RRs during the evolutionary process. Meanwhile, six groups of RRs with close evolutionary origin were found with different metabolomic profiles, suggesting possible functional changes during evolution. In contrast, more than 10 groups of RR genes with different clustering patterns in the evolutionary tree were found clustered together in metabolomics-based tree, suggesting possible functional convergences during the evolution. This study provided a metabolomic view of RR function, and the most needed functional clues for further characterization of these regulatory proteins in Synechocystis.
Collapse
Affiliation(s)
- Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
22
|
Velmurugan R, Incharoensakdi A. Heterologous Expression of Ethanol Synthesis Pathway in Glycogen Deficient Synechococcus elongatus PCC 7942 Resulted in Enhanced Production of Ethanol and Exopolysaccharides. FRONTIERS IN PLANT SCIENCE 2020; 11:74. [PMID: 32117402 PMCID: PMC7034368 DOI: 10.3389/fpls.2020.00074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/20/2020] [Indexed: 05/09/2023]
Abstract
In this study, the Synechococcus elongatus PCC 7942 (hereafter S. elongatus) was engineered by the glgC knockout as well as the insertion of the pdc-adh genes from two different microorganisms. The insertion of pdc-adh genes increased the ethanol synthesis with further improvement in the productivity upon the destruction of glycogen synthesis pathway and the supplementation of cofactor. The abolition of glycogen synthesis pathway led to a considerable increase of the engineered S. elongatus metabolites involved in the ethanol synthesis pathway. Moreover, the studies on cofactor addition highlighted the importance of Mg+2, Zn+2, thiamine pyrophosphate, and NADP+ in ethanol synthesis. The yields of 3856 mg/L ethanol and 109.5 µg/108 cells exopolysaccharides were obtained in the engineered S. elongatus using a photo-bioreactor under optimized conditions. This enhanced production in ethanol and exopolysaccharides are attributed to the flux of carbon from glycogen synthesis pathway and proper availability of essential components.
Collapse
Affiliation(s)
- Rajendran Velmurugan
- Cyanobacterial Biotechnology Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Aran Incharoensakdi
- Cyanobacterial Biotechnology Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
23
|
Jiang B, Xing Y, Li G, Zhang N, Lian L, Sun G, Zhang D. iTRAQ-Based Comparative Proteomic Analysis of Acinetobacter baylyi ADP1 Under DNA Damage in Relation to Different Carbon Sources. Front Microbiol 2020; 10:2906. [PMID: 31993023 PMCID: PMC6971185 DOI: 10.3389/fmicb.2019.02906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/02/2019] [Indexed: 12/27/2022] Open
Abstract
DNA damage response allows microorganisms to repair or bypass DNA damage and maintain the genome integrity. It has attracted increasing attention but the underlying influential factors affecting DNA damage response are still unclear. In this work, isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic analysis was used to investigate the influence of carbon sources on the translational response of Acinetobacter baylyi ADP1 to DNA damage. After cultivating in a nutrient-rich medium (LB) and defined media supplemented with four different carbon sources (acetate, citrate, pyruvate, and succinate), a total of 2807 proteins were identified. Among them, 84 proteins involved in stress response were significantly altered, indicating the strong influence of carbon source on the response of A. baylyi ADP1 to DNA damage and other stresses. As the first study on the comparative global proteomic changes in A. baylyi ADP1 under DNA damage across nutritional environments, our findings revealed that DNA damage response in A. baylyi ADP1 at the translational level is significantly altered by carbon source, providing an insight into the complex protein interactions across carbon sources and offering theoretical clues for further study to elucidate their general regulatory mechanism to adapt to different nutrient environments.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, China.,State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
| | - Nana Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Luning Lian
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Guangdong Sun
- School of Environment, Tsinghua University, Beijing, China.,State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, China.,State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
| |
Collapse
|
24
|
Bacteria for Butanol Production: Bottlenecks, Achievements and Prospects. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Fathima AM, Laviña WA, Putri SP, Fukusaki E. Accumulation of sugars and nucleosides in response to high salt and butanol stress in 1-butanol producing Synechococcus elongatus. J Biosci Bioeng 2019; 129:177-183. [PMID: 31542348 DOI: 10.1016/j.jbiosc.2019.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/18/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
Abstract
1-Butanol production using photosynthetic organisms such as cyanobacteria has garnered interest among researchers due to its high potential as a sustainable biofuel. Previously, the cyanobacterium Synechococcus elongatus PCC 7942 was engineered to produce 1-butanol through the introduction of a modified CoA-dependent pathway. S. elongatus strain DC11, a high producer of 1-butanol, was constructed based on metabolomics-assisted strain engineering. DC11 can reach a production titer of 418.7 mg/L in 6 days, cutting the production time in half compared to the previously constructed DC7. Regardless, the final 1-butanol titer of DC11 was still low compared to other microbial hosts. Sensitivity towards 1-butanol of the producing strain has been known as one of main hurdles for improving cyanobacterial production system. Thus, to improve cyanobacterial-based 1-butanol production in the future, we employed the metabolomics approach to study the intrinsic effect of improved 1-butanol productivity in DC11. This study focused on metabolite profiling of DC11 using LC/MS/MS. Results showed that there is an accumulation of disaccharide-P and sucrose/trehalose in DC11 compared to the DC7. These metabolites were previously reported to have a role in salt and alcohol stress response in cyanobacteria and therefore, DC11 was subjected to 0.2 M of NaCl and 1000 mg/L of 1-butanol for further investigation. DC11 with stress treatment showed a more prominent accumulation of sugars and nucleosides compared to control. The results obtained from this study may be beneficial for future strain improvement strategies in S. elongatus, particularly addressing the metabolic response of this strain upon 1-butanol stress.
Collapse
Affiliation(s)
- Artnice Mega Fathima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Walter Alvarez Laviña
- Microbiology Division, Institute of Biological Sciences, University of the Philippines Los Banos 4031, Philippines
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Babele PK, Kumar J, Chaturvedi V. Proteomic De-Regulation in Cyanobacteria in Response to Abiotic Stresses. Front Microbiol 2019; 10:1315. [PMID: 31263458 PMCID: PMC6584798 DOI: 10.3389/fmicb.2019.01315] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/27/2019] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are oxygenic photoautotrophs, exhibiting a cosmopolitan distribution in almost all possible environments and are significantly responsible for half of the global net primary productivity. They are well adapted to the diverse environments including harsh conditions by evolving a range of fascinating repertoires of unique biomolecules and secondary metabolites to support their growth and survival. These phototrophs are proved as excellent models for unraveling the mysteries of basic biochemical and physiological processes taking place in higher plants. Several known species of cyanobacteria have tremendous biotechnological applications in diverse fields such as biofuels, biopolymers, secondary metabolites and much more. Due to their potential biotechnological and commercial applications in various fields, there is an imperative need to engineer robust cyanobacteria in such a way that they can tolerate and acclimatize to ever-changing environmental conditions. Adaptations to stress are mainly governed by a precise gene regulation pathways resulting in the expression of novel protein/enzymes and metabolites. Despite the demand, till date few proteins/enzymes have been identified which play a potential role in improving tolerance against abiotic stresses. Therefore, it is utmost important to study environmental stress responses related to post-genomic investigations, including proteomic changes employing advanced proteomics, synthetic and structural biology workflows. In this respect, the study of stress proteomics offers exclusive advantages to scientists working on these aspects. Advancements on these fields could be helpful in dissecting, characterization and manipulation of physiological and metabolic systems of cyanobacteria to understand the stress induced proteomic responses. Till date, it remains ambiguous how cyanobacteria perceive changes in the ambient environment that lead to the stress-induced proteins thus metabolic deregulation. This review briefly describes the current major findings in the fields of proteome research on the cyanobacteria under various abiotic stresses. These findings may improve and advance the information on the role of different class of proteins associated with the mechanism(s) of stress mitigation in cyanobacteria under harsh environmental conditions.
Collapse
Affiliation(s)
- Piyoosh Kumar Babele
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Jay Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Venkatesh Chaturvedi
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
27
|
Xu W, Wang Y. Sequences, Domain Architectures, and Biological Functions of the Serine/Threonine and Histidine Kinases in Synechocystis sp. PCC 6803. Appl Biochem Biotechnol 2019; 188:1022-1065. [PMID: 30778824 DOI: 10.1007/s12010-019-02971-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/01/2019] [Indexed: 01/08/2023]
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) is a photoautotrophic prokaryote with plant-like photosynthetic machineries which significantly contribute to global carbon fixation and atmospheric oxygen production. Because of the relatively short cell doubling time, small size of the genome, and the ease for genetic manipulation, Synechocystis is a popular model organism for studies including photosynthesis and biofuel production. The cyanobacterium contains 12 eukaryotic type Ser/Thr kinases (SpkA-L) and 49 histidine kinases (Hik1-47 and Sll1334 and Sll5060 are named as Hik48 and Hik49, respectively, in this review) of the two-component system. All SpkA-L kinases have a eukaryotic kinase DFG signature in their A-loops. Based on the types of the kinase domains, the Spks can be separated into three groups: one group contains SpkA and SpkG which are related to human kinases, while SpkH-L are in another group that is distinct from human kinases. The third group contains SpkB-F which are between the first two groups. Four histidine kinases (Hiks17, 36, 45, and 48) lack a clear histidine kinase domain, and the conserved phosphorylatable histidine residue could not be identified for six histidine kinases (Hiks11, 18, 29, 37, 39, and 43) even though they have clear histidine kinase domains. Each of the remaining 39 has a histidine kinase domain with the conserved histidine residue. Eight hybrid histidine kinases contain one or two receiver domains, and they all, except Hik25 (Slr0222), have the conserved phosphorylatable aspartate. The disruptants of all kinases except hik13 and hik15 have been generated, and the majority of them have modest or no obvious phenotypes, indicating other kinases could functionally compensate the loss of a particular kinase. This review presents a comprehensive discussion including a spectrum of sequence, domain architecture, in vivo function, and proteomics investigations of Ser/Thr and histidine kinases. Understanding the sequences, domain architectures, and biology of the kinases will help to integrate "omic" data to clarify their exact biochemical functions.
Collapse
Affiliation(s)
- Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA.
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing, 100101, China.
| |
Collapse
|
28
|
Fan M, Sun X, Liao Z, Wang J, Li Y, Xu N. Comparative proteomic analysis of Ulva prolifera response to high temperature stress. Proteome Sci 2018; 16:17. [PMID: 30386183 PMCID: PMC6204280 DOI: 10.1186/s12953-018-0145-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Ulva prolifera belongs to green macroalgae and is the dominant species of green tide. It is distributed worldwide and is therefore subject to high-temperature stress during the growth process. However, the adaptation mechanisms of the response of U. prolifera to high temperatures have not been clearly investigated yet. Methods In this study, isobaric tags for relative and absolute quantitation (iTRAQ) labelling was applied in combination with the liquid chromatography-tandem mass spectrometry (LC-MS/MS) to conduct comparative proteomic analysis of the response of U. prolifera to high-temperature stress and to elucidate the involvement of this response in adaptation mechanisms. Differentially expressed proteins (DEPs) of U. prolifera under high temperature (denote UpHT) compared with the control (UpC) were identified. Bioinformatic analyses including GO analysis, pathway analysis, and pathway enrichment analysis was performed to analyse the key metabolic pathways that underlie the thermal tolerance mechanism through protein networks. Quantitative real-time PCR and western blot were performed to validate selected proteins. Results In the present study, 1223 DEPs were identified under high temperature compared with the control, which included 790 up-regulated and 433 down-regulated proteins. The high-temperature stimulus mainly induced the expression of glutathione S-transferase, heat shock protein, ascorbate peroxidase, manganese superoxide dismutase, ubiquitin-related protein, lhcSR, rubisco activase, serine/threonine protein kinase 2, adenylate kinase, Ca2+-dependent protein kinase (CDPK), disease resistance protein EDS1, metacaspase type II, NDPK2a, 26S proteasome regulatory subunit, ubiquinone oxidoreductase, ATP synthase subunit, SnRK2s, and cytochrome P450. The down-regulated proteins were photosynthesis-related proteins, glutathione reductase, catalase-peroxidase, thioredoxin, thioredoxin peroxidase, PP2C, and carbon fixation-related proteins. Furthermore, biological index analysis indicated that protein content and SOD activity decreased; the value of Fv/Fm dropped to the lowest point after culture for 96 h. However, APX activity and MDA content increased under high temperature. Conclusion The present study implied an increase in proteins that were associated with the stress response, oxidative phosphorylation, the cytokinin signal transduction pathway, the abscisic acid signal transduction pathway, and the glutathione metabolism pathway. Proteins that were associated with photosynthesis, carbon fixation in photosynthesis organisms, and the photosynthesis antenna protein pathway were decreased. These pathways played a pivotal role in high temperature regulation. These novel proteins provide a good starting point for further research into their functions using genetic or other approaches. These findings significantly improve the understanding of the molecular mechanisms involved in the tolerance of algae to high-temperature stress. Electronic supplementary material The online version of this article (10.1186/s12953-018-0145-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meihua Fan
- 1Marine Sciences and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316000 China
| | - Xue Sun
- 2Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211 China
| | - Zhi Liao
- 1Marine Sciences and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316000 China
| | - Jianxin Wang
- 1Marine Sciences and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316000 China
| | - Yahe Li
- 2Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211 China
| | - Nianjun Xu
- 2Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211 China
| |
Collapse
|
29
|
Liu C, Mao L, Zheng X, Yuan J, Hu B, Cai Y, Xie H, Peng X, Ding X. Comparative proteomic analysis of Methanothermobacter thermautotrophicus reveals methane formation from H 2 and CO 2 under different temperature conditions. Microbiologyopen 2018; 8:e00715. [PMID: 30260585 PMCID: PMC6528648 DOI: 10.1002/mbo3.715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 11/22/2022] Open
Abstract
The growth of all methanogens is limited to a specific temperature range. However, Methanothermobacter thermautotrophicus can be found in a variety of natural and artificial environments, the temperatures of which sometimes even exceed the temperature growth ranges of thermophiles. As a result, the extent to which methane production and survival are affected by temperature remains unclear. To investigate the mechanisms of methanogenesis that Archaea have evolved to cope with drastic temperature shifts, the responses of Methanothermobacter thermautotrophicus to temperature were investigated under a high temperature growth (71°C) and cold shock (4°C) using Isobaric tags for relative and absolute quantitation (iTRAQ). The results showed that methane formation is decreased and that protein folding and degradation are increased in both high‐ and low‐temperature treatments. In addition, proteins predicted to be involved in processing environmental information processing and in cell membrane/wall/envelope biogenesis may play key roles in affecting methane formation and enhancing the response of M. thermautotrophicus to temperature stress. Analysis of the genomic locations of the genes corresponding to these temperature‐dependent proteins predicted that 77 of the genes likely to form 32 gene clusters. Here, we assess the response of M. thermautotrophicus to different temperatures and provide a new level of understanding of methane formation and cellular putative adaptive responses.
Collapse
Affiliation(s)
- Cong Liu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Lihui Mao
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xiongmin Zheng
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Jiangan Yuan
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Beijuan Hu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Yaohui Cai
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Hongwei Xie
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Xiaojue Peng
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xia Ding
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Biology Experimental Teaching Demonstration, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
30
|
Otoupal PB, Chatterjee A. CRISPR Gene Perturbations Provide Insights for Improving Bacterial Biofuel Tolerance. Front Bioeng Biotechnol 2018; 6:122. [PMID: 30234107 PMCID: PMC6131188 DOI: 10.3389/fbioe.2018.00122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/14/2018] [Indexed: 11/13/2022] Open
Abstract
Economically-viable biofuel production is often limited by low levels of microbial tolerance to high biofuel concentrations. Here we demonstrate the first application of deactivated CRISPR perturbations of gene expression to improve Escherichia coli biofuel tolerance. We construct a library of 31 unique CRISPR inhibitions and activations of gene expression in E. coli and explore their impacts on growth during 10 days of exposure to n-butanol and n-hexane. We show that perturbation of metabolism and membrane-related genes induces the greatest impacts on growth in n-butanol, as does perturbation of redox-related genes in n-hexanes. We identify uncharacterized genes yjjZ and yehS with strong potential for improving tolerance to both biofuels. Perturbations demonstrated significant temporal dependencies, suggesting that rationally designing time-sensitive gene circuits can optimize tolerance. We also introduce a sgRNA-specific hyper-mutator phenotype (~2,600-fold increase) into our perturbation strains using error-prone Pol1. We show that despite this change, strains exhibited similar growth phenotypes in n-butanol as before, demonstrating the robustness of CRISPR perturbations during prolonged use. Collectively, these results demonstrate the potential of CRISPR manipulation of gene expression for improving biofuel tolerance and provide constructive starting points for optimization of biofuel producing microorganisms.
Collapse
Affiliation(s)
- Peter B Otoupal
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, United States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, United States.,BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, United States
| |
Collapse
|
31
|
Hirokawa Y, Kanesaki Y, Arai S, Saruta F, Hayashihara K, Murakami A, Shimizu K, Honda H, Yoshikawa H, Hanai T. Mutations responsible for alcohol tolerance in the mutant of Synechococcus elongatus PCC 7942 (SY1043) obtained by single-cell screening system. J Biosci Bioeng 2018; 125:572-577. [DOI: 10.1016/j.jbiosc.2017.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/10/2017] [Accepted: 11/27/2017] [Indexed: 11/28/2022]
|
32
|
Bi Y, Pei G, Sun T, Chen Z, Chen L, Zhang W. Regulation Mechanism Mediated by Trans-Encoded sRNA Nc117 in Short Chain Alcohols Tolerance in Synechocystis sp. PCC 6803. Front Microbiol 2018; 9:863. [PMID: 29780373 PMCID: PMC5946031 DOI: 10.3389/fmicb.2018.00863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Microbial small RNAs (sRNAs) play essential roles against many stress conditions in cyanobacteria. However, little is known on their regulatory mechanisms on biofuels tolerance. In our previous sRNA analysis, a trans-encoded sRNA Nc117 was found involved in the tolerance to ethanol and 1-butanol in Synechocystis sp. PCC 6803. However, its functional mechanism is yet to be determined. In this study, functional characterization of sRNA Nc117 was performed. Briefly, the exact length of the trans-encoded sRNA Nc117 was determined to be 102 nucleotides using 3′ RACE, and the positive regulation of Nc117 on short chain alcohols tolerance was further confirmed. Then, computational target prediction and transcriptomic analysis were integrated to explore the potential targets of Nc117. A total of 119 up-regulated and 116 down-regulated genes were identified in nc117 overexpression strain compared with the wild type by comparative transcriptomic analysis, among which the upstream regions of five genes were overlapped with those predicted by computational target approach. Based on the phenotype analysis of gene deletion and overexpression strains under short chain alcohols stress, one gene slr0007 encoding D-glycero-alpha-D-manno-heptose 1-phosphate guanylyltransferase was determined as a potential target of Nc117, suggesting that the synthesis of LPS or S-layer glycoprotein may be responsible for the tolerance enhancement. As the first reported trans-encoded sRNA positively regulating biofuels tolerance in cyanobacteria, this study not only provided evidence for a new regulatory mechanism of trans-encoded sRNA in cyanobacteria, but also valuable information for rational construction of high-tolerant cyanobacterial chassis.
Collapse
Affiliation(s)
- Yanqi Bi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Zixi Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
33
|
Chang D, Sakuma S, Kera K, Uozumi N, Arai F. Measurement of the mechanical properties of single Synechocystis sp. strain PCC6803 cells in different osmotic concentrations using a robot-integrated microfluidic chip. LAB ON A CHIP 2018; 18:1241-1249. [PMID: 29568834 DOI: 10.1039/c7lc01245d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Synechocystis sp. strain PCC6803 (Synechocystis) is a model microorganism and its mechanosensitive (MS) channels play important roles in its osmoadaptation mechanism. When the osmotic concentration of the culture environment changes, the inner pressure of the cell also changes due to the transportation of water through ion channels. Because the tension in the cell membrane relates to the inner pressure, we expect that the response of the MS channels to an osmotic concentration change could be evaluated by measuring their mechanical properties. Here, we propose a system for the measurement of the mechanical properties of a single Synechocystis cell. We developed a robot-integrated microfluidic chip combined with optical tweezers. The chip has an external actuated pushing probe and a force sensor probe. A single cell was located between the tip of both probes using the optical tweezers and was then deformed using the probes. As a result, we could measure the force and deformation and compare the Young's moduli of two groups: a group of wild type cells and a group of mutant (genetically modified) cells with a defect in the MS channels, at three different osmotic concentrations. The results showed that the Young's modulus of each group changed according to the osmotic concentration, while changes in cell size were too small to be detected. These results confirmed that the proposed evaluation method provides an understanding of the physiological function of MS channels for keeping the cell integrity of microorganisms when the cells are exposed to different external osmotic changes.
Collapse
Affiliation(s)
- Di Chang
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya, Aichi, Japan.
| | - Shinya Sakuma
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya, Aichi, Japan.
| | - Kota Kera
- Department of Biomolecular Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Fumihito Arai
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
34
|
Methods for enhancing cyanobacterial stress tolerance to enable improved production of biofuels and industrially relevant chemicals. Appl Microbiol Biotechnol 2018; 102:1617-1628. [DOI: 10.1007/s00253-018-8755-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
|
35
|
Song X, Wang Y, Diao J, Li S, Chen L, Zhang W. Direct Photosynthetic Production of Plastic Building Block Chemicals from CO 2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:215-238. [PMID: 30091097 DOI: 10.1007/978-981-13-0854-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydroxy acids have attracted attention as building block chemicals due to their roles as precursors for the production of various pharmaceuticals, vitamins, antibiotics, and flavor compounds as well as monomers for biodegradable plastic polyesters. The current approach to hydroxy acid production relies on nonrenewable fossil resources such as petroleum for raw materials, raising issues such as the rising costs of starting materials and environmental incompatibility. Recently, synthetic biology approaches based on the rational design and reconstruction of new biological systems were implemented to produce chemicals from a variety of renewable substrates. In addition to research using heterotrophic organic carbon-dependent Escherichia coli or yeasts, photosynthetic microorganisms such as cyanobacteria possessing the ability to absorb solar radiation and fix carbon dioxide (CO2) as a sole carbon source have been engineered into a new type of microbial cell factory to directly produce hydroxy acids from CO2. In this chapter, recent progress regarding the direct photosynthetic production of three important hydroxy acids-3-hydroxypropionate (3-HP), 3-hydroxybutyrate (3-HB), and 3-hydroxyvalerate (3-HV)-from CO2 in cyanobacteria is summarized and discussed.
Collapse
Affiliation(s)
- Xinyu Song
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China.,Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yunpeng Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Jinjin Diao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China. .,Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.
| |
Collapse
|
36
|
Gao X, Sun T, Wu L, Chen L, Zhang W. Co-overexpression of response regulator genes slr1037 and sll0039 improves tolerance of Synechocystis sp. PCC 6803 to 1-butanol. BIORESOURCE TECHNOLOGY 2017; 245:1476-1483. [PMID: 28533065 DOI: 10.1016/j.biortech.2017.04.112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 05/22/2023]
Abstract
In this study, two response regulator (RR) encoding genes slr1037 as well as sll0039 were co-overexpressed in Synechocystis sp. PCC 6803 by metabolic engineering and the 1-butanol tolerance was successfully improved by 133%. Aiming to explore the possible mechanisms for the enhancing 1-butanol tolerance, a quantitative iTRAQ-LC-MS/MS proteomics approach was then employed, identifying 216 up-regulated and 99 down-regulated proteins compared to wild type after 1-butanol treatment. This study mapped the potential target genes regulated by Slr1037 and Sll0039 and demonstrated the feasibility of engineering response regulators for modifying the biofuel tolerance in cyanobacteria.
Collapse
Affiliation(s)
- Xinyan Gao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Lina Wu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, PR China
| |
Collapse
|
37
|
Jiang Y, Xiao P, Shao Q, Qin H, Hu Z, Lei A, Wang J. Metabolic responses to ethanol and butanol in Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:239. [PMID: 29075323 PMCID: PMC5646117 DOI: 10.1186/s13068-017-0931-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Microalgae have been demonstrated to be among the most promising phototrophic species for producing renewable biofuels and chemicals. Ethanol and butanol are clean energy sources with good chemical and physical properties as alternatives to gasoline. However, biosynthesis of these two biofuels has not been achieved due to low tolerance of algal cells to ethanol or butanol. RESULTS With an eye to circumventing these problems in the future and engineering the robust alcohol-producing microalgal hosts, we investigated the metabolic responses of the model green alga Chlamydomonas reinhardtii to ethanol and butanol. Using a quantitative proteomics approach with iTRAQ-LC-MS/MS technologies, we detected the levels of 3077 proteins; 827 and 730 of which were differentially regulated by ethanol and butanol, respectively, at three time points. In particular, 41 and 59 proteins were consistently regulated during at least two sampling times. Multiple metabolic processes were affected by ethanol or butanol, and various stress-related proteins, transporters, cytoskeletal proteins, and regulators were induced as the major protection mechanisms against toxicity of the organic solvents. The most highly upregulated butanol response protein was Cre.770 peroxidase. CONCLUSIONS The study is the first comprehensive view of the metabolic mechanisms employed by C. reinhardtii to defend against ethanol or butanol toxicity. Moreover, the proteomic analysis provides a resource for investigating potential gene targets for engineering microalgae to achieve efficient biofuel production.
Collapse
Affiliation(s)
- Yongguang Jiang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Peng Xiao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Qing Shao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Huan Qin
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen, 518060 People’s Republic of China
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| |
Collapse
|
38
|
Fan M, Sun X, Xu N, Liao Z, Li Y, Wang J, Fan Y, Cui D, Li P, Miao Z. Integration of deep transcriptome and proteome analyses of salicylic acid regulation high temperature stress in Ulva prolifera. Sci Rep 2017; 7:11052. [PMID: 28887495 PMCID: PMC5591278 DOI: 10.1038/s41598-017-11449-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/21/2017] [Indexed: 01/17/2023] Open
Abstract
To investigate changes in transcript and relative protein levels in response to salicylic acid regulation of the thermotolerance in U. prolifera, complementary transcriptome and proteome analyses were performed with U. prolifera grown at 35 °C (UpHT) and with the addition of SA at high temperature (UpSHT). At mRNA level,12,296 differentially expressed genes (DEGs) were obtained from the comparison of UpSHT with UpHT. iTRAQ-labeling proteome analysis showed that a total of 4,449 proteins were identified and reliably quantified. At mRNA level, the up-regulated genes involved in antioxidant activity were thioredoxin,peroxiredoxin,FeSOD, glutathione peroxidase, partion catalase and MnSOD. The down-regulated genes were ascorbate peroxidase, glutathione S-transferase, catalase and MnSOD. In addition, the DEGs involved in plant signal transduction pathway (such as auxin response factors, BRI1 and JAZ) were down-regulated. At protein level, the up-regulated proteins involved in carbon fixation and the down-regulated protein mainly were polyubiquitin, ascorbate peroxidase. The expression of Ca2+-binding protein, heat shock protein and photosynthesis-related proteins, EDS1 were also significantly regulated both at mRNA and protein level. The results indicated that SA alleviated the high-temperature stimulus through partion antioxidant related proteins up-regulated, JA signal pathway enchanced, Ca2+-binding proteins, photosynthesis-related proteins significantly changed, antioxidant enzyme activities increased and photosynthesis index changed.
Collapse
Affiliation(s)
- Meihua Fan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China. .,Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China.
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Zhi Liao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| | - Yahe Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jianxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| | - Yingping Fan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| | - Dalian Cui
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| | - Peng Li
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| | - Zengliang Miao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| |
Collapse
|
39
|
Sun T, Chen L, Zhang W. Quantitative Proteomics Reveals Potential Crosstalk between a Small RNA CoaR and a Two-Component Regulator Slr1037 in Synechocystis sp. PCC6803. J Proteome Res 2017; 16:2954-2963. [PMID: 28677390 DOI: 10.1021/acs.jproteome.7b00243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacterial small RNAs (sRNAs) and two-component systems (TCSs) were two vital regulatory mechanisms employed by microorganisms to respond to environmental changes and stresses. As a promising "autotrophic cell factory", photosynthetic cyanobacteria have attracted a lot of attention these years. Although most studies focused on studying the roles of sRNAs or TCS regulators in stress response in photosynthetic cyanobacteria, limited work has elucidated their potential crosstalk. Our previous work has identified a negative sRNA regulator CoaR and a positive response regulator Slr1037 both related to 1-butanol stress regulation in Synechocystis sp. PCC6803. In this work, the potential crosstalk between CoaR and Slr1307 (i.e., the coregulated genes mediated by CoaR and Slr1037) was identified and validated through quantitative proteomics and quantitative real-time PCR (qRT-PCR), respectively. The results showed that the sensitive phenotype to 1-butanol of Δslr1037 could be rescued by suppressing coaR in Δslr1037, probably due to the fact that some target genes of Slr1037 could be reactivated by repression of CoaR. Twenty-eight coregulated proteins mediated by CoaR and Slr1037 were found through quantitative proteomics, and 10 of the annotated proteins were validated via qRT-PCR. This study proved the existence of crosstalk between sRNAs and response regulators and provided new insights into the coregulation of biofuel resistance in cyanobacteria.
Collapse
Affiliation(s)
- Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University , Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, P. R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University , Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, P. R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University , Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, P. R. China.,Center for Biosafety Research and Strategy, Tianjin University , Tianjin 300072, P. R. China
| |
Collapse
|
40
|
Wang Z, Liu W, Fan G, Zhai X, Zhao Z, Dong Y, Deng M, Cao Y. Quantitative proteome-level analysis of paulownia witches' broom disease with methyl methane sulfonate assistance reveals diverse metabolic changes during the infection and recovery processes. PeerJ 2017; 5:e3495. [PMID: 28690927 PMCID: PMC5497676 DOI: 10.7717/peerj.3495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/02/2017] [Indexed: 12/17/2022] Open
Abstract
Paulownia witches' broom (PaWB) disease caused by phytoplasma is a fatal disease that leads to considerable economic losses. Although there are a few reports describing studies of PaWB pathogenesis, the molecular mechanisms underlying phytoplasma pathogenicity in Paulownia trees remain uncharacterized. In this study, after building a transcriptome database containing 67,177 sequences, we used isobaric tags for relative and absolute quantification (iTRAQ) to quantify and analyze the proteome-level changes among healthy P. fortunei (PF), PaWB-infected P. fortunei (PFI), and PaWB-infected P. fortunei treated with 20 mg L-1 or 60 mg L-1 methyl methane sulfonate (MMS) (PFI-20 and PFI-60, respectively). A total of 2,358 proteins were identified. We investigated the proteins profiles in PF vs. PFI (infected process) and PFI-20 vs. PFI-60 (recovered process), and further found that many of the MMS-response proteins mapped to "photosynthesis" and "ribosome" pathways. Based on our comparison scheme, 36 PaWB-related proteins were revealed. Among them, 32 proteins were classified into three functional groups: (1) carbohydrate and energy metabolism, (2) protein synthesis and degradation, and (3) stress resistance. We then investigated the PaWB-related proteins involved in the infected and recovered processes, and discovered that carbohydrate and energy metabolism was inhibited, and protein synthesis and degradation decreased, as the plant responded to PaWB. Our observations may be useful for characterizing the proteome-level changes that occur at different stages of PaWB disease. The data generated in this study may serve as a valuable resource for elucidating the pathogenesis of PaWB disease during phytoplasma infection and recovery stages.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China
| | - Wenshan Liu
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China.,College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China.,College of Forestry, Henan Agricultural University, Zhengzhou, China
| | | | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China.,College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China.,College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China.,College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yabing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
41
|
Mahipant G, Paemanee A, Roytrakul S, Kato J, Vangnai AS. The significance of proline and glutamate on butanol chaotropic stress in Bacillus subtilis 168. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:122. [PMID: 28503197 PMCID: PMC5425972 DOI: 10.1186/s13068-017-0811-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Butanol is an intensively used industrial solvent and an attractive alternative biofuel, but the bioproduction suffers from its high toxicity. Among the native butanol producers and heterologous butanol-producing hosts, Bacillus subtilis 168 exhibited relatively higher butanol tolerance. Nevertheless, organic solvent tolerance mechanisms in Bacilli and Gram-positive bacteria have relatively less information. Thus, this study aimed to elucidate butanol stress responses that may involve in unique tolerance of B. subtilis 168 to butanol and other alcohol biocommodities. RESULTS Using comparative proteomics approach and molecular analysis of butanol-challenged B. subtilis 168, 108 butanol-responsive proteins were revealed, and classified into seven groups according to their biological functions. While parts of them may be similar to the proteins reportedly involved in solvent stress response in other Gram-positive bacteria, significant role of proline in the proline-glutamate-arginine metabolism was substantiated. Detection of intracellular proline and glutamate accumulation, as well as glutamate transient conversion during butanol exposure confirmed their necessity, especially proline, for cellular butanol tolerance. Disruption of the particular genes in proline biosynthesis pathways clarified the essential role of the anabolic ProB-ProA-ProI system over the osmoadaptive ProH-ProA-ProJ system for cellular protection in response to butanol exposure. Molecular modifications to increase gene dosage for proline biosynthesis as well as for glutamate acquisition enhanced butanol tolerance of B. subtilis 168 up to 1.8% (vol/vol) under the conditions tested. CONCLUSION This work revealed the important role of proline as an effective compatible solute that is required to protect cells against butanol chaotropic effect and to maintain cellular functions in B. subtilis 168 during butanol exposure. Nevertheless, the accumulation of intracellular proline against butanol stress required a metabolic conversion of glutamate through the specific biosynthetic ProB-ProA-ProI route. Thus, exogenous addition of glutamate, but not proline, enhanced butanol tolerance. These findings serve as a practical knowledge to enhance B. subtilis 168 butanol tolerance, and demonstrate means to engineer the bacterial host to promote higher butanol/alcohol tolerance of B. subtilis 168 for the production of butanol and other alcohol biocommodities.
Collapse
Affiliation(s)
- Gumpanat Mahipant
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Atchara Paemanee
- Proteomics Research Laboratory, Genome Institute Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, 12120 Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, 12120 Thailand
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, 739-8530 Japan
| | - Alisa S. Vangnai
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
42
|
Shang C, Zhu S, Wang Z, Qin L, Alam MA, Xie J, Yuan Z. Proteome response of Dunaliella parva induced by nitrogen limitation. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Implications of polyploidy events on the phenotype, microstructure, and proteome of Paulownia australis. PLoS One 2017; 12:e0172633. [PMID: 28273106 PMCID: PMC5342211 DOI: 10.1371/journal.pone.0172633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/06/2017] [Indexed: 01/11/2023] Open
Abstract
Polyploidy events are believed to be responsible for increasing the size of plant organs and enhancing tolerance to environmental stresses. Autotetraploid Paulownia australis plants exhibit superior traits compared with their diploid progenitors. Although some transcriptomics studies have been performed and some relevant genes have been revealed, the molecular and biological mechanisms regulating the predominant characteristics and the effects of polyploidy events on P. australis remain unknown. In this study, we compared the phenotypes, microstructures, and proteomes of autotetraploid and diploid P. australis plants. Compared with the diploid plant, the leaves of the autotetraploid plant were longer and wider, and the upper epidermis, lower epidermis, and palisade layer of the leaves were thicker, the leaf spongy parenchyma layer was thinner, the leaf cell size was bigger, and cell number was lower. In the proteome analysis, 3,010 proteins were identified and quantified, including 773 differentially abundant proteins. These results may help to characterize the P. australis proteome profile. Differentially abundant proteins related to cell division, glutathione metabolism, and the synthesis of cellulose, chlorophyll, and lignin were more abundant in the autotetraploid plants. These results will help to enhance the understanding of variations caused by polyploidy events in P. australis. The quantitative real-time PCR results provided details regarding the expression patterns of the proteins at mRNA level. We observed a limited correlation between transcript and protein levels. These observations may help to clarify the molecular basis for the predominant autotetraploid characteristics and be useful for plant breeding in the future.
Collapse
|
44
|
Pei G, Sun T, Chen S, Chen L, Zhang W. Systematic and functional identification of small non-coding RNAs associated with exogenous biofuel stress in cyanobacterium Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:57. [PMID: 28286552 PMCID: PMC5341163 DOI: 10.1186/s13068-017-0743-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND The unicellular model cyanobacterium Synechocystis sp. PCC 6803 is considered a promising microbial chassis for biofuel production. However, its low tolerance to biofuel toxicity limits its potential application. Although recent studies showed that bacterial small RNAs (sRNAs) play important roles in regulating cellular processes in response to various stresses, the role of sRNAs in resisting exogenous biofuels is yet to be determined. RESULTS Based on genome-wide sRNA sequencing combined with systematic analysis of previous transcriptomic and proteomic data under the same biofuel or environmental perturbations, we report the identification of 133 trans-encoded sRNA transcripts with high-resolution mapping of sRNAs in Synechocystis, including 23 novel sRNAs identified for the first time. In addition, according to quantitative expression analysis and sRNA regulatory network prediction, sRNAs potentially involved in biofuel tolerance were identified and functionally confirmed by constructing sRNA overexpression or suppression strains of Synechocystis. Notably, overexpression of sRNA Nc117 revealed an improved tolerance to ethanol and butanol, while suppression of Nc117 led to increased sensitivity. CONCLUSIONS The study provided the first comprehensive responses to exogenous biofuels at the sRNA level in Synechocystis and opens an avenue to engineering sRNA regulatory elements for improved biofuel tolerance in the cyanobacterium Synechocystis.
Collapse
Affiliation(s)
- Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| | - Shuo Chen
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072 People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
45
|
Sun T, Pei G, Wang J, Chen L, Zhang W. A novel small RNA CoaR regulates coenzyme A biosynthesis and tolerance of Synechocystis sp. PCC6803 to 1-butanol possibly via promoter-directed transcriptional silencing. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:42. [PMID: 28239414 PMCID: PMC5319066 DOI: 10.1186/s13068-017-0727-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/09/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Microbial small RNAs (sRNAs) have been proposed as valuable regulatory elements for optimizing cellular metabolism for industrial purposes. However, little information is currently available on functional relevance of sRNAs to biofuels tolerance in cyanobacteria. RESULTS Here, we described the identification and functional characterization of a novel 124 nt sRNA Ncl1460 involved in tolerance to biofuel 1-butanol in Synechocystis sp. PCC 6803. The expression of Ncl1460 was verified by blotting assay and its length was determined through 3' RACE. Further analysis showed that Ncl1460 was a negative regulator of slr0847 (coaD) and slr0848 operon responsible for coenzyme A (CoA) synthesis possibly via promoter-directed transcriptional silencing mechanisms which has been widely discovered in eukaryote; thus Ncl1460 was designated as CoaR (CoA Biosynthesis Regulatory sRNA). The possible interaction between CoaR and target genes was suggested by CoA quantification and green fluorescent protein assays. Finally, a quantitative proteomics analysis showed that CoaR regulated tolerance to 1-butanol possibly by down-regulating CoA biosynthesis, resulting in a decrease of fatty acid metabolism and energy metabolism. CONCLUSIONS As the first reported sRNA involved CoA synthesis and 1-butanol tolerance in cyanobacteria, this study provides not only novel insights in regulating mechanisms of essential pathways in cyanobacteria, but also valuable target for biofuels tolerance and productivity modifications.
Collapse
Affiliation(s)
- Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Jiangxin Wang
- Shenzhen Engineering Lab for Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
46
|
Matsusako T, Toya Y, Yoshikawa K, Shimizu H. Identification of alcohol stress tolerance genes of Synechocystis sp. PCC 6803 using adaptive laboratory evolution. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:307. [PMID: 29270221 PMCID: PMC5738210 DOI: 10.1186/s13068-017-0996-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/11/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Synechocystis sp. PCC 6803 is an attractive organism for the production of alcohols, such as isobutanol and ethanol. However, because stress against the produced alcohol is a major barrier for industrial applications, it is highly desirable to engineer organisms with strong alcohol tolerance. RESULTS Isobutanol-tolerant strains of Synechocystis sp. PCC 6803 were obtained by long-term passage culture experiments using medium containing 2 g/L isobutanol. These evolved strains grew on medium containing 5 g/L isobutanol on which the parental strain could not grow. Mutation analysis of the evolved strains revealed that they acquired resistance ability due to combinatorial malfunctions of slr1044 (mcpA) and slr0369 (envD), or slr0322 (hik43) and envD. The tolerant strains demonstrated stress resistance against isobutanol as well as a wide variety of alcohols such as ethanol, n-butanol, and isopentanol. As a result of introducing an ethanol-producing pathway into the evolved strain, its productivity successfully increased to 142% of the control strain. CONCLUSIONS Novel mutations were identified that improved the stress tolerance ability of various alcohols in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Takuya Matsusako
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Katsunori Yoshikawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
47
|
Al-Haj L, Lui YT, Abed RMM, Gomaa MA, Purton S. Cyanobacteria as Chassis for Industrial Biotechnology: Progress and Prospects. Life (Basel) 2016; 6:life6040042. [PMID: 27916886 PMCID: PMC5198077 DOI: 10.3390/life6040042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/13/2016] [Accepted: 11/25/2016] [Indexed: 12/24/2022] Open
Abstract
Cyanobacteria hold significant potential as industrial biotechnology (IB) platforms for the production of a wide variety of bio-products ranging from biofuels such as hydrogen, alcohols and isoprenoids, to high-value bioactive and recombinant proteins. Underpinning this technology, are the recent advances in cyanobacterial “omics” research, the development of improved genetic engineering tools for key species, and the emerging field of cyanobacterial synthetic biology. These approaches enabled the development of elaborate metabolic engineering programs aimed at creating designer strains tailored for different IB applications. In this review, we provide an overview of the current status of the fields of cyanobacterial omics and genetic engineering with specific focus on the current molecular tools and technologies that have been developed in the past five years. The paper concludes by giving insights on future commercial applications of cyanobacteria and highlights the challenges that need to be addressed in order to make cyanobacterial industrial biotechnology more feasible in the near future.
Collapse
Affiliation(s)
- Lamya Al-Haj
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Yuen Tin Lui
- Institute of Structural & Molecular Biology, University College London, London WC1E 6BT, UK.
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Mohamed A Gomaa
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Saul Purton
- Institute of Structural & Molecular Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
48
|
Zhang LL, Zhang Y, Ren JN, Liu YL, Li JJ, Tai YN, Yang SZ, Pan SY, Fan G. Proteins differentially expressed during limonene biotransformation by Penicillium digitatum DSM 62840 were examined using iTRAQ labeling coupled with 2D-LC–MS/MS. ACTA ACUST UNITED AC 2016; 43:1481-95. [DOI: 10.1007/s10295-016-1826-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/08/2016] [Indexed: 01/03/2023]
Abstract
Abstract
This study focused on the differences in protein expression at various periods during limonene biotransformation by Penicillium digitatum DSM 62840. A total of 3644 protein-species were quantified by iTRAQ during limonene biotransformation (0 and 12 h). A total of 643 proteins were differentially expressed, 316 proteins were significantly up-regulated and 327 proteins were markedly down-regulated. GO, COG, and pathway enrichment analysis showed that the differentially expressed proteins possessed catalytic and binding functions and were involved in a variety of cellular and metabolic process. Furthermore, the enzymes involved in limonene transformation might be related to cytochrome P-450. This study provided a powerful platform for further exploration of biotransformation, and the identified proteins provided insight into the mechanism of limonene transformation.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| | - Yan Zhang
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| | - Jing-Nan Ren
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| | - Yan-Long Liu
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| | - Jia-Jia Li
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| | - Ya-Nan Tai
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| | - Shu-Zhen Yang
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| | - Si-Yi Pan
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| | - Gang Fan
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| |
Collapse
|
49
|
Johnson TJ, Gibbons JL, Gu L, Zhou R, Gibbons WR. Molecular genetic improvements of cyanobacteria to enhance the industrial potential of the microbe: A review. Biotechnol Prog 2016; 32:1357-1371. [DOI: 10.1002/btpr.2358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/30/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Tylor J. Johnson
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
- Dept. of MicrobiologyThe University of TennesseeKnoxville TN37996
| | - Jaimie L. Gibbons
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - Liping Gu
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - Ruanbao Zhou
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - William R. Gibbons
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| |
Collapse
|
50
|
Fu Y, Chen L, Zhang W. Regulatory mechanisms related to biofuel tolerance in producing microbes. J Appl Microbiol 2016; 121:320-32. [PMID: 27123568 DOI: 10.1111/jam.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/20/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Fu
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - L. Chen
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - W. Zhang
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| |
Collapse
|