1
|
Gui G, Zhang Q, Hu W, Liu F. Application of multiomics analysis to plant flooding response. FRONTIERS IN PLANT SCIENCE 2024; 15:1389379. [PMID: 39193215 PMCID: PMC11347887 DOI: 10.3389/fpls.2024.1389379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Flooding, as a natural disaster, plays a pivotal role in constraining the growth and development of plants. Flooding stress, including submergence and waterlogging, not only induces oxygen, light, and nutrient deprivation, but also alters soil properties through prolonged inundation, further impeding plant growth and development. However, hypoxia (or anoxia) is the most serious and direct damage to plants caused by flooding. Moreover, flooding disrupts the structural integrity of plant cell walls and compromises endoplasmic reticulum functionality, while hindering nutrient absorption and shifting metabolic processes from normal aerobic respiration to anaerobic respiration. It can be asserted that flooding exerts comprehensive effects on plants encompassing phenotypic changes, transcriptional alterations, protein dynamics, and metabolic shifts. To adapt to flooding environments, plants employ corresponding adaptive mechanisms at the phenotypic level while modulating transcriptomic profiles, proteomic characteristics, and metabolite levels. Hence, this study provides a comprehensive analysis of transcriptomic, proteomic, and metabolomics investigations conducted on flooding stress on model plants and major crops, elucidating their response mechanisms from diverse omics perspectives.
Collapse
Affiliation(s)
- Guangya Gui
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, China
| | - Qi Zhang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, China
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, China
| |
Collapse
|
2
|
Wang X, Komatsu S. The Role of Phytohormones in Plant Response to Flooding. Int J Mol Sci 2022; 23:6383. [PMID: 35742828 PMCID: PMC9223812 DOI: 10.3390/ijms23126383] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
Climatic variations influence the morphological, physiological, biological, and biochemical states of plants. Plant responses to abiotic stress include biochemical adjustments, regulation of proteins, molecular mechanisms, and alteration of post-translational modifications, as well as signal transduction. Among the various abiotic stresses, flooding stress adversely affects the growth of plants, including various economically important crops. Biochemical and biological techniques, including proteomic techniques, provide a thorough understanding of the molecular mechanisms during flooding conditions. In particular, plants can cope with flooding conditions by embracing an orchestrated set of morphological adaptations and physiological adjustments that are regulated by an elaborate hormonal signaling network. With the help of these findings, the main objective is to identify plant responses to flooding and utilize that information for the development of flood-tolerant plants. This review provides an insight into the role of phytohormones in plant response mechanisms to flooding stress, as well as different mitigation strategies that can be successfully administered to improve plant growth during stress exposure. Ultimately, this review will expedite marker-assisted genetic enhancement studies in crops for developing high-yield lines or varieties with flood tolerance.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
3
|
Chen H, Wu Q, Ni M, Chen C, Han C, Yu F. Transcriptome Analysis of Endogenous Hormone Response Mechanism in Roots of Styrax tonkinensis Under Waterlogging. FRONTIERS IN PLANT SCIENCE 2022; 13:896850. [PMID: 35734248 PMCID: PMC9208659 DOI: 10.3389/fpls.2022.896850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 06/02/2023]
Abstract
As a promising oil species, Styrax tonkinensis has great potential as a biofuel due to an excellent fatty acid composition. However, frequent flooding caused by global warming and the low tolerance of the species to waterlogging largely halted its expansion in waterlogged areas. To explore endogenous hormones and phytohormone-related molecular response mechanism of S. tonkinensis under waterlogging, we determined 1-aminocyclopropane-1-carboxylic acid (ACC) and three phytohormone content (ABA, abscisic acid; SA, salicylic acid; IAA, indole-3-acetic acid) and analyzed the transcriptome of its seedlings under waterlogged condition of 3-5 cm. The sample collecting time was 0, 9, 24, and 72 h, respectively. It was concluded that ACC presented an upward trend, but other plant hormones showed a downward trend from 0 to 72 h under waterlogging stress. A total of 84,601 unigenes were assembled with a total length of 81,389,823 bp through transcriptome analysis. The GO enrichment analysis of total differentially expressed genes (DEGs) revealed that 4,637 DEGs, 8,238 DEGs, and 7,146 DEGs were assigned into three main GO functional categories in 9 vs. 0 h, 24 vs. 0 h, and 72 vs. 0 h, respectively. We also discovered several DEGs involved in phytohormone synthesis pathway and plant hormone signaling pathway. It was concluded that the decreased transcription of PYL resulted in the weak ABA signal transduction pathway. Moreover, decreased SA content caused by the low-expressed PAL might impact the resistance of S. tonkinensis seedlings under waterlogging stress. Our research may provide a scientific basis for the understanding of the endogenous hormone response mechanism of S. tonkinensis to waterlogging and lay a foundation for further exploration of the waterlogging defect resistance genes of S. tonkinensis and improving its resistance to waterlogging stress.
Collapse
Affiliation(s)
- Hong Chen
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Qikui Wu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Ming Ni
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Chen Chen
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Chao Han
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Fangyuan Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| |
Collapse
|
4
|
Komatsu S, Yamaguchi H, Hitachi K, Tsuchida K, Kono Y, Nishimura M. Proteomic and Biochemical Analyses of the Mechanism of Tolerance in Mutant Soybean Responding to Flooding Stress. Int J Mol Sci 2021; 22:9046. [PMID: 34445752 PMCID: PMC8396653 DOI: 10.3390/ijms22169046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
To investigate the mechanism of flooding tolerance of soybean, flooding-tolerant mutants derived from gamma-ray irradiated soybean were crossed with parent cultivar Enrei for removal of other factors besides the genes related to flooding tolerance in primary generated mutant soybean. Although the growth of the wild type was significantly suppressed by flooding compared with the non-flooding condition, that of the mutant lines was better than that of the wild type even if it was treated with flooding. A two-day-old mutant line was subjected to flooding for 2 days and proteins were analyzed using a gel-free/label-free proteomic technique. Oppositely changed proteins in abundance between the wild type and mutant line under flooding stress were associated in endoplasmic reticulum according to gene-ontology categorization. Immunoblot analysis confirmed that calnexin accumulation increased in both the wild type and mutant line; however, calreticulin accumulated in only the mutant line under flooding stress. Furthermore, although glycoproteins in the wild type decreased by flooding compared with the non-flooding condition, those in the mutant line increased even if it was under flooding stress. Alcohol dehydrogenase accumulated in the wild type and mutant line; however, this enzyme activity significantly increased and mildly increased in the wild type and mutant line, respectively, under flooding stress compared with the non-flooding condition. Cell death increased and decreased in the wild type and mutant line, respectively, by flooding stress. These results suggest that the regulation of cell death through the fermentation system and glycoprotein folding might be an important factor for the acquisition of flooding tolerance in mutant soybean.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan;
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| | - Yuhi Kono
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Joetsu 943-0193, Japan;
| | - Minoru Nishimura
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| |
Collapse
|
5
|
Hypoxia-Responsive Class III Peroxidases in Maize Roots: Soluble and Membrane-Bound Isoenzymes. Int J Mol Sci 2020; 21:ijms21228872. [PMID: 33238617 PMCID: PMC7700428 DOI: 10.3390/ijms21228872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/21/2022] Open
Abstract
Flooding induces low-oxygen environments (hypoxia or anoxia) that lead to energy disruption and an imbalance of reactive oxygen species (ROS) production and scavenging enzymes in plants. The influence of hypoxia on roots of hydroponically grown maize (Zea mays L.) plants was investigated. Gene expression (RNA Seq and RT-qPCR) and proteome (LC–MS/MS and 2D-PAGE) analyses were used to determine the alterations in soluble and membrane-bound class III peroxidases under hypoxia. Gel-free peroxidase analyses of plasma membrane-bound proteins showed an increased abundance of ZmPrx03, ZmPrx24, ZmPrx81, and ZmPr85 in stressed samples. Furthermore, RT-qPCR analyses of the corresponding peroxidase genes revealed an increased expression. These peroxidases could be separated with 2D-PAGE and identified by mass spectrometry. An increased abundance of ZmPrx03 and ZmPrx85 was determined. Further peroxidases were identified in detergent-insoluble membranes. Co-regulation with a respiratory burst oxidase homolog (Rboh) and key enzymes of the phenylpropanoid pathway indicates a function of the peroxidases in membrane protection, aerenchyma formation, and cell wall remodeling under hypoxia. This hypothesis was supported by the following: (i) an elevated level of hydrogen peroxide and aerenchyma formation; (ii) an increased guaiacol peroxidase activity in membrane fractions of stressed samples, whereas a decrease was observed in soluble fractions; and (iii) alterations in lignified cells, cellulose, and suberin in root cross-sections.
Collapse
|
6
|
Wang X, Komatsu S. Review: Proteomic Techniques for the Development of Flood-Tolerant Soybean. Int J Mol Sci 2020; 21:E7497. [PMID: 33053653 PMCID: PMC7589014 DOI: 10.3390/ijms21207497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Soybean, which is rich in protein and oil as well as phytochemicals, is cultivated in several climatic zones. However, its growth is markedly decreased by flooding stress, which is caused by climate change. Proteomic techniques were used for understanding the flood-response and -tolerant mechanisms in soybean. Subcellular proteomics has potential to elucidate localized cellular responses and investigate communications among subcellular components during plant growth and under stress stimuli. Furthermore, post-translational modifications play important roles in stress response and tolerance to flooding stress. Although many flood-response mechanisms have been reported, flood-tolerant mechanisms have not been fully clarified for soybean because of limitations in germplasm with flooding tolerance. This review provides an update on current biochemical and molecular networks involved in soybean tolerance against flooding stress, as well as recent developments in the area of functional genomics in terms of developing flood-tolerant soybeans. This work will expedite marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
7
|
Qiao D, Zhang Y, Xiong X, Li M, Cai K, Luo H, Zeng B. Transcriptome analysis on responses of orchardgrass (Dactylis glomerata L.) leaves to a short term flooding. Hereditas 2020; 157:20. [PMID: 32418541 PMCID: PMC7232843 DOI: 10.1186/s41065-020-00134-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Orchardgrass (Dactylis glomerata L.) is a popular cool-season perennial grass with a high production value, and orchardgrass seed is the fourth top-selling forage grass seed in the world. However, its yield and quality are often affected by flooding. To date, the molecular responses of orchardgrass to flooding were poorly understood. RESULTS Here, we performed mRNA-seq to explore the transcriptomic responses of orchardgrass to a short term flooding (8 h and 24 h). There were 1454 and 565 differentially expressed genes identified in the 8 h and 24 h of flooding, respectively, compared to well control. GO functional enrichment analysis showed that oxidoreductase activity and oxidation-reduction process were highly present, suggesting that flooding induced the response to oxygen stress. Pathways enrichment analysis highlights the importance of glutathione metabolism, peroxidase, glycolysis and plant hormone signal transduction in response to flooding acclimation. Besides, the ROS clearance system is activated by significantly expressed glutathione S-transferase and genes encoding SOD and CAT (CAT1 and CDS2). The significant positive correlation between RNA sequencing data and a qPCR analysis indicated that the identified genes were credible. CONCLUSION In the process of orchardgrass response to flooding stress, multiple differential genes and biological processes have participated in its acclimation to flooding, especially the biological processes involved in the removal of ROS. These results provide a basis for further research on the adaptation mechanism of orchardgrass to flood tolerance.
Collapse
Affiliation(s)
- Dandan Qiao
- College of Animal Science, Southwest University, Rongchang District, Chongqing, 402460 China
| | - Yajie Zhang
- College of Animal Science, Southwest University, Rongchang District, Chongqing, 402460 China
| | - Xuemei Xiong
- College of Animal Science, Southwest University, Rongchang District, Chongqing, 402460 China
| | - Mingyang Li
- College of Animal Science, Southwest University, Rongchang District, Chongqing, 402460 China
| | - Kai Cai
- College of Animal Science, Southwest University, Rongchang District, Chongqing, 402460 China
| | - Hui Luo
- College of Animal Science, Southwest University, Rongchang District, Chongqing, 402460 China
| | - Bing Zeng
- College of Animal Science, Southwest University, Rongchang District, Chongqing, 402460 China
| |
Collapse
|
8
|
Borrego-Benjumea A, Carter A, Tucker JR, Yao Z, Xu W, Badea A. Genome-Wide Analysis of Gene Expression Provides New Insights into Waterlogging Responses in Barley ( Hordeum vulgare L.). PLANTS 2020; 9:plants9020240. [PMID: 32069892 PMCID: PMC7076447 DOI: 10.3390/plants9020240] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Waterlogging is a major abiotic stress causing oxygen depletion and carbon dioxide accumulation in the rhizosphere. Barley is more susceptible to waterlogging stress than other cereals. To gain a better understanding, the genome-wide gene expression responses in roots of waterlogged barley seedlings of Yerong and Deder2 were analyzed by RNA-Sequencing. A total of 6736, 5482, and 4538 differentially expressed genes (DEGs) were identified in waterlogged roots of Yerong at 72 h and Deder2 at 72 and 120 h, respectively, compared with the non-waterlogged control. Gene Ontology (GO) enrichment analyses showed that the most significant changes in GO terms, resulted from these DEGs observed under waterlogging stress, were related to primary and secondary metabolism, regulation, and oxygen carrier activity. In addition, more than 297 transcription factors, including members of MYB, AP2/EREBP, NAC, WRKY, bHLH, bZIP, and G2-like families, were identified as waterlogging responsive. Tentative important contributors to waterlogging tolerance in Deder2 might be the highest up-regulated DEGs: Trichome birefringence, α/β-Hydrolases, Xylanase inhibitor, MATE efflux, serine carboxypeptidase, and SAUR-like auxin-responsive protein. The study provides insights into the molecular mechanisms underlying the response to waterlogging in barley, which will be of benefit for future studies of molecular responses to waterlogging and will greatly assist barley genetic research and breeding.
Collapse
Affiliation(s)
- Ana Borrego-Benjumea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - Adam Carter
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - James R. Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada; (Z.Y.); (W.X.)
| | - Wayne Xu
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada; (Z.Y.); (W.X.)
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
- Correspondence: ; Tel.: +1-204-578-6573
| |
Collapse
|
9
|
Zeng N, Yang Z, Zhang Z, Hu L, Chen L. Comparative Transcriptome Combined with Proteome Analyses Revealed Key Factors Involved in Alfalfa ( Medicago sativa) Response to Waterlogging Stress. Int J Mol Sci 2019; 20:ijms20061359. [PMID: 30889856 PMCID: PMC6471898 DOI: 10.3390/ijms20061359] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/26/2022] Open
Abstract
Alfalfa (Medicago sativa) is the most widely grown and most important forage crop in the world. However, alfalfa is susceptible to waterlogging stress, which is the major constraint for its cultivation area and crop production. So far, the molecular mechanism of alfalfa response to the waterlogging is largely unknown. Here, comparative transcriptome combined with proteomic analyses of two cultivars (M12, tolerant; M25, sensitive) of alfalfa showing contrasting tolerance to waterlogging were performed to understand the mechanism of alfalfa in response to waterlogging stress. Totally, 748 (581 up- and 167 down-regulated) genes were differentially expressed in leaves of waterlogging-stressed alfalfa compared with the control (M12_W vs. M12_CK), whereas 1193 (740 up- and 453 down-regulated) differentially abundant transcripts (DATs) were detected in the leaves of waterlogging-stressed plants in comparison with the control plants (M25_W vs. M25_CK). Furthermore, a total of 187 (122 up- and 65 down-regulated) and 190 (105 up- and 85 down-regulated) differentially abundant proteins (DAPs) were identified via isobaric tags for relative and absolute quantification (iTRAQ) method in M12_W vs. M12_CK and M25_W vs. M25_CK comparison, respectively. Compared dataset analysis of proteomics and transcriptomics revealed that 27 and eight genes displayed jointly up-regulated or down-regulated expression profiles at both mRNA and protein levels in M12_W vs. M12_CK comparison, whereas 30 and 27 genes were found to be co-up-regulated or co-down-regulated in M25_W vs. M25_CK comparison, respectively. The strongly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for co-up-regulated genes at mRNA and protein levels in M12_W vs. M12_CK comparison were 'Amino sugar and nucleotide sugar metabolism', 'Arginine and proline metabolism' and 'Starch and sucrose metabolism', whereas co-up-regulated protein-related pathways including 'Arginine and proline metabolism' and 'Valine, leucine and isoleucine degradation' were largely enriched in M25_W vs. M25_CK comparison. Importantly, the identified genes related to beta-amylase, Ethylene response Factor (ERF), Calcineurin B-like (CBL) interacting protein kinases (CIPKs), Glutathione peroxidase (GPX), and Glutathione-S-transferase (GST) may play key roles in conferring alfalfa tolerance to waterlogging stress. The present study may contribute to our understanding the molecular mechanism underlying the responses of alfalfa to waterlogging stress, and also provide important clues for further study and in-depth characterization of waterlogging-resistance breeding candidate genes in alfalfa.
Collapse
Affiliation(s)
- Ningbo Zeng
- Department of Pratacultural Sciences, College of Agriculture, Hunan Agricultural University, Changsha 410128, China.
| | - Zhijian Yang
- Department of Pratacultural Sciences, College of Agriculture, Hunan Agricultural University, Changsha 410128, China.
| | - Zhifei Zhang
- Department of Pratacultural Sciences, College of Agriculture, Hunan Agricultural University, Changsha 410128, China.
| | - Longxing Hu
- Department of Pratacultural Sciences, College of Agriculture, Hunan Agricultural University, Changsha 410128, China.
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan 430074, China.
| |
Collapse
|
10
|
Luan H, Shen H, Pan Y, Guo B, Lv C, Xu R. Elucidating the hypoxic stress response in barley (Hordeum vulgare L.) during waterlogging: A proteomics approach. Sci Rep 2018; 8:9655. [PMID: 29941955 PMCID: PMC6018542 DOI: 10.1038/s41598-018-27726-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 06/08/2018] [Indexed: 12/25/2022] Open
Abstract
Waterlogging is one of the major abiotic stresses that affects barley production and yield quality. Proteomics techniques have been widely utilized to explore the mechanisms involved in the responses to abiotic stress. In this study, two barley genotypes with contrasting responses to waterlogging stress were analyzed with proteomic technology. The waterlogging treatment caused a greater reduction in biomass and photosynthetic performance in the waterlogging-sensitive genotype TF57 than that in the waterlogging-tolerant genotype TF58. Under waterlogging stress, 30, 30, 20 and 20 differentially expressed proteins were identified through tandem mass spectrometry analysis in the leaves, adventitious roots, nodal roots and seminal roots, respectively. Among these proteins, photosynthesis-, metabolism- and energy-related proteins were differentially expressed in the leaves, with oxygen-evolving enhancer protein 1, ATP synthase subunit and heat shock protein 70 being up-regulated in TF58. Pyruvate decarboxylase (PDC), 1-amino cyclopropane 1-carboxylic acid oxidase (ACO), glutamine synthetase (GS), glutathione S-transferases (GST) and beta-1, 3-glucanase in adventitious, nodal and seminal roots were more abundant in TF58 than those in TF57 under waterlogging stress. Ten representative genes were selected for validation by qRT-PCR in different genotypes with known waterlogging tolerance, and the expression levels of three candidate genes (PDC, ACO and GST) increased in the roots of all genotypes in response to the waterlogging stress. These three genes might play a significant role in the adaptation process of barley under waterlogging stress. The current results partially determined the mechanisms of waterlogging tolerance and provided valuable information for the breeding of barley with enhanced tolerance to waterlogging.
Collapse
Affiliation(s)
- Haiye Luan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou University, Yangzhou, 225009, China
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng, 224002, China
| | - Huiquan Shen
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng, 224002, China
| | - Yuhan Pan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou University, Yangzhou, 225009, China
| | - Chao Lv
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou University, Yangzhou, 225009, China
| | - Rugen Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
11
|
Wang X, Sakata K, Komatsu S. An Integrated Approach of Proteomics and Computational Genetic Modification Effectiveness Analysis to Uncover the Mechanisms of Flood Tolerance in Soybeans. Int J Mol Sci 2018; 19:E1301. [PMID: 29701710 PMCID: PMC5983631 DOI: 10.3390/ijms19051301] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 12/21/2022] Open
Abstract
Flooding negatively affects the growth of soybeans. Recently, omic approaches have been used to study abiotic stress responses in plants. To explore flood-tolerant genes in soybeans, an integrated approach of proteomics and computational genetic modification effectiveness analysis was applied to the soybean (Glycine max L. (Merrill)). Flood-tolerant mutant and abscisic acid (ABA)-treated soybean plants were used as the flood-tolerant materials. Among the primary metabolism, glycolysis, fermentation, and tricarboxylic acid cycle were markedly affected under flooding. Fifteen proteins, which were related to the affected processes, displayed similar protein profiles in the mutant and ABA-treated soybean plants. Protein levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), aconitase 1, and 2-oxoglutarate dehydrogenase were higher in flood-tolerant materials than in wild-type soybean plants under flood conditions. These three proteins were positioned in each of the three enzyme groups revealed by our computational genetic modification effectiveness analysis, and the three proteins configured a candidate set of genes to promote flood tolerance. Additionally, transcript levels of GAPDH were similar in flood-tolerant materials and in unstressed plants. These results suggest that proteins related to energy metabolism might play an essential role to confer flood tolerance in soybeans.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| | - Katsumi Sakata
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi 371-0816, Japan.
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
12
|
Hartmann A, Jozefowicz AM. VANTED: A Tool for Integrative Visualization and Analysis of -Omics Data. Methods Mol Biol 2018; 1696:261-278. [PMID: 29086410 DOI: 10.1007/978-1-4939-7411-5_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The investigation of biological systems from different perspectives leads, due to novel -omics technologies, to large-scale, heterogeneous, and complex datasets. To elucidate molecular programs that control biological systems growth and development the integration and analysis of these -omics data remains challenging. Network-integrated visualizations based on graphical standards support intuitive exploration and interpretation of -omics data within the functional context. This integrated vision of the biological system to be studied tries to extract all hidden information for deepening our understanding and reveals new biological insights.The method described here gives detailed instructions on the generation of such an integrative visualization of -omics data in the context of networks presented in the Systems Biology Graphical Notation (SBGN) using VANTED; a software tool for systems biology applications. An example illustrates the application of the method for metabolomics and proteomics data integration and analysis using a primary metabolic pathway, for the model crop potato.
Collapse
Affiliation(s)
- Anja Hartmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| | - Anna Maria Jozefowicz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
13
|
Yin X, Komatsu S. Comprehensive analysis of response and tolerant mechanisms in early-stage soybean at initial-flooding stress. J Proteomics 2017; 169:225-232. [PMID: 28137666 DOI: 10.1016/j.jprot.2017.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, which markedly reduces its growth and yield. Morphological and biochemical changes such as an increase of fresh weight and a decrease of ATP content happen in early-stage soybean at initial-flooding stress, indicating that soybean responses to flooding stress are keys for its survival and seedling growth. Phosphoproteomics and nuclear proteomics are useful tools to detect protein-phosphorylation status and to identify transcriptional factors. In the review, the effect of flooding on soybean response to initial flooding stress is discussed based on recent results of proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies. In addition, soybean survival under flooding stress, which is defined as tolerance mechanism, is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. BIOLOGICAL SIGNIFICANCE Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, especially soybean responses to initial flooding stress is key for its survival and seedling growth. Recently, proteomic techniques are applied to investigate the response and tolerant mechanisms of soybean at initial flooding condition. In this review, the progress in proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies about the initial-flooding response mechanism in early-stage soybean is presented. In addition, the tolerant mechanism in soybean is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. Through this review, the key proteins and genes involved in initial flooding response and tolerance at early stage soybean are summarized and they contribute greatly to uncover response and tolerance mechanism at early stage under stressful environmental conditions in soybean.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
14
|
Wang X, Khodadadi E, Fakheri B, Komatsu S. Organ-specific proteomics of soybean seedlings under flooding and drought stresses. J Proteomics 2017; 162:62-72. [PMID: 28435105 DOI: 10.1016/j.jprot.2017.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 01/15/2023]
Abstract
Organ-specific analyses enrich the understanding of plant growth and development under abiotic stresses. To elucidate the cellular responses in soybean seedlings exposed to flooding and drought stresses, organ-specific analysis was performed using a gel-free/label-free proteomic technique. Physiological analysis indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were markedly increased in leaf and root of plants treated with 6days of flooding and drought stresses, respectively. Proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominately affected in leaf, hypocotyl, and root in response to flooding and drought. Notably, the tricarboxylic acid cycle was suppressed in leaf and root under both stresses. Moreover, 17 proteins, including beta-glucosidase 31 and beta-amylase 5, were identified in soybean seedlings under both stresses. The protein abundances of beta-glucosidase 31 and beta-amylase 5 were increased in leaf and root under both stresses. Additionally, the gene expression of beta-amylase 5 was upregulated in leaf exposed to the flooding and drought, and the expression level was highly correlated with the protein abundance. These results suggest that beta-amylase 5 may be involved in carbohydrate mobilization to provide energy to the leaf of soybean seedlings exposed to flooding and drought. BIOLOGICAL SIGNIFICANCE This study examined the effects of flooding and drought on soybean seedlings in different organs using a gel-free/label-free proteomic approach. Physiological responses indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were increased in leaf and root of soybean seedlings exposed to flooding and drought for 6days. Functional analysis of acquired protein profiles exhibited that proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominated affected in leaf, hypocotyl, and root under both stresses. Moreover, the tricarboxylic acid cycle was suppressed in leaf and root of stressed soybean seedlings. Additionally, increased protein abundance of beta-amylase 5 was consistent with upregulated gene expression in the leaf under both stresses, suggesting that carbohydrate metabolism might be governed in response to flooding and drought of soybean seedlings.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Ehsaneh Khodadadi
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; Department of Plant Breeding and Biotechnology, University of Zabol, Zabol 98613-35856, Iran
| | - Baratali Fakheri
- Department of Plant Breeding and Biotechnology, University of Zabol, Zabol 98613-35856, Iran
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
15
|
Sakata K, Saito T, Ohyanagi H, Okumura J, Ishige K, Suzuki H, Nakamura T, Komatsu S. Loss of variation of state detected in soybean metabolic and human myelomonocytic leukaemia cell transcriptional networks under external stimuli. Sci Rep 2016; 6:35946. [PMID: 27775018 PMCID: PMC5075873 DOI: 10.1038/srep35946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/07/2016] [Indexed: 01/13/2023] Open
Abstract
Soybean (Glycine max) is sensitive to flooding stress, and flood damage at the seedling stage is a barrier to growth. We constructed two mathematical models of the soybean metabolic network, a control model and a flooded model, from metabolic profiles in soybean plants. We simulated the metabolic profiles with perturbations before and after the flooding stimulus using the two models. We measured the variation of state that the system could maintain from a state-space description of the simulated profiles. The results showed a loss of variation of state during the flooding response in the soybean plants. Loss of variation of state was also observed in a human myelomonocytic leukaemia cell transcriptional network in response to a phorbol-ester stimulus. Thus, we detected a loss of variation of state under external stimuli in two biological systems, regardless of the regulation and stimulus types. Our results suggest that a loss of robustness may occur concurrently with the loss of variation of state in biological systems. We describe the possible applications of the quantity of variation of state in plant genetic engineering and cell biology. Finally, we present a hypothetical "external stimulus-induced information loss" model of biological systems.
Collapse
Affiliation(s)
- Katsumi Sakata
- Maebashi Institute of Technology, Maebashi 371-0816, Japan
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Toshiyuki Saito
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Hajime Ohyanagi
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
- King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Okumura
- Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Kentaro Ishige
- Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Harukazu Suzuki
- RIKEN Centre for Life Science Technologies, Yokohama 230-0045, Japan
| | - Takuji Nakamura
- National Agriculture and Food Research Organisation (NARO) Hokkaido Agricultural Research Centre, Sapporo 062-8555, Japan
| | | |
Collapse
|
16
|
Abstract
Climate change is considered a major threat to world agriculture and food security. To improve the agricultural productivity and sustainability, the development of high-yielding stress-tolerant, and climate-resilient crops is essential. Of the abiotic stresses, flooding stress is a very serious hazard because it markedly reduces plant growth and grain yield. Proteomic analyses indicate that the effects of flooding stress are not limited to oxygen deprivation but include many other factors. Although many flooding response mechanisms have been reported, flooding tolerance mechanisms have not been fully clarified for soybean. There were limitations in soybean materials, such as mutants and varieties, while they were abundant in rice and Arabidopsis. In this review, plant proteomic technologies are introduced and flooding tolerance mechanisms of soybeans are summarized to assist in the improvement of flooding tolerance in soybeans. This work will expedite transgenic or marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | - Makoto Tougou
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | - Yohei Nanjo
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| |
Collapse
|
17
|
Komatsu S, Sakata K, Nanjo Y. ‘Omics’ techniques and their use to identify how soybean responds to flooding. J Anal Sci Technol 2015. [DOI: 10.1186/s40543-015-0052-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
18
|
Shi H, Ye T, Zhong B, Liu X, Chan Z. Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon (L.) Pers.) by exogenous calcium. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:1064-79. [PMID: 24428341 DOI: 10.1111/jipb.12167] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/12/2014] [Indexed: 05/19/2023]
Abstract
As an important second messenger, calcium is involved in plant cold stress response, including chilling (<20 °C) and freezing (<0 °C). In this study, exogenous application of calcium chloride (CaCl2 ) improved both chilling and freezing stress tolerances, while ethylene glycol-bis-(β-aminoethyl) ether-N,N,N,N-tetraacetic acid (EGTA) reversed CaCl2 effects in bermudagrass (Cynodon dactylon (L.) Pers.). Physiological analyses showed that CaCl2 treatment alleviated the reactive oxygen species (ROS) burst and cell damage triggered by chilling stress, via activating antioxidant enzymes, non-enzymatic glutathione antioxidant pool, while EGTA treatment had the opposite effects. Additionally, comparative proteomic analysis identified 51 differentially expressed proteins that were enriched in redox, tricarboxylicacid cycle, glycolysis, photosynthesis, oxidative pentose phosphate pathway, and amino acid metabolisms. Consistently, 42 metabolites including amino acids, organic acids, sugars, and sugar alcohols were regulated by CaCl2 treatment under control and cold stress conditions, further confirming the common modulation of CaCl2 treatment in carbon metabolites and amino acid metabolism. Taken together, this study reported first evidence of the essential and protective roles of endogenous and exogenous calcium in bermudagrass response to cold stress, partially via activation of the antioxidants and modulation of several differentially expressed proteins and metabolic homeostasis in the process of cold acclimation.
Collapse
Affiliation(s)
- Haitao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, 430074, China
| | | | | | | | | |
Collapse
|
19
|
Ghosh D, Xu J. Abiotic stress responses in plant roots: a proteomics perspective. FRONTIERS IN PLANT SCIENCE 2014; 5:6. [PMID: 24478786 PMCID: PMC3900766 DOI: 10.3389/fpls.2014.00006] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/06/2014] [Indexed: 05/18/2023]
Abstract
Abiotic stress conditions adversely affect plant growth, resulting in significant decline in crop productivity. To mitigate and recover from the damaging effects of such adverse environmental conditions, plants have evolved various adaptive strategies at cellular and metabolic levels. Most of these strategies involve dynamic changes in protein abundance that can be best explored through proteomics. This review summarizes comparative proteomic studies conducted with roots of various plant species subjected to different abiotic stresses especially drought, salinity, flood, and cold. The main purpose of this article is to highlight and classify the protein level changes in abiotic stress response pathways specifically in plant roots. Shared as well as stressor-specific proteome signatures and adaptive mechanism(s) are simultaneously described. Such a comprehensive account will facilitate the design of genetic engineering strategies that enable the development of broad-spectrum abiotic stress-tolerant crops.
Collapse
Affiliation(s)
- Dipanjana Ghosh
- Department of Biological Sciences, NUS Centre for BioImaging Sciences, National University of SingaporeSingapore
| | - Jian Xu
- Department of Biological Sciences, NUS Centre for BioImaging Sciences, National University of SingaporeSingapore
| |
Collapse
|
20
|
Affiliation(s)
- Jesús Jorrín-Novo
- Agricultural and Plant Proteomics, Biochemistry and Molecular Biology, University of Córdoba, Cordoba, Spain.
| | | |
Collapse
|
21
|
Komatsu S, Makino T, Yasue H. Proteomic and biochemical analyses of the cotyledon and root of flooding-stressed soybean plants. PLoS One 2013; 8:e65301. [PMID: 23799004 PMCID: PMC3683008 DOI: 10.1371/journal.pone.0065301] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Flooding significantly reduces the growth and grain yield of soybean plants. Proteomic and biochemical techniques were used to determine whether the function of cotyledon and root is altered in soybean under flooding stress. RESULTS Two-day-old soybean plants were flooded for 2 days, after which the proteins from root and cotyledon were extracted for proteomic analysis. In response to flooding stress, the abundance of 73 and 28 proteins was significantly altered in the root and cotyledon, respectively. The accumulation of only one protein, 70 kDa heat shock protein (HSP70) (Glyma17g08020.1), increased in both organs following flooding. The ratio of protein abundance of HSP70 and biophoton emission in the cotyledon was higher than those detected in the root under flooding stress. Computed tomography and elemental analyses revealed that flooding stress decreases the number of calcium oxalate crystal the cotyledon, indicating calcium ion was elevated in the cotyledon under flooding stress. CONCLUSION These results suggest that calcium might play one role through HSP70 in the cotyledon under flooding stress.
Collapse
|